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Abstract. In this paper, we establish several necessary and sufficient conditions
for oscillation of the solutions of the following even order differential equation

x(n)(t) + q(t)xγ(t) = 0, n is even,

where q(t) ∈ C([t0,∞),R+) and γ is the quotient of odd positive integers.
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1. INTRODUCTION

Considering the n-order differential equation

(1) x(n)(t) + q(t)xγ(t) = 0, n is even,

where q(t) ∈ C([t0,∞),R+) and γ is the quotient of odd positive integers.
In the recent past, the asymptotic and oscillatory properties of the solutions

of n-order differential equations have been researched by many authors (see
[1–3, 7–9]).

A solution of Eq.(1) is said to be oscillatory if it has arbitrarily large zeros.
Otherwise, the solution is said to be nonoscillatory.

We say that Eq.(1) is strictly superlinear if γ > 1, strictly sublinear if
0 < γ < 1, and linear if γ = 1.

In particular, if n = 2, then Eq.(1) reduced to

(2) x′′(t) + q(t)xγ(t) = 0,

Eq.(2) is the well-known Emden-Fowler equation (see [10–12]).
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Many remarkable results have been established for the oscillation of solu-
tions of the second and higher order functional differential equations. For
example, the following well-known Theorems A-C are presented in [4–6].

Theorem A (see [4, 6]). If γ > 0, then Eq.(2) has a bounded nonoscillatory
solution if and only if ∫ ∞

t0

sq(s)ds <∞.

Theorem B (see [4, 5]). If γ > 1, then all solutions of Eq.(2) are oscillatory
if and only if ∫ ∞

t0

sq(s)ds =∞.

Theorem C (see [6]). If 0 < γ < 1, then Eq.(2) is oscillatory if and only if∫ ∞
t0

sγq(s)ds =∞.

For Eq.(1) with γ = 1, the following Theorem D is presented in [7].
Theorem D. If γ = 1, then every bounded solution of Eq.(2) oscillates if

and only if ∫ ∞
t0

sn−1q(s)ds =∞.

Due to some obstacles of theoretical and technical character in handling with
higher order nonlinear differential equation, and there are a few results which
presented the necessary and sufficient conditions for the oscillatory behavior
when γ 6= 1. So there are a lot of problems worth to be considered further for
the Eq.(1).

The main aim of this paper is to prove the following Theorem 1.1:
Theorem 1.1. If γ 6= 1 is the quotient of odd positive integers and n is

even, then the following statements are true:
(a) If

(3)

∫ ∞
t0

sn−1q(s)ds <∞,

then Eq.(1) has a bounded nonoscillatory solution;
(b) If γ > 1, then every solution of Eq.(1) oscillates if and only if

(4)

∫ ∞
t0

sn−1q(s)ds =∞;

(c) If 0 < γ < 1, then every solution of Eq.(1) oscillates if and only if

(5)

∫ ∞
t0

s(n−1)γq(s)ds =∞.

We clearly see that Theorems A-C are the special case of our Theorem 1.1.
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2. PROOF OF THEOREM 1.1

In order to prove Theorem 1.1 we need the following Lemma 2.1.
Lemma 2.1 (see [1-2, 7]). Let x(t) be a positive and n-times differentiable

function on [t0,∞), and x(n)(t) be nonpositive and not identically zero on any
subinterval [t1,∞). Then there exist T ≥ t0 and integer k ∈ {0, 1, ..., n− 1},
such that n+ k is odd and

(i) x(i)(t) ≥ 0 for t ≥ T, i = 0, 1, ..., k − 1;

(ii) (−1)i+kx(i)(t) > 0 for i = k, k + 1, ..., n;

(iii) (t− T )|x(k−i)(t)| ≤ (1 + i)|x(k−i−1)(t)| for t ≥ T, i = 0, 1, ..., k − 1, k =
1, ..., n− 1.

Proof of the Theorem 1.1.
(a) Assume that (3) holds, we first prove that Eq.(1) has a nonoscillatory

solution.
Observing that if x(t) satisfies the equation

(6) x(t) = 1− 1
(n−1)!

∫ ∞
t

(s− t)n−1q(s)xγ(s)ds,

then x(t) is a solution of Eq.(1). Therefore it suffices to show that Eq.(6) has
bounded nonoscillatory solution. To this end, choose sufficient large t ≥ T
such that

(7) max


∞∫
t

sn−1q(s)ds, 2γ

∞∫
t

sn−1q(s)ds

 < 1
2(n− 1)!.

Next, we consider the functional set

M = {x ∈ C([T,∞),R) : 1
2 ≤ x(t) ≤ 1}

and define the operator S : M → C([T,∞),R) as follows:

(8) Sx(t) = 1− 1
(n−1)!

∫ ∞
t

(s− t)n−1q(s)xγ(s)ds.

We clearly see that x(t)γ ≤ 1 and

(Sx)(t) ≥ 1− 1
(n−1)!

∞∫
t

(s− t)n−1q(s)ds ≥ 1
2 for t ≥ T.

Therefore, (Sx)(t) ≤ 1 and S : M →M . Now, we claim that S is a contraction
on M . In fact, let f(x) = xγ , then for x1, x2 ∈ (1

2 , 1) one has

|xγ1 − x
γ
2 | = |f

′(ξ)||x1 − x2|, where ξ ∈ (min{x1, x2},max{x1, x2}),

where

|f ′(ξ)| = |γξγ−1| ≤

{
γ, if γ ≥ 1 ,

2γ, if 0 < γ < 1 .
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Therefore

|xγ1 − x
γ
2 | ≤ 2γ|x1 − x2|, for x1, x2 ∈ (1

2 , 1).

Let x,w ∈M , then for n ≥ N one has

|(Sx)(t)− (Sw)(t)| ≤ 1
(n−1)!

∞∫
t

(s− t)n−1q(s)|xγ(s)− wγ(s)|ds

≤ 2γ
(n−1)!

∞∫
t

(s− t)n−1q(s)|x(s)− w(s)|ds

≤ 2γ
(n−1)! ||x(s)− w(s)||

∞∫
t

(s− t)n−1q(s)ds ≤ 1
2 ||x− w||.

Hence

(9) ||Sx− Sw|| ≤ 1
2 ||x− w||

and S is a contraction on M . The (unique) fixed point of T is the desired
bounded, nonoscillatory solution of Eq.(1).

(b) Sufficiency. Assume that γ > 1 and
∫∞
t0
sn−1q(s)ds =∞, we prove that

every solution of Eq.(1) oscillates. Otherwise, Eq.(1) has a nonoscillatory
solution x(t). Without loss of generality, we assume that x(t) > 0 for t ≥ t0.
Then Lemma 2.1 implies that there exist odd integer k ∈ {1, ..., n− 1} and
Tk ≥ t0 such that

(10) x(i)(t) > 0, for t ≥ Tk, 0 ≤ i ≤ k,

(11) (−1)i+kx(i)(t) > 0, for t ≥ Tk, k ≤ i ≤ n.

The proof is divided into two cases.
Case 1 k = 1. That is

(12) x′(t) > 0, x′′(t) < 0, x(3)(t) > 0, ..., xn(t) < 0.

From (10) and (11) together with the Taylor expansion we get

(13) x′(t) =
n−2∑
j=0

(−1)j

j! x(1+j)(τ)(τ − t)j + (−1)n−1

(n−2)!

τ∫
t

(s− t)n−2x(n)(s)ds.

Using (12) we have

(14) x′(t) >

τ∫
t

(s−t)n−2

(n−2)! q(s)x
γ(s)ds,
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which implies

(15) x′(t) >

∞∫
t

(s−t)n−2

(n−2)! q(s)x
γ(s)ds >

∞∫
t

(s−t)n−2

(n−2)! q(s)dsx
γ(t).

From inequality∫ t

T
(u− s)n−k−1ds = − (u−s)u−k

n−k |tT = 1
n−k [(u− T )n−k − (u− t)n−k]

≥ 1
n−k (t− T )(u− T )n−k−1

we obtain
t∫

T

x′(s)
xγ(s)ds >

t∫
T

ds

∞∫
s

(u−s)n−2

(n−2)! q(u)du

=

t∫
T

q(u)du

u∫
T

(u−s)n−2

(n−2)! ds+

∞∫
t

q(u)du

t∫
T

(u−s)n−2

(n−2)! ds

≥
t∫

T

(u−T )n−1

(n−1)! q(u)du+ (t− T )

∞∫
t

(u−T )n−2

(n−1)! q(u)du.

Therefore

(16)

t∫
T

(u−T )n−1

(n−1)! q(u)du <

t∫
T

x′(s)
xγ(s)ds

or

(17)

t∫
T

(u−T )n−1

(n−1)! q(u)du < x1−γ(t)
γ−1 <∞,

which contradicts with
∞∫
T

un−1q(u)du =∞.

Case 2 k > 1. It follows from (iii) of Lemma 2.1 that for t ≥ Tk,

(18) x(t) ≥ (t−Tk)k−1

k! x(k−1)(t).

For sufficient large t, we have

xγ(t) ≥ (t−Tk)(k−1)γ

(k!)γ (x(k−1)(t))γ > (t−Tk)k−1

(k!)γ (x(k−1)(t))γ , γ > 1.

Let z(t) = x(k−1)(t), then

z(t) > 0, z′(t) > 0, z′′(t) < 0, ...
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and so

(19) z(n−k+1)(t) + q(t) (t−Tk)k−1

(k!)γ zγ(t) < 0.

Making use of the same method as in the proof of case 1, we get∫ ∞
t0

sn−kq(s) (s−Tk)k−1

(k!)γ ds <∞

or

(20)

∫ ∞
t0

sn−1q(s)ds <∞,

which also contradicts with

∞∫
t0

sn−1q(s)ds =∞.

Conversely, we prove that (4) holds if every solution of Eq.(1) oscillates and
γ > 1. Otherwise (3) holds, then from Theorem 1.1(a) we get the contradiction
that Eq.(1) has a nonoscillatory solution.

(c) Sufficiency. For 0 < γ < 1, there are two cases as follows.
Case 1 k = 1. That is

x(t) > 0, x′(t) > 0, x′′(t) < 0, ..., xn(t) < 0.

Making use of the same method as Case 1 in Theorem 1.1(b), we have

(21) x′(t) >

∞∫
t

(s−t)n−2

(n−2)! q(s)x
γ(s)ds.

Integrating (21) from T to t yields

x(t) > x(t)− x(T )

>

t∫
T

(u−T )n−1

(n−1)! q(u)xγ(u)du+ (t− T )

∞∫
t

(u−T )n−2

(n−1)! q(u)xγ(u)du

> (t− T )

∞∫
t

(u−T )n−2

(n−1)! q(u)xγ(u)du

or

(22) x(t)
t−T >

∞∫
t

(u−T )n−2

(n−1)! q(u)xγ(u)du.
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Let

(23) z(t) =

∞∫
t

(u−T )n−2

(n−1)! q(u)xγ(u)du,

then z′(t) < 0, 0 < z(t) < x(t)
t−T and

(24) z′(t) = − (t−T )n−2

(n−1)! q(t)xγ(t) ≤ − (t−T )n−2+γ

(n−1)! q(t)zγ(t),

(25) z′(t)
zγ(t) ≤ −

(t−T )n−2+γ

(n−1)! q(t)

for T2 > T . Then we get

(26)

t∫
T2

z′(u)
zγ(u)du ≤ −

t∫
T2

(u−T )n−2+γ

(n−1)! q(u)du,

(27) 1
1−γ [z1−γ(t)− z1−γ(T2)] ≤ − 1

(n−1)!

t∫
T2

(u− T )n−2+γq(u)du.

Therefore

(28)

t∫
T2

(u− T )n−2+γq(u)du < +∞.

Inequality (28) and (n− 1)γ < n− 2 + γ leads to

(29)

t∫
T2

(u− T )(n−1)γq(u)du < +∞,

which contradicts with the assumption.
Case 2 k > 1. That is

x(t) > 0, x′(t) > 0, ..., x(k−1)(t) > 0, x(k)(t) > 0, x(k+1)(t) < 0, ..., x(n)(t) < 0.

Lemma 2.1 implies

x(t) ≥ (t−Tk)k−1

k! x(k−1)(t)

or

(30) xγ(t) ≥ (t−Tk)(k−1)γ

(k!)γ [x(k−1)(t)]γ .

Let z(t) = x(k−1)(t), then z(t) > 0, z′(t) > 0, z′′(t) < 0, ..., z(n−k+1) < 0 and

(31) z(n−k+1)(t) + q(t) (t−Tk)(k−1)γ

(k!)γ zγ(t) < 0,
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where n− k+ 1 is also even. Making use of the same method as in Case 1, we
conclude that

(32)

∞∫
t0

s(n−k)γq(s) (s−Tk)(k−1)γ

(k!)γ ds < +∞

or

(33)

∞∫
t0

s(n−1)γq(s)ds < +∞,

which also contradicts with the assumption.
Necessity. For 0 < γ < 1 and (5) holds, we prove that Eq.(1) has a nonoscil-

latory solution. Otherwise, from (33) we know that there exists t ≥ T such
that

(34)

∞∫
t

s(n−1)γq(s)ds ≤ 1
2 .

Let M be a set defined by

M = {x ∈ C([T,∞), R) : 1
2(n−1)!(t− T )n−1 ≤ x(t) ≤ 1

(n−1)!(t− T )n−1, t ≥ T}

and the mapping T on M defined by

(35) Sx(t) =

t∫
T

ds1

s1∫
T

ds2 · · ·
sn−2∫
T

[1
2 +

∞∫
sn−1

q(u)xγ(u)du]dsn−1.

Then (Sx)(t) ≥ 1
2(n−1)!(t− T )n−1 for x(t) ∈M and t ≥ T . Moreover, from

the definition of the operator S we get (Sx)(t) ≤ 1
(n−1)!(t− T )n−1. Therefore,

TM ⊆M .
Next, we define the function un : [T,∞)→ R as follows

(36) un = (Sun−1)(t), n ∈ N
and

u0(t) = 1
2(n−1)!(t− T )n−1, t ≥ T.

A straightforward verification leads to

1
2(n−1)!(t− T )n−1 ≤ un−1(t) ≤ un(t) ≤ 1

(n−1)!(t− T )n−1, t ≥ T.

Therefore, there exists the limit lim
n→∞

un(t) = u(t) for t ≥ T. It follows from

the Lebesgue convergence theorem that u ∈ M and u(t) = (Su)(t). It is easy
to see that u(t) is the solution of the Eq.(1).
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[5] Š. Belohorec, Oscillatory solutions of certain nonlinear differential equations of second
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