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RELATIONSHIP BETWEEN THE INEXACT NEWTON METHOD

AND THE CONTINUOUS ANALOGY OF NEWTON’S METHOD

T. ZHANLAV∗, O. CHULUUNBAATAR∗† and G. ANKHBAYAR∗

Abstract. In this paper we propose two new strategies to determine the forc-
ing terms that allow one to improve the efficiency and robustness of the inexact
Newton method. The choices are based on the relationship between the inex-
act Newton method and the continuous analogy of Newton’s method. With
the new forcing terms, the inexact Newton method is locally Q-superlinearly
and quadratically convergent. Numerical results are presented to support the
effectiveness of the new forcing terms.
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1. INTRODUCTION

Consider a nonlinear system

F (x) = 0, (1)

where F : D ⊆ Rn → Rn is a continuously differentiable nonlinear map-
ping. Among all kinds of methods for solving the nonlinear equations (1),
the Newton method is perhaps the most elementary, popular and important
[1, 2, 3, 4, 5, 6]. One of the advantages of the method is its local quadratic
convergence. However, its computational cost is expensive, particularly when
the size of the problem is very large, because the Newton equations

F (xk) + F ′(xk)sk = 0 (2)

should be solved at each iteration step. To reduce the computational cost of
the Newton method, Dembo, Eisenstat and Steihaug [7] proposed an inexact
Newton (IN) method,

F ′(xk)s̄k = −F (xk) + rk,

xk+1 = xk + s̄k, k = 0, 1, . . . , x0 ∈ D. (3)
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The terms rk ∈ Rn represent the residuals of the approximate solutions s̄k of
the Newton equation (2), i.e., inexactly solve the Newton equation (2) and
obtain a step s̄k such that

‖rk‖ = ‖F (xk) + F ′(xk)s̄k‖ ≤ ηk‖F (xk)‖, (4)

where ηk ∈ [0, 1) is the forcing term. In each iteration step of the IN method,
a real number ηk should be chosen first, and then an IN step s̄k is obtained by
solving the Newton equations approximately with an efficient iteration solver
for systems of linear equations. The forcing terms play an important role both
in reducing the residuals of Newton equations and in increasing accuracy of
the method. In particular, if ηk = 0 for all k, then the IN method reduces
to the Newton method. The IN method, like the Newton method, is locally
convergent.

Theorem 1.1. [7]. Assume that the IN iterates converge to x∗. Then the
convergence is superlinear if and only if

‖rk‖ = o(‖F (xk)‖) as k →∞. (5)

Theorem 1.2. [7]. Given ηk ≤ η < t < 1, k = 0, 1, . . . there exists ε > 0
such that for any initial approximation x0 with ‖x0− x∗‖ ≤ ε, the sequence of
the IN iteration xk satisfying (4) converges to x∗. Moreover, the convergence
is linear in the sense that

‖xk+1 − x∗‖∗ ≤ t‖xk − x∗‖∗, k = 0, 1, . . . , (6)

where ‖y‖∗ = ‖F ′(x∗)y‖.

Theorem 1.3. [7]. Assume that F : Rn → Rn is continuously differentiable,
x∗ ∈ Rn such that F (x∗) = 0 and F ′(x∗) is nonsingular. If the sequence xk
generated by IN iterates converges to x∗, then
(1) xk converges to x∗ superlinearly when ηk → 0;
(2) xk converges to x∗ quadratically if ηk = O(‖F (xk)‖) and F ′(x) is Lipschitz
continuous at x∗. In [8] the condition

‖rk‖
‖F (xk)‖+‖s̄k‖ = O(‖F (xk)‖) as k →∞ (7)

is proposed which characterizes the quadratic convergence of the IN iterations.

In [8] it is shown that the IN, inexact perturbed and quasi-Newton methods
are equivalent models. At present there are some strategies for choosing the
forcing terms [9, 10, 11].

2. THE CONTINUOUS ANALOGY OF NEWTON’S METHOD (CANM)

One of the modifications of Newton method is the well known CANM or
damped Newton method [1, 4, 5, 6]

F ′(xk)vk = −F (xk), xk+1 = xk + τkvk, k = 0, 1, . . . , (8)
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where τk > 0 is an iteration parameter. The suitable choice of the parameter
allows us to speed-up the convergence and to enlarge the convergence domain.
If τk ≡ 1 for all k, then CANM reduces to Newton method. There exists
a closed relationship between the CANM and the IN iterates. Indeed, the
CANM (8) can be considered as the IN iteration (3) with the residual

rk = F ′(xk)s̄k + F (xk) = (1− τk)F (xk). (9)

From here we get

‖rk‖ = ηk‖F (xk)‖ (10)

with

ηk = |1− τk|. (11)

We have a local and semi-local convergence results:

Theorem 2.1. There exits ε > 0 such that for any initial approximation x0

with ‖x0 − x∗‖ ≤ ε, the sequence generated by (8) with parameter τk ∈ (0, 2)
converges to x∗.

Proof. As mentioned above, the CANM is equivalent to IN iterates (9), for
which the residual satisfies inequality (4) with forcing term ηk ∈ [0, 1) under
condition τk ∈ (0, 2). Then by theorem 1.2 the sequence xk generated by (3)
or by (8) converges to x∗. �

Let D0 be a convex set with D0 ⊆ D, and (F ′(x))−1 exists for all x ∈ D0.

Theorem 2.2. We assume that

(i) ‖F ′′(x)‖ ≤M, x ∈ D0,
(ii) ‖F ′(x0)−1‖ ≤ β,
(iii) ‖F ′(x0)−1F (x0)‖ ≤ η, a0 = Mβη,
(iv) M‖F ′(xk)−1‖‖F ′(xk)−1F (xk)‖ ≤ ak < 2, k = 0, 1, . . .

and

0 < τk <
−1+

√
1+4ak
ak

. (12)

Then the sequence {xn} defined by (8) and starting at x0 ∈ D0 converges to a
solution x∗ of (1).

Proof. The Taylor expansion gives

F (xk+1) = (1− τk)F (xk) + F ′′(ξk)
2 τ2

k (F ′(xk)
−1F (xk))

2, (13)

where ξk = θxk + (1 − θ)xk+1, θ ∈ (0, 1). If we use the assumption (iv), then
from (13) it follows that

‖F (xk+1)‖ <
(
|1− τk|+ ak

2 τ
2
k

)
‖F (xk)‖ < ‖F (xk)‖

under condition (12), i.e., {‖F (xk)‖} is a decreasing sequence provided the

iteration parameter τk is chosen in the interval
(

0, −1+
√

1+4ak
ak

)
. �
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Remark 2.1. It is easy to show that

1 < −1+
√

1+4ak
ak

< 2, when 0 < an < 2.

This means that τk ∈ (0, 2). �

Remark 2.2. Assume that the sequence xk generated by CANM converges
to x∗. Then

(1) {xk} converges to x∗ superlinearly when τ → 1,
(2) {xk} converges to x∗ quadratically if

|1− τk| = O(‖F (xk)‖) or |1− τk| = O(‖F (xk−1)‖), (14)

because of theorem 1.3. �

3. SOME CHOICES OF ITERATION PARAMETERS

From (13) it follows that

‖F (xk)‖−|1−τk−1|‖F (xk−1)‖
‖F (xk−1)‖ = O(‖F (xk−1)‖)

and
‖F (xk)‖−|1−τk−1|‖F (xk−1)‖

‖F (xk)‖ = O(‖F (xk−1)‖)
Then by Remark 2.2, one can choose τk, such that

|1− τk| = |‖F (xk)‖−|1−τk−1||‖F (xk−1)‖
‖F (xk−1)‖ (16a)

or
|1− τk| = |‖F (xk)‖−|1−τk−1|‖F (xk−1)‖|

‖F (xk)‖ , (16b)

which allows us the quadratic convergence of CANM. The formulas (16) can
be rewritten in term of the forcing term ηk as

ηk =
|αkηk−1−1|

αk
(17a)

and respectively
ηk = |αkηk−1 − 1|, (17b)

where
αk =

‖F (xk−1)‖
‖F (xk)‖ . (18)

Assume that
‖F (xk)‖ ≤ ηk−1‖F (xk−1)‖, 0 ≤ ηk−1 < 1. (19)

Then αk > 1 and αk ηk−1 ≥ 1. As a consequence, the minimum of the possible
choices (17) is

ηn =
αkηk−1−1

αk
.

If the inequality (19) is not true, then (17) give us ηn = 1− ηk−1αk. Thus we
have

ηk =

{
1− ηk−1αk, when ηk−1αk < 1,

−1−ηk−1αk

αk
, when ηk−1αk ≥ 1.

(20)

The second choice in (20) allows us to decrease ηk, i.e., 0 < ηk < ηk−1,
while the first choice in (20) implies that 0 < ηk < 1. In both cases we have
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0 < ηk < 1. According to (4), it is possible that (19) is true and thereby the
second choice in (20) allows us to decrease ηk, i.e., ηk → 0 as k →∞. In terms
of τk we have the following choice

|1− τk| = ηk. (21)

From this it follows that, if 0 < ηk < 1 and ηk → 0 as k → ∞, then we have
0 < τk < 2 and τk → 1 as k →∞. Thus, the choice of the iteration parameter
given by (20), (21) can be used in CANM.

In [6] another choice for CANM was proposed:

τn = 2

1+
√

1+2b‖F (xn)‖
. (22)

According to (21), the formula (22) in term of ηn reads as

ηn =

√
1+2b‖F (xn)‖−1√
1+2b‖F (xn)‖+1

. (23)

which can be used in the IN as a forcing term. From (20) we see that the inex-
act Newton method with forcing term given by (20) is locally Q-superlinearly
convergent, while IN with forcing term given by (23) converges quadratically
because of ηn = O(‖F (xn)‖) (see theorem 1.3).

4. NUMERICAL EXPERIMENTS

In this section we present numerical examples to demonstrate the efficiency
of the new strategies to choose forcing terms. We compare the strategies with
some known strategies on their numerical behavior.

We have used three test problems that are typical systems of nonlinear
equations in literature, with each of its own name and standart initial guess,
say xs. The problems are listed as follows [11]:

Problem 4.1 (Generalized function of Rosenbrock) f1(x) = −4c(x2 − x2
1)x1 − 2(1− x1),

fi(x) = 2c(xi − x2
i−1)− 4c(xi+1 − x2

i )xi − 2(1− xi), i = 2, 3, . . . , n− 1,
fn(x) = 2c(xn − x2

n−1),

with c = 2 and xs = (1.2, 1.2, ..., 1.2)T .
Problem 4.2 (Tridiagonal system) f1(x) = 4(x1 − x2

2),
fi(x) = 8xi(x

2
i − xi−1)− 2(1− xi) + 4(xi − x2

i+1), i = 2, 3, . . . , n− 1,
fn(x) = 8xn(x2

n − xn−1)− 2(1− xn),

with xs = (12, 12, ..., 12)T .
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Table 1. Results for problems 4.1–4.3.

Choice
GF of Rosenbrock Tridiagonal system Five-diagonal system
xs 3xs −3xs xs 2xs −2xs xs 2xs −2xs

EW1
NI 6 17 18 24 23 27 41 19 16
GI 60 165 122 193 203 251 386 121 125
CT 1.91 5.66 2.19 6.21 7.15 7.81 12.88 5.11 3.17

EW2
NI 6 16 35 31 40 43 19 47 17
GI 85 110 129 147 206 167 94 156 85
CT 2.47 3.91 3.81 5.85 7.21 6.25 3.66 5.21 2.21

APR
NI 9 11 21 12 20 46 15 17 16
GI 81 93 116 88 128 216 97 98 95
CT 2.66 3.13 4.94 3.25 4.35 8.28 4.03 2.58 2.02

Str (20)
NI 10 19 35 33 31 42 33 32 19
GI 81 105 140 141 128 145 128 116 88
CT 2.50 3.88 5.22 5.37 5.17 6.16 6.38 3.30 3.00

Str (23)
NI 6 14 31 19 28 30 25 17 12
GI 64 87 115 102 135 127 126 91 70
CT 1.94 3.19 4.65 3.69 4.96 3.34 5.78 2.11 1.91

Problem 4.3 (Five-diagonal system)

f1(x) = 4(x1 − x2
2) + x2 − x2

3,
f2(x) = 8x2(x2

2 − x1)− 2(1− x2) + 4(x2 − x2
3) + x3 − x2

4,
fi(x) = 8xi(x

2
i − xi−1)− 2(1− xi) + 4(xi − x2

i+1)
+x2

i−1 − xi−2 + xi+1 − x2
i+2, i = 3, . . . , n− 2,

fn−1(x) = 8xn−1(x2
n−1 − xn−2)− 2(1− xn−1) + 4(xn−1 − x2

n)
+x2

n−2 − xn−3,
fn(x) = 8xn(x2

n − xn−1)− 2(1− xn) + x2
n−1 − xn−2,

with xs = (−2,−2, ...,−2)T .
We test the case n = 100. Besides the standard initial guess xs, also test

other initial guesses such as x0 = ±jxs, j = 2, 3. It is easy to see that
e = (1, 1, ..., 1)T is a solution to each of the above three problems. For the
convenience of reporting the results of different forcing terms, the following
notations are used in Table 1:

EW1 : the first strategy given by Eisenstat and Walker [10],
EW2 : the second strategy given by Eisenstat and Walker [10],
APR : the actual reduction and the predicted reduction strategy given in

[11] as well as strategies defined by formulas (20) and (23),
Str (20) : strategy given by (20),
Str (23) : strategy given by (23),
NI : denotes the total number of nonlinear iterations,
GI : denotes the total number of GMRES iterations,
CT : denotes 102×(CPU time).
The norm in our test is the Euclidean norm ‖ · ‖2 and the stoping criteria is

‖F (xk)‖ ≤ ε = 10−12.
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Table 2. Iteration comparison between APR and new forcing terms on Rosenbrock system

with initial guess xs, tolerance ε = 10−14 and parameter b = 0.1 in strategy (23).

k
Str (23) APR

GI ‖F (xk)‖ ηk GI ‖F (xk)‖ ηk
0 1 17.5015 5.0000 · 10−1 1 17.5015 5.0000 · 10−1

1 3 4.4680 1.5828 · 10−1 2 4.4680 2.5000 · 10−1

3 9 4.9646 · 10−1 2.3662 · 10−2 4 1.1195 1.2500 · 10−1

4 11 1.0066 · 10−1 4.9831 · 10−3 8 1.0501 · 10−1 6.250 · 10−2

5 18 5.4711 · 10−4 2.7354 · 10−5 8 7.589 · 10−2 6.250 · 10−2

6 27 1.5473 · 10−7 7.7363 · 10−9 9 3.6494 · 10−2 3.1250 · 10−2

7 24 1.4223 · 10−15 5.2340 · 10−13 11 1.0827 · 10−4 1.5625 · 10−2

8 - - - 12 8.2737 · 10−7 7.8125 · 10−3

9 - - - 13 2.7747 · 10−9 3.9063 · 10−3

10 - - - 13 4.1806 · 10−12 1.9531 · 10−3

11 - - - 13 1.1678 · 10−14 9.7656 · 10−4

The initial forcing term η0 = 0.5 and additional parameters of ηk are chosen
following [11], for all the above iterations EW1, EW2, APR, Strategies (20)
and (23).

The comparison of GMRES with different forcing terms was made by CPU
time. From Table 1 we see that GMRES with the forcing term given by (23)
is better than those with other forcing terms.

From Table 2 we see that the forcing term given by (23) decreases more
rapidly than the forcing term APR that halved at each iteration. As results,
the residual norm ‖F (xk)‖ in the first case decreases as rapidly as the forcing
term.
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[8] E. Cătinaş, The inexact, inexact perturbed, and quasi-Newton methods are equivalent
models, Math. Comp., 74, pp. 291–301, 2004.

[9] X.-C. Cai, W.D. Gropp, D.E. Keyes and M.D. Tidriti, Newton-Krylov-Schwarz
methods in CFD, Proceeding of the international workshop on numerical methods for
the Navier-stokes equations, Vieweg, Braunschwieg, pp. 17–30, 1995.

[10] S.C. Eisenstat and M.F. Walker, Choosing the forcing term in an inexact Newton
method, SIAM J. Sci. Comput., 17, pp. 16–32, 1996.

[11] H.-B. An, Z.-Y. Mo and X.-P. Liu, A choice of forcing terms in inexact Newton
method, J. Comput. Appl. Math., 200, pp. 47–60, 2007.

Received by the editors: January 11, 2012.


	1. Introduction
	2. The continuous analogy of Newton's method (CANM)
	3. Some choices of iteration parameters
	4. Numerical experiments
	References

