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1. INTRODUCTION

Based on the Open Problem 5.5.4, pp. 324-326 in [15], in a series of recent
papers we have introduced and studied the so-called max-product operators
attached to the Bernstein polynomials and to other linear Bernstein-type oper-
ators, like those of Favard-Szász-Mirakjan operators (truncated and nontrun-
cated case), see [1], [3], Meyer-König and Zeller operators, see [4], Baskakov
operators, see [6], [7] and Bleimann-Butzer-Hahn operators, see [5].

For example, in the recent paper [2], starting from the linear Bernstein
operators Bn(f)(x) =

∑n
k=0 bn,k(x)f(k/n), where bn,k(x) =

(
n
k

)
xk(1 − x)n−k,

written in the equivalent form

Bn(f)(x) =

n∑
k=0

bn,k(x)f(k/n)

n∑
k=0

bn,k(x)

and then replacing the sum operator Σ by the maximum operator
∨

, one
obtains the nonlinear Bernstein operator of max-product kind

B(M)
n (f)(x) =

n∨
k=0

bn,k(x)f
(
k
n

)
n∨

k=0

bn,k(x)
,
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where the notation
∨n
k=0 bn,k(x) means max{bn,k(x); k ∈ {0, ..., n}} and simi-

larly for the numerator.
For this max-product operator, nice approximation and shape preserving

properties were found in the class of positive valued functions, in e.g. [2], [14].
In other two recent papers [11] and [12], this idea is applied to the Lagrange

interpolation based on the Chebyshev nodes of second kind plus the endpoints,
and to the Hermite-Fejér interpolation based on the Chebyshev nodes of first
kind respectively, obtaining max-product interpolation operators which, in
general, (for example, in the class of positive Lipschitz functions) approxi-
mates essentially better than the corresponding Lagrange and Hermite-Fejér
interpolation polynomials.

Let I = [a, b], a < b and f : [a, b] → R. The max-product Lagrange
interpolation operator on equidistant knots attached to the function f is given
by (see [13])

(1.1) L(M)
n (f)(x) =

n∨
k=0

ln,k(x)f(xn,k)
n∨

k=0

ln,k(x)
, x ∈ I, n ∈ N,

where xn,k = a+ (b− a)k/n for all n ∈ N and k ∈ {0, 1, ..., n} and

(1.2) ln,k(x) = (−1)n−k

(
n∏
i=0

(x− xn,i)

)
· 1
x−xn,k

for all x ∈ I, n ∈ N and k ∈ {0, 1, ..., n}. Note that L
(M)
n (f) is a well defined

function. Indeed, using the fundamental Lagrange polynomials,

pn,k(x) =
(x−xn,0)(x−xn,1)...(x−xn,k−1)(x−xn,k+1)...(x−xn,n)

(xn,k−xn,0)(xn,k−xn,1)...(xn,k−xn,k−1)(xn,k−xn,k+1)...(xn,k−xn,n) ,

we observe that we can rewrite ln,k(x), x ∈ I, in the form

ln,k(x) = cn,k · pn,k(x)

where

cn,k = (xn,k − xn,0)(xn,k − xn,1)...(xn,k − xn,k−1)(xn,k+1 − xn,k)...(xn,n − xn,k).
Then, since for any x ∈ I we have

∑n
i=0 pn,i(x) = 1 it follows the existence of

i(x) ∈ {0, 1, ..., n} such that pn,i(x)(x) > 0 and noting that cn,i(x) > 0 it easily

results that ln,i(x)(x) > 0 and this implies that
n∨
k=0

ln,k(x) > 0 for all x ∈ I,

which means that indeed L
(M)
n (f) is a well defined function on [a, b].

The max-product operator L
(M)
n (f)(x) is continuous on [a, b] and has the

interpolation properties L
(M)
n (f)(xn,j) = f(xn,j) for all j ∈ {0, 1, ..., }.

Also, according to Corollary 3.2, (i), in [13], for positive valued functions,
i.e. for f : [a, b]→ R+, it satisfies the Jackson-type estimate

|L(M)
n (f)(x)− f(x)| ≤ 2ω1

(
f ; b−an

)
[a,b]

, for all x ∈ [a, b], n ∈ N,
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where ω1

(
f ; b−an

)
[a,b]

denotes the modulus of continuity of f on [a, b]. This

estimate for the Lagrange max-product operator essentially improves for pos-
itive valued functions the order of approximation by the classical Lagrange
interpolation polynomials on equidistant nodes, when as it is well-known, we
can also have a very pronounced divergence phenomenon in [a, b] (see e.g.
Chapter 4 in the book [17], see also [16], [10]).

The goal of the present paper is to determine for L
(M)
n the saturation order

together with its special class of functions and to obtain a local inverse result.
The plan of the paper goes as follows. In Section 2 the saturation order

together with its special class of functions are obtained. Section 3 contains a
local inverse approximation result.

2. THE SATURATION ORDER

Firstly, we need three simple auxiliary results, Lemmas 2.1-2.3, where ln,k
denote the fundamental Lagrange polynomials attached to the knots xn,k =
k/n, k ∈ {0, 1, ..., n}, n ∈ N.

Lemma 2.1. Let n ∈ N, j ∈ {0, 1, ..., n − 1} and x ∈ [j/n, (j + 1)/n]. We
have

n∨
k=0

ln,k(x) = ln,j(x), for all x ∈
[
j
n ,

j+1/2
n

]
and

n∨
k=0

ln,k(x) = ln,j+1(x), for all x ∈
[
j+1/2
n , j+1

n

]
.

Here ln,k, k ∈ {0, 1, ..., n} are given by (1.2).

Proof. Let us denote Jn(x) = {k ∈ {0, 1, ..., n} : ln,k(x) > 0}. This implies
that

n∨
k=0

ln,k(x) =
∨

k∈Jn(x)

ln,k(x).

We observe that {j, j + 1} ⊆ Jn(x). Indeed, for a = 0 and b = 1, by using
(1.2) we have sign(ln,j(x)) = (−1)n−j · (−1)n−j = 1 and sign(ln,j+1(x)) =
(−1)n−j−1 · (−1)n−j−1 = 1. Then, we denote Ωn(x) =

∏n
i=0(x − xn,i). The

definitions of ln,k(x) and Jn(x) imply ln,k(x) = |Ωn(x)|
|x−xn,k| for all k ∈ Jn(x). We

thus obtain that
n∨
k=0

ln,k(x) = |Ωn(x)| ·
∨

k∈Jn(x)

1

|x−xn,k| . Since {j, j+1} ⊆ Jn(x)

it is immediate that for x ∈
[
j
n ,

j+1/2
n

]
we have

∨
k∈Jn(x)

1

|x−xn,k| = 1
|x−xn,j | and

for x ∈
[
j+1/2
n , j+1

n

]
we have

∨
k∈Jn(x)

1

|x−xn,k| = 1
|x−xn,j+1| . From here we easily

get the desired conclusion. �
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Lemma 2.2. For any function f : [0, 1]→ R, and for all n ∈ N, n ≥ 1, and
j ∈ {0, 1, ..., n}, j ≤ n/2, we have:

(i) L
(M)
n (f)(j/(n+ 1)) ≥ f(j/n);

(ii) L
(M)
n+1(f)(j/n) ≥ f(j/(n+ 1)).

Proof. (i) Firstly, by Lemma 2.1 we observe that for x ∈
[

(j−1)+1/2
n , jn

]
we

have
n∨
k=0

ln,k(x) = ln,j(x). Now, if j ≤ n/2 then it is easy to check that x :=

j/(n+ 1) ∈
[

(j−1)+1/2
n , jn

]
which implies

n∨
k=0

ln,k(j/(n+ 1)) = ln,j(j/(n+ 1)).

This implies that

L(M)
n (f)(j/(n+ 1)) =

n∨
k=0

ln,k(j/(n+1))f
(
k
n

)
ln,j(j/(n+1))

≥
ln,j(j/(n+1))f

(
j
n

)
ln,j(j/(n+1)) = f

(
j
n

)
.

(ii) Since j ≤ n/2, one can easily prove that j/n ∈
[

j
n+1 ,

j+1/2
n+1

]
. Therefore,

by Lemma 2.1 we obtain
n+1∨
k=0

ln+1,k(j/n) = ln+1,j(j/n). This implies that

L
(M)
n+1(f)(j/n) =

n+1∨
k=0

ln+1,k(j/n)f
(

k
n+1

)
ln+1,j(j/n) ≥

ln+1,j(j/n)f

(
j

n+1

)
ln+1,j+1(j/n)

= f
(

j
n+1

)
.

�

Lemma 2.3. For any function f : [0, 1]→ R, and for all n ∈ N, n ≥ 1, and
j ∈ {0, 1, ..., n}, j ≥ n/2, we have:

(i) L
(M)
n (f)((j + 1)/(n+ 1)) ≥ f(j/n);

(i) L
(M)
n+1(f)((j/n) ≥ f((j + 1)/(n+ 1)).

Proof. (i) Since j ≥ n/2 by elementary calculus it is easy to prove that

(j + 1)/(n + 1) ∈
[
j
n ,

j+1/2
n

]
and by Lemma 2.1 this implies that

n∨
k=0

ln,k((j +

1)/(n+ 1)) = ln,j((j + 1)/(n+ 1)). We obtain

L(M)
n (f)((j + 1)/(n+ 1)) =

n∨
k=0

ln,k((j+1)/(n+1))f
(
k
n

)
ln,j((j+1)/(n+1))

≥
ln,j((j+1)/(n+1))f

(
j
n

)
ln,j((j+1)/(n+1)) = f

(
j
n

)
.



5 Saturation results for the Lagrange max-product interpolation 31

(ii) Since j ≥ n/2, again it is easy to check that j/n ∈
[
j+1/2
n+1 ,

j+1
n+1

]
and by

Lemma 2.1 this implies that
n+1∨
k=0

ln+1,k(j/n) = ln+1,j+1(j/n). We obtain

L
(M)
n+1(f)((j/n) =

n+1∨
k=0

ln+1,k(j/n)f
(

k
n+1

)
ln+1,j+1(j/n) ≥

ln+1,j+1(j/n)f

(
j+1
n+1

)
ln+1,j+1(j/n)

= f
(
j+1
n+1

)
.

�

We are now in position to determine the saturation order and the associated

special class of functions for the truncated max-product operator L
(M)
n .

Theorem 2.4. Denote C+[a, b] = {f : [a, b] → R+; f continuous on [a, b]}
and ‖f‖ = sup{|f(x)|;x ∈ [a, b]}. Then for the max-product L

(M)
n operator,

the saturation order in C+[a, b] is 1
n , that is ‖L

(M)
n (f)− f‖ = o(1/n), implies

that f is a positive constant function on [a, b].

Proof. We begin with the particular case when a = 0 and b = 1. By hy-
pothesis, there exists an ∈ R, n ∈ N with the property an ↘ 0 as n → +∞,
such that ∣∣∣L(M)

n (f)(x)− f(x)
∣∣∣ ≤ an

n , for all x ∈ [0, 1] and n ∈ N.

Let us choose arbitrary ε > 0. Since an ↘ 0 as n→ +∞, it follows that there
exists n0 ∈ N such that an < ε for all n ∈ N, n ≥ n0. Noting the above
relation we get

(2.1)
∣∣∣L(M)
n (f)(x)− f(x)

∣∣∣ ≤ ε
n , for all x ∈ [0, 1] and n ∈ N, n ≥ n0.

Then, from the uniform continuity of f it results the existence of n1 ∈ N such
that

(2.2) |f(x)− f(y)| ≤ ε for all x, y ∈ [0, 1] and n ∈ N, |x− y| ≤ 1/n, n ≥ n1.

We will obtain the desired conclusion in two steps: (A) we prove that f is
constant on any interval [a, b] with 0 < a < b < 1/2; (B) we prove that f is
constant on any interval [a, b] with 1/2 < a < b < 1. Indeed, if (A) holds then
thanks to the continuity of f we easily obtain that f is constant on [0, 1/2].
Similarly, if (B) holds then we obtain that f is constant on [1/2, 1]. Then, from
the continuity of f it easily follows that f is constant on [0, 1]. So, we start by
proving that (A) and (B) hold.

(A) Let us choose arbitrary a, b ∈ R such that 0 < a < b < 1/2. Further
one, let x0 and y0 be the points where f attaints its minimum and maximum
respectively on the interval [a, b]. Without any loss of generality we may sup-
pose that x0 6= y0 (contrariwise it follows that f is constant on [a, b] and there
is nothing to prove). We have two subcases: A1) x0 < y0 and A2) x0 > y0.
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Subcase A1) Let n ∈ N be with n > max{n0, n1, 2/(y0 − x0)}. By
relation (2.1) it follows that

L(M)
n (f)(j/(n+ 1))− f(j/(n+ 1)) ≤ ε

n for all j ∈ {0, 1, ..., n}.

Moreover, combining the inequality in Lemma 2.2 (i) with the above inequality,
we get

(2.3) f(j/n)− f(j/(n+ 1)) ≤ ε
n for all j ∈ {0, 1, ..., n}, j ≤ n/2.

Further one, let us choose j1 ∈ {0, 1, ..., n−1} such that j1/n ≤ y0 ≤ (j1+1)/n
and x0 ≤ j1/n. Note that there exists such an index j1, because the previous
inequalities are equivalent to ny0 − 1 ≤ j1 ≤ ny0, nx0 ≤ j1 ≤ ny0, while the
condition n > 2/(y0 − x0) is equivalent to the condition ny0 − nx0 > 2.

Also, from j1/n ≤ y0 ≤ b < 1/2 it easily follows that j1 ≤ n/2.
As a first consequence, from the relation (2.2) we obtain

(2.4) |f(j1/n)− f(y0)| < ε.

Then, since lim
l→∞

j1
n+l = 0, by x0 > 0 and x0 ≤ j1/n it follows that there exists

l0 ∈ N such that j1
n+l0+1 ≤ x0 ≤ j1

n+l0
.

It is worth noting here that indeed, the above l0 cannot be equal to 0,
because if we would have l0 = 0, then we would obtain j1/(n+1) ≤ x0 < y0 ≤
(j1 + 1)/n ≤ (j1 + 2)/(n+ 1), which would imply y0 − x0 ≤ 2/(n+ 1) < 2/n,
in contradiction with the supposition that n > 2/(y0 − x0).

The inequality j1
n+l0+1 ≤ x0 ≤ j1

n+l0
and (2.1) also implies that

(2.5) |f((j1/(n+ l0))− f(x0)| < ε.

Since j1 ≤ n/2, applying successively relation (2.3) we obtain

f(j1/n)− f(j1/(n+ 1)) ≤ ε
n ,

f(j1/(n+ 1))− f(j1/(n+ 2)) ≤ ε
n+1 ,

...

f(j1/(n+ l0 − 1))− f(j1/(n+ l0)) ≤ ε
n+l0−1 .

Taking the sum of all these inequalities we get

f(j1/n)− f(j1/(n+ l0)) ≤ ε
n + ε

n+1 + ...+ ε
n+l0−1

≤ l0ε
n .

Then, by relations (2.4)–(2.5) we obtain

f(y0)− f(x0) =

= (f(y0)− f(j1/n)) + (f(j1/n)− f(j1/(n+ l0))) + (f(j1/(n+ l0))− f(x0))

≤ |f(y0)− f(j1/n)|+ f(j1/n)− f(j1/(n+ l0)) + |f(j1/(n+ l0))− f(x0)|

≤ 2ε+ l0ε
n
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and since 0 ≤ f(y0)− f(x0), we obtain

(2.6) 0 ≤ f(y0)− f(x0) ≤ 2ε+ l0ε
n .

On the other hand, since 0 < x0 ≤ j1/(n+l0), after some simple calculations
we get (note that j1 ≤ n/2)

l0 ≤ j1/x0 − n ≤ n(1/(2x0)− 1)

Using this information in relation (2.6) we obtain

0 ≤ f(y0)− f(x0) ≤ ε(2 + 1/(2x0)− 1)

where ε > 0 was chosen arbitrary. Therefore, passing in the previous inequality
with ε ↘ 0, we obtain f(x0) = f(y0) (here, it is important that x0 > 0 ).
Since on the interval [a, b] the maximum value and the minimum value of the
function f coincide, we obtain that f is a constant function on the interval
[a, b] and hence we obtained the desired conclusion for this case.

Subcase A2) Let us choose arbitrary n ∈ N, n > max{n0, n1, 2/(x0 −
y0)}. By relation (2.1) it follows that

L
(M)
n+1(f)(j/n)− f(j/n) ≤ ε

n+1 for all j ∈ {0, 1, ..., n}.

Moreover, combining the inequality in Lemma 2.2 (ii) with the above inequal-
ity, we get

(2.7) f(j/(n+ 1))− f(j/n) ≤ ε
n+1 for all j ∈ {0, 1, ..., n}, j ≤ n/2.

Let j1 and l0 be chosen as in the previous case, with the difference that now we
have j1/(n+ l0 + 1) ≤ y0 ≤ j1/(n+ l0) and j1/n ≤ x0 ≤ (j1 + 1)/n. Applying
successively the above inequality (2.7) we get

f(j1/(n+ 1))− f(j1/n) ≤ ε
n+1 ,

f(j1/(n+ 2))− f(j1/(n+ 1)) ≤ ε
n+2 ,

...

f(j1/(n+ l0))− f(j1/(n+ l0 − 1)) ≤ ε
n+l0

.

Taking the sum of all these inequalities and then reasoning as in the previous
case we obtain that

f(j1/(n+ l0))− f(j1/n) ≤ l0ε
n+1 .

Now, reasoning again as in the previous case we obtain

0 ≤ f(y0)− f(x0) ≤ l0ε
n+1 + 2ε ≤ l0ε

n + 2ε ≤ ε(2 + 1/(2y0)− 1).

Again, we easily obtain that f(x0) = f(y0) which implies that f is constant
on [a, b]. Summarizing, we obtain that (A) holds.

(B) Let us choose arbitrary a, b ∈ R such that 1/2 < a < b < 1. Further
one, let x0 and y0 be the points where f attaints its minimum and maximum
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respectively on the interval [a, b]. Without any loss of generality we may sup-
pose that x0 6= y0 (contrariwise it follows that f is constant on [a, b] and there
is nothing to prove). We have two subcases: B1) x0 < y0 and B2) x0 > y0.

Subcase B1) Let us choose arbitrary n ∈ N, n > max{n0, n1, 2/(y0 −
x0)}. By relation (2.1) it follows that

L
(M)
n+1(f)((j/n)− f(j/n) ≤ ε

n+1 for all j ∈ {0, 1, ..., n}.

Moreover, combining the inequality in Lemma 2.3 (ii) with the above inequal-
ity, we get

(2.8) f((j + 1)/(n+ 1))− f(j/n)) ≤ ε
n+1 for all j ∈ {0, 1, ..., n}, j ≥ n/2.

Further one, let us choose j1 ∈ {1, 2, ..., n} such that (j1 − 1)/n ≤ x0 ≤ j1/n
and j1/n ≤ y0. Note that there exists such an index j1, because the previous
inequalities are equivalent to nx0 ≤ j1 ≤ nx0 + 1, nx0 ≤ j1 ≤ ny0, while the
condition n > 2/(y0 − x0) is equivalent to the condition ny0 − nx0 > 2.

Also, from 1/2 < x0 ≤ j1
n , it easily follows that j1 ≥ n/2.

As a first consequence, from relation (2.2) we obtain

(2.9) |f(j1/n)− f(x0)| < ε.

Then, since lim
l→∞

j1+l
n+l = 1, by y0 < 1 and j1/n ≤ y0 it follows that there exists

l0 ∈ N such that j1+l0
n+l0

≤ y0 ≤ j1+l0+1
n+l0+1 .

It is worth noting here that the above l0 cannot be equal to 0, because if
we would have l0 = 0 then we would obtain (j1 − 1)/n ≤ x0 ≤ j1/n ≤ y0 ≤
(j1+1)/(n+1) ≤ (j1+1)/n, which would imply y0−x0 ≤ 2/n, in contradiction
with the supposition that n > 2/(y0 − x0).

The inequality j1+l0
n+l0

≤ y0 ≤ j1+l0+1
n+l0+1 and (2.1) also implies that

(2.10) |f((j1 + l0)/(n+ l0))− f(y0)| < ε.

Since by j1 ≥ n/2 it is very easy to verify that for l ∈ {0, 1, ..., l0} we have
j1 + l ≥ (n+ l)/2, applying successively relation (2.8) we obtain

f((j1 + l0)/(n+ l0))− f((j1 + l0 − 1)/(n+ l0 − 1))) ≤ ε
n+l0

,

f((j1 + l0 − 1)/(n+ l0 − 1))− f((j1 + l0 − 2)/(n+ l0 − 2))) ≤ ε
n+l0−1

...

f((j1 + 1)/(n+ 1))− f(j1/n) ≤ ε
n+1 .

Taking the sum of all these inequalities and then reasoning as in the previous
cases we obtain that

f((j1 + l0)/(n+ l0))− f(j1/n) ≤ l0ε
n+1 ,

and then

(2.11) 0 ≤ f(y0)− f(x0) ≤ l0ε
n+1 + 2ε.
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On the other hand, by j1+l0
n+l0

≤ y0 it follows (note that y0 < 1)

l0 ≤ ny0−j1
1−y0 ≤

ny0
1−y0 .

Using the above inequality in relation (2.11) we easily obtain 0 ≤ f(y0) −
f(x0) ≤ ε (y0/(1− y0) + 2) . Now reasoning as in the subcase A1) we obtain
f(x0) = f(y0) and we immediately conclude that f is constant on [a, b].

Subcase B2) Let us choose arbitrary n ∈ N, n > max{n0, n1, 2/(x0 − y0)}.
By relation (2.1) it follows that

L(M)
n (f)((j + 1)/(n+ 1))− f((j + 1)/(n+ 1)) ≤ ε

n for all j ∈ {0, 1, ..., n}.
Moreover, combining the inequality in Lemma 2.3 (i) with the above inequality,
we get

(2.12) f(j/n)− f((j + 1)/(n+ 1)) ≤ ε
n for all j ∈ {0, 1, ..., n}, j ≥ n/2.

Let j1 and l0 be chosen as in the previous case, with the difference that now we
have (j1 − 1)/n ≤ y0 ≤ j1/n and j1+l0

n+l0
≤ x0 ≤ j1+l0+1

n+l0+1 . Applying successively

the above inequality (2.12) we get

f((j1 + l0 − 1)/(n+ l0 − 1)))− f((j1 + l0)/(n+ l0)) ≤ ε
n+l0−1 ,

f((j1 + l0 − 2)/(n+ l0 − 2)))− f((j1 + l0 − 1)/(n+ l0 − 1)) ≤ ε
n+l0−2 ,

...

f(j1/n)− f((j1 + 1)/(n+ 1)) ≤ ε
n .

Taking the sum of all these inequalities and then reasoning as in the previous
case we obtain that

f(j1/n)− f((j1 + l0)/(n+ l0)) ≤ l0ε
n .

Now, reasoning again as in the previous case we obtain

0 ≤ f(y0)− f(x0) ≤ l0ε
n + 2ε

and since by the same method like in the previous case we have l0 ≤ nx0
1−x0 ,

we easily obtain 0 ≤ f(y0) − f(x0) ≤ ε (x0/(1− x0) + 2) . This easily implies
that f(x0) = f(y0), which means that f is constant on [a, b]. Summarizing, we
obtain that (B) holds.

Now, by the discussion just before the beginning of the case (A), we conclude
that f is constant on the whole interval [0, 1].

At the end, we discuss now the general case when the Lagrange max-prod
operator is attached to functions defined on an interval [a, b] with a < b.
To make distinction between the general case and the particular case of the

interval [0, 1] in what follows we denote with L
(M)
n the Lagrange max-product

operator attached to functions defined on the interval [0, 1]. In addition, in
what follows, for all all n ∈ N and k ∈ {0, 1, ..., n} we denote with l1n,k the

fundamental Lagrange polynomials defined on the interval.[0, 1]. Suppose now

that for a function f ∈ C([a, b]) we have ‖L(M)
n (f)−f‖ = o(1/n). Let us define
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the function g : [0, 1]→ [a, b], g(y) = a+ (b−a)y. It is immediate that for any
x ∈ [a, b] there exists an unique y(x) ∈ [0, 1] such that f(x) = (f ◦ g)(y(x)).
Then we observe that for any x ∈ [a, b] we have

ln,k(x) = (b− a)n · l1n,k(y(x)), n ∈ N, k ∈ {0, 1, ..., n}.
The above equalities imply

L(M)
n (f)(x) =

n∨
k=0

ln,k(x)f(xn,k)
n∨

k=0
ln,k(x)

=
(b−a)n·

n∨
k=0

l1n,k(y(x))(f◦g)
(
k
n

)
(b−a)n·

n∨
k=0

l1n,k(y(x))

= L
(M)
n (f ◦ g)(y(x)).

for all x ∈ [a, b]. This last formula together with the previous relation

‖L(M)
n (f)− f‖ = o(1/n),

easily implies that

‖L(M)
n (f ◦ g)(y(x))− (f ◦ g)(y(x))‖ ≤ ‖L(M)

n (f)− f‖ = o(1/n)

for all x ∈ [a, b] which now easily implies that ‖L(M)
n (f ◦g)− (f ◦g)‖ = o(1/n).

Consequently, we can apply the conclusion of the particular case considered
at the beginning of the proof and we thus conclude that f ◦ g is a constant
function. This easily implies that f is a constant function and now the proof
is complete. �

Remark 2.5. Because it is easy to check that L
(M)
n reproduces the constant

functions in C+[a, b], it follows that the special saturation class in C+[a, b] for

L
(M)
n is exactly the class of positive constant functions.
Note that in fact Theorem 2.4 holds for any f ∈ C[a, b] = {f : [a, b] →

R; f continuous on [a, b]}. We have considered f ∈ C+[a, b] only because the

Jackson-type estimate in the approximation of f by L
(M)
n (f) (mentioned in

Introduction) holds for all f ∈ C+[a, b]. �

3. LOCAL INVERSE RESULT

According to Corollary 3.2, (i) in [13], the saturation order 1
n in the above

Theorem 2.4 is attained for positive Lipschitz functions on [a, b].
Conversely, we can present the following local inverse result.

Theorem 3.1. Let f : [a, b] → [0,+∞) and a < α < β < b be such that
f is continuous on [α, β]. If there exists a constant M > 0 (independent of n
but depending on f , α and β) such that

‖L(M)
n (f)− f‖[α,β] ≤M/n, for all n ∈ N,

then f |[α,β] ∈ Lip [α, β] , that is f is a Lipschitz function on [α, β]. Here
‖f‖[α,β] = sup{|f(x)|;x ∈ [α, β]} and

Lip [α, β] = {g : [α, β]→ R; |g(x)− g(y)| ≤ C|x− y|, for all x, y ∈ [α, β]}.
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The proof of Theorem 3.1 requires the following three lemmas.

Lemma 3.2. Let f : [0, 1]→ R, n ∈ N and 0 < α < β ≤ 1/2 be such that f
is continuous on [α, β]. Also, denote

Mn(α, β) = max
{∣∣∣f ( kn)− f ( k

n+1

)∣∣∣ : k ∈ {0, ..., n}, α ≤ k
n+1 ≤

k
n ≤ β

}
.

Then

lim sup
n→∞

n · ω1(f, /n)[α,β] =∞ if and only if lim sup
n→∞

n ·Mn(α, β) =∞.

where

ω1(f, δ)[α,β] = sup{|f(x)− f(y)|;x, y ∈ [α, β], |x− y| ≤ δ}.
Proof. We prove only the direct implication since the converse one is im-

mediate. Since f is continuous on the interval [α, β], it easily follows that
for each n ∈ N, n ≥ 2, 1/n ≤ β − α, there exist xn, yn ∈ [α, β] satisfying
|xn − yn| ≤ 1/n and ω1(f, 1/n)[α,β] = |f(xn)− f(yn)| . Clearly that by hy-
pothesis and without any loss of generality, we may suppose that xn 6= yn and
xn < yn, for all n ∈ N.

Let us consider the sequences (an)n≥1 and (bn)n≥1, an = nω1(f, 1/n)[α,β] =
n |f(xn)− f(yn)| and bn = n ·Mn(α, β).

Let us fix n ∈ N. Since f is uniformly continuous on [α, β], it follows that
there exists m ∈ N such that for all x, y ∈ [0, 1] satisfying |x− y| ≤ 1/m we
have |f(x)− f(y)| ≤ 1/n. In addition, we may choose sufficiently large m ∈ N
such that yn − xn > 2/m, that is m > 2/(yn − xn).

Since 0 < α < yn ≤ β < 1/2, clearly there exists j ∈ {1, ...,m − 1}
(depending on m and n) such that j/m ≤ yn ≤ (j + 1)/m.

Since lim
l→∞

j/(m + l) = 0 and since xn ≥ α > 0, it results the existence of

l0 ∈ N (depending on j and m) such that j/(m+ l0 + 1) ≤ xn ≤ j/(m+ l0).
By the inequalities xn ≤ j/(m+ l0) < j/m ≤ yn, we get

|f(xn)− f(yn)| ≤
≤ |f(xn)− f(j/(m+ l0))|+ |f(j/(m+ l0))− f(j/(m+ l0 − 1))|

+ ...+ |f(j/(m+ 1))− f(j/m)|+ |f(j/m)− f(yn)|
≤ |f(xn)− f(j/(m+ l0))|+ |f(j/m)− f(yn)|

+ l0 |f(j/(m+ p+ 1))− f(j/(m+ p))|
where p ∈ {0, 1, ..., l0} is such that

|f(j/(m+ p+ 1))− f(j/(m+ p))| =
= max {|f(j/(m+ k))− f(j/(m+ k + 1))| : k ∈ {0, 1, ..., l0 − 1}} .

On the other hand, we observe that max {|j/(m+ l0)− xn| , |j/m− yn|} ≤
1/m, which implies |f(xn)− f(j/(m+ l0))| ≤ 1/n and |f(j/m)− f(yn)| ≤
1/n. We thus obtain that

(3.1) |f(xn)− f(yn)| ≤ 2/n+ l0 |f(j/(m+ p))− f(j/(m+ p+ 1))| .
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By the inequalities xn ≤ j/(m + l0) ≤ j/m ≤ yn we get j/m − j/(m + l0) ≤
yn − xn ≤ 1/n and this implies jl0/(m(m + l0)) ≤ 1/n and then l0 ≤ m/j ·
(m+ l0)/n ≤ 1/α · (m+ l0)/n. (Here we used that α ≤ xn < j/m).

Then, by the inequalities 0 < α ≤ xn ≤ A := j/(m+l0) ≤ B := j/m ≤ yn ≤
β we easily get B/A ≤ β/α, which immediately implies j/(m+l0) ≥ j/m·α/β.
From here we get m + l0 ≤ mβ/α, that is l0 ≤ m(β/α − 1). Replacing this
last inequality in the inequality l0 ≤ 1/α · (m + l0)/n just proved above, we
conclude that l0 ≤ β/α2 ·m/n.

Replacing now in relation (3.1) and then multiplying with n, we get

n · |f(xn)− f(yn)| ≤ 2 + β/α2 ·m · |f(j/(m+ p))− f(j/(m+ p+ 1))| ≤
≤ 2 + β/α2 · (m+ p) · |f(j/(m+ p))− f(j/(m+ p+ 1))|

and clearly this implies that an ≤ 2 + β/α2 ·Mm+p(α, β). Summarizing, for
any n ∈ N there exist m+ p ∈ N such that an ≤ β/α2 · bm+p + 2. Since m >
2/(yn−xn) and yn−xn < 1/n, we get m > 2n. Therefore, by lim sup

n→∞
an =∞,

it easily follows that lim sup
n→∞

bn =∞ and the lemma is proved. �

In an absolutely similar manner we obtain the following.

Lemma 3.3. Let f : [0, 1]→ R, n ∈ N and 1/2 ≤ α < β < 1 be such that f
is continuous on [α, β]. Also, denote

Pn(α, β) = max
{∣∣∣f ( kn)− f ( k+1

n+1

)∣∣∣ : k ∈ {0, ..., n}, α ≤ k
n ≤

k+1
n+1 ≤ β

}
.

Then

lim sup
n→∞

n · ω1(f, 1/n)[α,β] =∞ if and only if lim sup
n→∞

n · Pn(α, β) =∞.

where

ω1(f, δ)[α,β] = sup{|f(x)− f(y)|; x, y ∈ [α, β], |x− y| ≤ δ}.

Also, we can prove:

Lemma 3.4. Let f : [0, 1] → [0,∞) and 0 < α < β < 1 be such that f is
continuous on [α, β]. If

lim sup
n→∞

n · ω1(f, 1/n)[α,β] =∞,

then

lim sup
n→∞

n ·
∥∥∥L(M)

n (f)− f
∥∥∥

[α,β]
=∞.

Here ‖f‖[α,β] = sup{|f(x)|; x ∈ [α, β]}.

Proof. If α < 1/2 < β then by the hypothesis it is elementary to prove
that either lim sup

n→∞
n ·ω1(f, 1/n)[α,1/2] =∞ or lim sup

n→∞
n ·ω1(f, 1/n)[1/2,β] =∞.

Therefore, without any loss of generality we may suppose that we have only
two cases: (i) 0 < α < β ≤ 1/2 and (ii) 1/2 ≤ α < β < 1.



13 Saturation results for the Lagrange max-product interpolation 39

Case (i) For fixed n ∈ N with n ≥ 1/(β − α), let us choose k(n) ∈ {1, ..., n}
such that α ≤ k(n)

n+1 ≤
k(n)
n ≤ β and

Mn(α, β) =
∣∣∣f (k(n)

n

)
− f

(
k(n)
n+1

)∣∣∣ .
Note that such an index k(n) exists, because the inequalities α ≤ k(n)/(n +
1) ≤ k(n)/n ≤ β imply α(n+ 1) ≤ k(n) ≤ βn, where βn− α(n+ 1) ≥ 1.

Since β ≤ 1/2, it results that k(n) ≤ n/2 and hence we can use the conclu-
sion of Lemma 2.2. This means that we have

L(M)
n (f)(k(n)/(n+ 1)) ≥ f(k(n)/n)

and

L
(M)
n+1(f)(k(n)/n) ≥ f(k(n)/(n+ 1)).

If f (k(n)/n) ≥ f(k(n)/(n+ 1)) then

n ·
(
L(M)
n (f)(k(n)/(n+ 1))− f(k(n)/(n+ 1))

)
≥ n · (f(k(n)/n)− f(k(n)/(n+ 1))) = n ·Mn(α, β)

and this implies

n ·Mn(α, β) ≤ n ·
∥∥∥L(M)

n (f)− f
∥∥∥

[α,β]
.

If f (k(n)/n) < f(k(n)/(n+ 1)) then

(n+ 1) ·
(
L

(M)
n+1(f)(k(n)/n)− f (k(n)/n)

)
≥ (n+ 1) · (f(k(n)/(n+ 1))− f (k(n)/n)) ≥ n ·Mn(α, β).

and this implies

n ·Mn(α, β) ≤ (n+ 1) ·
∥∥∥L(M)

n+1(f)− f
∥∥∥

[α,β]
.

In conclusion, for any n ∈ N with n ≥ 1/(β − α), we have

n ·Mn(α, β) ≤ max

{
n ·
∥∥∥L(M)

n (f)− f
∥∥∥

[α,β]
, (n+ 1) ·

∥∥∥L(M)
n+1(f)− f

∥∥∥
[α,β]

}
.

Since by Lemma 3.2 we have lim sup
n→∞

n ·Mn(α, β) = ∞, it easily follows now

that lim sup
n→∞

n ·
∥∥∥L(M)

n (f)− f
∥∥∥

[α,β]
=∞.

Case (ii) The proof is similar with that of the Case (i), which proves the
lemma. �

Now we are in position to prove Theorem 3.1.
Proof of Theorem 3.1. Using the same type of reasoning as in the proof of

Theorem 2.4 it suffices to deal only with the particular case when a = 0 and
b = 1. Firstly we prove that f is a Lipschitz function on [α, β] if and only if
lim sup
n→∞

n·ω1(f, 1/n)[α,β] <∞. Indeed, if f is a Lipschitz function on [α, β] then
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evidently that there exists M > 0 such that we have n · ω1(f, 1/n)[α,β] ≤ M ,
which implies lim sup

n→∞
n · ω1(f, 1/n)[α,β] ≤M <∞.

Conversely, lim sup
n→∞

n ·ω1(f, 1/n)[α,β] ≤M <∞ implies ω1(f, 1/n)[α,β] ≤ M
n ,

for all n ∈ N. For arbitrary h ∈ (0, 1), let n ∈ N be such that 1
n+1 ≤ h ≤

1
n . It follows ω1(f ;h)[α,β] ≤ ω1(f, 1/n)[α,β] ≤ M

n ≤
2M
n+1 ≤ 2Mh, that is

ω1(f ;h)[α,β] ≤ 2Mh, for all h ∈ [0, 1], which obviously is equivalent with the
fact that f is a Lipschitz function on [α, β] (indeed, for fixed x, y ∈ [α, β] we
have |f(x)− f(y)| ≤ ω1(f ; |x− y|)[α,β] ≤ 2M |x− y|).

Now, by the hypothesis it follows n · ‖L(M)
n (f)− f‖[α,β] ≤M , for all n ∈ N.

Supposing that f is not a Lipschitz function on [α, β], by the above consider-
ations it follows that lim sup

n→∞
n · ω1(f, 1/n)[α,β] =∞. But then by Lemma 3.4

we get

lim sup
n→∞

n ·
∥∥∥L(M)

n (f)− f
∥∥∥

[α,β]
=∞,

which is a contradiction. The theorem is proved. �
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