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1. INTRODUCTION

We consider the following minmax fractional programming problem:

(P) Minimize ψ (x) = sup
y∈Y

f(x,y)
h(x,y)

subject to

g (x) ≤ 0, x ∈ Rn,
where Y is a compact subset of Rl, f (·, ·) : Rn × Rl → R, h (·, ·) : Rn × Rl →
R are C2 mappings on Rn ×Rl and g (·) : Rn → Rm is C2 mapping on Rn. It
is assumed that for each (x, y) in Rn × Rl, f (x, y) ≥ 0 and h (x, y) > 0.

In recent years, optimality conditions and duality for generalized minmax
fractional programming have received much attention by many authors (see,
for example, [1, 3, 8, 10–12, 14–17]). In particular, Crouzeix et al. [5] showed
that the minmax fractional programming reduces to solving a minmax nonlin-
ear parametric programming. In [3], Bector et al. used a parametric approach
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to obtain duality for the generalized minmax fractional programming involving
differentiable pseudoconvex and quasiconvex functions.

Mangasarian [13] first formulated the second order dual for a nonlinear
programming problem. Hanson [7] established second order duality theorems
for nonlinear mathematical programming problem under defined second order
type-I functions.

Zhang and Mond [18] introduced the concept of second order (F,ρ)-convexity
and obtained some duality results concerning with nonlinear multiobjective
programming problems. Ahmad and Husain [1] extended (F, α, ρ, d)-convex
functions which were introduced by Liang et al. [9] to second order (F, α, ρ, d)-
convex functions. Hachimi and Aghezzaf [6] further extended it to second order
(F, α, ρ, d)-type I functions.

Husain et al. [8] established duality theorems for two types of second order
dual models related to minmax fractional programming problem (P) under
the assumptions of η-bonvexity/generalized η-bonvexity.

Motivated by the earlier works and importance of the second order gener-
alized convexity, in this paper we establish the second order duality theorems
for the dual problem related to minmax fractional programming problem (P)
under the assumption of generalized second order (F, α, ρ, d)-type I functions.

The paper is organized as follows. Some definitions and notation are given in
Section 2. Under the assumptions of generalized second order (F, α, ρ, d)-type
I functions, second order weak, strong and strict converse duality theorems re-
lated to problem (P) are given in Section 3. Concluding remarks are presented
in Section 4.

2. NOTATION AND PRELIMINARIES

Let Rn be the n-dimensional Euclidean space and Rn+ its non-negative or-
thant. Let X be a nonempty open subset of Rn. For x, y ∈ Rn, we let
x ≤ y ⇔ y − x ∈ Rn+ ; x < y ⇔ y − x ∈ Rn+\ {0}.

Throughout this paper, we denote by S = {x ∈ X : g (x) ≤ 0} the set of all
feasible solutions of problem (P). For each (x, y) ∈ Rn × Rl, we define

J (x) = {j ∈M = {1, 2, ...,m} : gj (x) = 0} ,

Y (x) =

{
y ∈ Y : f (x, y) /h (x, y) = sup

z∈Y
f (x,z) /h (x, z)

}
,

and K (x) =
{

(s, t, ȳ)∈N× Rs+ × Rls : 1 ≤ s ≤ n+ 1, t = (t1, t2, ..., ts) ∈ Rs+
with

s∑
i=1

ti = 1, ȳ = (ȳ1, ȳ2..., ȳs) , with ȳi ∈ Y (x) , i = 1, 2, ..., s} .

Definition 2.1. A functional F : X ×X ×Rn → R is said to be sublinear
in its third argument, if for any x, x̄ ∈ X,

(i) F (x, x̄; a1 + a2) ≤ F (x, x̄; a1) + F (x, x̄; a2) ∀ a1, a2 ∈ Rn;
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(ii) F (x, x̄;αa) = αF (x, x̄; a) ∀α ∈ R+, ∀ a ∈ Rn.

By (ii) it is clear that F (x, x̄; 0 ) = 0.
Now, we let F be a sublinear functional and d (·, ·) : X × X → R. Let

α =
(
α1, α2

)
, where α1, α2 : X × X → R+\ {0}, ρ =

(
ρ1, ρ2

)
, where ρ1 =(

ρ1
1, ρ

1
2, ..., ρ

1
s

)
∈ Rs and ρ2 =

(
ρ2

1, ρ
2
2, ..., ρ

2
m

)
∈ Rm. Let f (·, ·) : X×Y (x)→ R

and g (·) : X → Rm be two twice differentiable functions.

Definition 2.2. [2] For each j ∈ M , (f, gj) is said to be second-order
(F, α, ρ, d)-type I at x̄ ∈ X if for all x ∈ S and yi ∈ Y (x), we have

f (x, yi)− f (x̄, yi) + 1
2p
T∇2f (x̄, yi) p ≥

≥ F
(
x, x̄;α1 (x, x̄)

[
∇f (x̄, yi) +∇2f (x̄, yi) p

] )
+ ρ1

i d
2 (x, x̄) , i = 1, 2, ..., s,

− gj (x̄) + 1
2p
T∇2gj (x̄) p ≥

≥ F
(
x, x̄;α2 (x, x̄)

[
∇gj (x̄) +∇2gj (x̄) p

] )
+ ρ2

jd
2 (x, x̄) , j = 1, 2, ...,m,

where p ∈ Rn.

If the first inequality in the above definition is satisfied under the form

f (x, yi)− f (x̄, yi) + 1
2p
T∇2f (x̄, yi) p >

> F
(
x, x̄;α1 (x, x̄)

[
∇f (x̄, yi) +∇2f (x̄, yi) p

] )
+ ρ1

i d
2 (x, x̄) , i = 1, 2, ..., s,

then we say that for each j ∈M, (f, gj) is second-order strictly (F, α, ρ, d)-type
I at x̄.

Definition 2.3. [2] For each j ∈ M , (f, gj) is said to be second-order
pseudoquasi (F, α, ρ, d)-type I at x̄ ∈ X if for all x ∈ S and yi ∈ Y (x), we
have

f (x, yi) < f (x̄, yi)− 1
2p
T∇2f (x̄, yi) p

⇒ F
(
x, x̄;α1 (x, x̄)

[
∇f (x̄, yi)+∇2f (x̄, yi) p

] )
< −ρ1

i d
2 (x, x̄) , i = 1, 2, ..., s,

−gj (x̄) + 1
2p
T∇2gj (x̄) p ≤ 0

⇒ F
(
x, x̄;α2 (x, x̄)

[
∇gj (x̄) +∇2gj (x̄) p

] )
≤ −ρ2

jd
2 (x, x̄) , j = 1, 2, ...,m,

where p ∈ Rn.

If the first implication in the above definition is satisfied under the form

F
(
x, x̄;α1 (x, x̄)

[
∇f (x̄, yi) +∇2f (x̄, yi) p

] )
≥ −ρ1

i d
2 (x, x̄) ,

⇒ f (x, yi) > f (x̄, yi)− 1
2p
T∇2f (x̄, yi) p, i = 1, 2, ..., s,

then we say that for each j ∈ M , (f, gj) is second-order strictly pseudoquasi
(F, α, ρ, d)-type I at x̄.

The following result will be needed in the sequel.
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Theorem 2.1. [4] Let x∗ be a solution of problem (P) and let ∇gj (x∗) , j ∈
J (x∗), be linearly independent. Then there exist (s∗, t∗, ȳ∗) ∈ K (x∗) , λ∗ ∈
R+, and µ∗ ∈ Rm+ such that

∇
s∗∑
i=1

t∗i (f (x∗, ȳ∗i )−λ∗h (x∗, ȳ∗i )) +∇
m∑
j=1

µ∗jgj (x∗) = 0,

f (x∗, ȳ∗i )− λ∗h (x∗, ȳ∗i ) = 0, i = 1, 2, ..., s∗,

m∑
j=1

µ∗jgj (x∗) = 0,

t∗i ≥ 0,

s∗∑
i=1

t∗i = 1, ȳ∗i ∈ Y (x∗) , i = 1, 2, ..., s∗.

3. DUALITY

In this section, we consider the following dual model [8] for (P).

(MD) max
(s,t,ȳ)∈K(z)

sup
(z,µ,λ,p)∈H1(s,t,ȳ)

λ,

where H1 (s, t, ȳ) denotes the set of all (z, µ, λ, p) ∈ Rn × Rm+ × R+ × Rn
satisfying

∇
s∑
i=1

(f (z, ȳi)− λh (x, ȳi)) +∇2
s∑
i=1

ti (f (z, ȳi)− λh (x, ȳi)) p+(3.1)

+∇
m∑
j=1

µjgj (z) +∇2
m∑
j=1

µjgj (z) p = 0,

(3.2)

s∑
i=1

ti (f (z, ȳi)− λh (z, ȳi))− 1
2p
T∇2

s∑
i=1

ti (f (z, ȳi)− λh (z, ȳi)) p ≥ 0,

(3.3)

m∑
j=1

µjgj (z)− 1
2p
T∇2

m∑
j=1

µjgj (z) p ≥ 0.

If, for a triplet (s, t, ȳ) ∈ K (z), the set H1 (s, t, ȳ) is empty, we define the
supremum over it to be −∞.

Remark 3.1. If p = 0, then (MD) becomes the dual problem considered in
[11]. �

Theorem 3.1. (Weak duality) Let x and (z, µ, λ, s, t, ȳ, p) be feasible solu-
tions to (P) and (MD), respectively. Assume that



52 Anurag Jayswal, I.M. Stancu-Minasian and Dilip Kumar 5

(i)

(
s∑
i=1

ti (f (·, ȳi) −λh (·,ȳi)) ,
m∑
j=1

µjgj (·)

)
is second order (F, α, ρ, d)-

type I at z,

(ii)
ρ11

α1(x,z)
+

ρ21
α2(x,z)

≥ 0.

Then

sup
y∈Y

f(x,y)
h(x,y) ≥ λ.

Proof. Suppose contrary to the result that

sup
y∈Y

f(x,y)
h(x,y) < λ.

Therefore, we have

f (x, ȳi)− λh (x, ȳi) < 0 for all ȳi ∈ Y (x) , i = 1, 2, ..., s.

It follows from ti ≥ 0, i = 1, 2, ..., s, that

ti (f (x, ȳi)−λh (x, ȳi)) ≤ 0,

with at least one strict inequality, since t = (t1, t2, ..., ts) 6= 0. Taking summa-
tion over i, we have

s∑
i=1

ti (f (x, ȳi)−λh (x, ȳi)) < 0,

which together with (3.2) gives

s∑
i=1

ti (f (x, ȳi)− λh (x, ȳi)) < 0 ≤

≤
s∑
i=1

ti (f (z, ȳi)− λh (z, ȳi))− 1
2p
T∇2

s∑
i=1

ti (f (z, ȳi)− λh (z, ȳi)) p.

That is,

s∑
i=1

ti (f (x, ȳi)− λh (x, ȳi))−
s∑
i=1

ti (f (z, ȳi)− λh (z, ȳi)) +(3.4)

+ 1
2p
T∇2

s∑
i=1

ti (f (z, ȳi)− λh (z, ȳi)) p < 0.
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Using (3.3), (3.4) and hypothesis (i), we obtain

0 >
s∑
i=1

ti (f (x, ȳi)− λh (x, ȳi))−
s∑
i=1

ti (f (z, ȳi)− λh (z, ȳi))

+ 1
2p
T∇2

s∑
i=1

ti (f (z, ȳi)− λh (z, ȳi)) p

≥F

(
x,z;α1(x,z)

(
∇

s∑
i=1

ti(f (z, ȳi)−λh (z, ȳi))+∇2
s∑
i=1

ti (f (z, ȳi)−λh (z, ȳi))p

))
+ ρ1

1d
2 (x, z) ,

and

0 ≥ −
m∑
j=1

µjgj (z) + 1
2p
T∇2

m∑
j=1

µjgj (z) p

≥ F

x, z;α2 (x, z)

∇ m∑
j=1

µjgj (z) +∇2
m∑
j=1

µjgj (z) p

+ ρ2
1d

2 (x, z) .

Since α1 (x, z) > 0 and α2 (x, z) > 0, by using the sublinearity of F , the
above two inequalities imply

F

(
x, z;∇

s∑
i=1

ti (f (z, ȳi)−λh (z, ȳi))+∇2
s∑
i=1

ti (f (z, ȳi)−λh (z, ȳi)) p

)
(3.5)

< −ρ11d
2(x,z)

α1(x,z)

and

(3.6) F

x, z;∇ m∑
j=1

µjgj (z) +∇2
m∑
j=1

µjgj (z) p

 ≤ −ρ21d
2(x,z)

α2(x,z)
.

From (3.1), (3.5), (3.6) and the sublinearity of F , we get

0 = F

(
x, z;∇

s∑
i=1

ti (f (z, ȳi)− λh (z, ȳi)) +∇2
s∑
i=1

ti (f (z, ȳi)− λh (z, ȳi)) p

+∇
m∑
j=1

µjgj (z) +∇2
m∑
j=1

µjgj (z) p


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≤ F

(
x, z;∇

s∑
i=1

ti (f (z, ȳi)− λh (z, ȳi)) +∇2
s∑
i=1

ti (f (z, ȳi)− λh (z, ȳi)) p

)

+ F

x, z;∇ m∑
j=1

µjgj (z) +∇2
m∑
j=1

µjgj (z) p


< −

(
ρ11

α1(x,z)
+

ρ21
α2(x,z)

)
d2 (x, z) < 0. (by(ii))

Thus, we have a contradiction. Hence, the proof is complete. �

Theorem 3.2. (Weak duality) Let x and (z, µ, λ, s, t, ȳ, p) be feasible solu-
tions to (P) and (MD), respectively, Assume that

(i)

(
s∑
i=1

ti (f (·, ȳi)− λh (·, ȳi)) ,
m∑
j=1

µjgj (·)

)
is second order pseudoquasi

(F, α, ρ, d)-type I at z,

(ii)
ρ11

α1(x,z)
+

ρ21
α2(x,z)

≥ 0.

Then

sup
y∈Y

f(x,y)
h(x,y) ≥ λ.

Proof. Following the lines of proof of Theorem 3.1, we have:

s∑
i=1

ti (f (x, ȳi)− λh (x, ȳi)) <(3.7)

<
s∑
i=1

ti (f (z, ȳi)− λh (z, ȳi))− 1
2p
T∇2

s∑
i=1

ti (f (z, ȳi)− λh (z, ȳi)) p.

Using (3.3), (3.7) and hypothesis (i), we obtain

F

(
x,z;α1(x,z)

(
∇

s∑
i=1

ti (f (z,ȳi)−λh (z,ȳi))+∇2
s∑
i=1

ti (f (z, ȳi)−λh (z, ȳi)) p

))
< −ρ1

1d
2 (x, z)

and

F

x, z;α2 (x, z)

∇ m∑
j=1

µjgj (z) +∇2
m∑
j=1

µjgj (z) p

 ≤ −ρ2
1d

2 (x, z) .
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Since α1 (x, z) > 0 and α2 (x, z) > 0, and the sublinearity of F in the above
inequalities, we summarize to get

F

(
x, z;∇

s∑
i=1

ti (f (z, ȳi)−λh (z, ȳi))+∇2
s∑
i=1

ti (f (z, ȳi)−λh (z, ȳi)) p+(3.8)

+∇
m∑
j=1

µjgj (z) +∇2
m∑
j=1

µjgj (z) p


< −

(
ρ11

α1(x,z)
+

ρ21
α2(x,z)

)
d2 (x, z) < 0.

Since
ρ11

α1(x,z)
+

ρ21
α2(x,z)

≥ 0, by inequality (3.8), we have

F

(
x, z;∇

s∑
i=1

ti (f (z, ȳi)− λh (z, ȳi)) +∇2
s∑
i=1

ti (f (z, ȳi)− λh (z, ȳi)) p+

+∇
m∑
j=1

µjgj (z) +∇2
m∑
j=1

µjgj (z) p

 < 0,

which contradicts (3.1), as F (x, z; 0 ) = 0. This completes the proof. �

Theorem 3.3. (Strong duality) Assume that x∗ is an optimal solution
to (P) and ∇gj (x∗) , j ∈ J (x∗), are linearly independent. Then there exist
(s∗, t∗, ȳ∗) ∈ K (x∗) and (x∗, µ∗, λ∗, p∗ = 0) ∈ H1 (s∗, t∗, ȳ∗) such that
(x∗, µ∗, λ∗, s∗, t∗, ȳ∗, p∗ = 0) is a feasible solution to (MD) and the two ob-
jectives have the same values. Further, if the hypotheses of weak duality The-
orems 3.1 or 3.2 hold for all feasible solutions (z, µ, λ, s, t, ȳ, p) to (MD), then
(x∗, µ∗, λ∗, s∗, t∗, ȳ∗, p∗ = 0) is an optimal solution to (MD).

Proof. Since x∗ is an optimal solution to (P) and ∇gj (x∗) , j ∈ J (x∗), are
linearly independent, then by Theorem 2.1, there exist (s∗, t∗, ȳ∗) ∈ K (x∗)
and (x∗, µ∗, λ∗, p∗ = 0) ∈ H1 (s∗, t∗, ȳ∗) such that (x∗, µ∗, λ∗, s∗, t∗, ȳ∗, p∗ = 0)
is a feasible solution to (MD) and the two objectives have the same values.
Optimality of

(
x∗, µ∗, λ

∗
, s∗, t∗, ȳ∗, p∗ = 0

)
for (MD) thus follows from weak

duality Theorems 3.1 or 3.2. �

Theorem 3.4. (Strict converse duality) Let x∗ be an optimal solution to
(P) and

(
z∗, µ∗, λ

∗
, s∗, t∗, ȳ∗, p∗

)
be optimal solution to (MD). Assume that

are satisfied the conditions:

(i) ∇gj (x∗) , j ∈ J (x∗), are linearly independent,

(ii)

(
s∗∑
i=1

t∗i (f (·, ȳ∗i )− λ∗h (·, ȳ∗i )) ,
m∑
j=1

µ∗jgj (·)

)
is second order

(F, α, ρ, d)-type I at z∗,

(iii)
ρ11

α1(x∗,z∗) +
ρ21

α2(x∗,z∗) > 0.
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Then z∗ = x∗, that is, z∗is an optimal solution to (P).

Proof. Suppose to contrary that z∗ 6= x∗ and exhibit a contradiction. Since
x∗ and (z∗, µ∗, λ∗, s∗, t∗, ȳ∗, p∗) are optimal solutions to (P) and (MD), respec-
tively, and ∇gj (x∗) , j ∈ J (x∗), are linearly independent, by Theorem 3.3 we
have

sup
y∗∈Y

f(x∗,y∗)
h(x∗,y∗) = λ∗.

Therefore, we have

f (x∗, ȳ∗i )− λ∗h (x∗, ȳ∗i ) ≤ 0 for all ȳ∗i ∈ Y (x∗) , i = 1, 2, ..., s∗.

It follows from t∗i ≥ 0, i = 1, 2, ..., s, that

t∗i (f (x∗, ȳ∗i )− λ∗h (x∗, ȳ∗i )) ≤ 0,

with at least one strict inequality, since t = (t1, t2, ..., ts) 6= 0. Taking summa-
tion over i, we have

s∗∑
i=1

t∗i (f (x∗, ȳ∗i )− λ∗h (x∗, ȳ∗i )) < 0,

which together with (3.2) gives

s∗∑
i=1

t∗i (f (x∗, ȳ∗i )− λ∗h (x∗, ȳ∗i )) < 0 ≤

≤
s∗∑
i=1

t∗i (f (z∗, ȳ∗i )− λ∗h (z∗, ȳ∗i ))− 1
2p
∗T∇2

s∗∑
i=1

t∗i (f (z∗, ȳ∗i )− λ∗h (z∗, ȳ∗i )) p
∗.

That is,

s∗∑
i=1

t∗i (f (x∗, ȳ∗i )− λ∗h (x∗, ȳ∗i ))−
s∗∑
i=1

t∗i (f (z∗, ȳ∗i )− λ∗h (z∗, ȳ∗i ))(3.9)

+ 1
2p
∗T∇2

s∗∑
i=1

t∗i (f (z∗, ȳ∗i )− λ∗h (z∗, ȳ∗i )) p
∗ < 0.
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Using (3.3), (3.8) and hypothesis (ii), we obtain

0 >

s∗∑
i=1

t∗i (f (x∗, ȳ∗i )− λ∗h (x∗, ȳ∗i ))−
s∗∑
i=1

t∗i (f (z∗, ȳ∗i )− λ∗h (z∗, ȳ∗i ))

+ 1
2p
∗T∇2

s∗∑
i=1

t∗i (f (z∗, ȳ∗i )− λ∗h (z∗, ȳ∗i )) p
∗

≥ F

(
x∗, z∗;α1 (x∗, z∗)

(
∇

s∗∑
i=1

t∗i (f (z∗, ȳ∗i )− λ∗h (z∗, ȳ∗i ))

+∇2
s∗∑
i=1

t∗i (f (z∗, ȳ∗i )− λ∗h (z∗, ȳ∗i )) p
∗

))
+ ρ1

1d
2 (x∗, z∗) ,

and

0 ≥ −
m∑
j=1

µ∗jgj (z∗) + 1
2p
∗T∇2

m∑
j=1

µ∗jgj (z∗) p∗

≥ F

x∗, z∗;α2 (x∗, z∗)

∇ m∑
j=1

µ∗jgj (z∗) +∇2
m∑
j=1

µ∗jgj (z∗) p∗


+ ρ2

1d
2 (x∗, z∗) .

Since α1 (x, z) > 0 and α2 (x, z) > 0, by using the sublinearity of F , the
above two inequalities imply

F

(
x∗, z∗;

(
∇

s∗∑
i=1

t∗i (f (z∗, ȳ∗i )− λ∗h (z∗, ȳ∗i ))(3.10)

+∇2
s∗∑
i=1

t∗i (f (z∗, ȳ∗i )− λ∗h (z∗, ȳ∗i )) p
∗

))
< −ρ11d

2(x∗,z∗)
α1(x∗,z∗) ,

and

(3.11) F

x∗, z∗;
∇ m∑

j=1

µ∗jgj (z∗) +∇2
m∑
j=1

µ∗jgj (z∗) p∗

 ≤ −ρ21d
2(x∗,z∗)

α2(x∗,z∗) .

From (3.1), (3.10), (3.11) and the sublinearity of F , we get

0 = F

(
x∗, z∗;∇

s∗∑
i=1

t∗i (f (z∗, ȳ∗i )− λ∗h (z∗, ȳ∗i ))

+∇2
s∗∑
i=1

t∗i (f (z∗, ȳ∗i )− λ∗h (z∗, ȳ∗i )) p
∗
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+∇
m∑
j=1

µ∗jgj (z∗) +∇2
m∑
j=1

µ∗jgj (z∗) p∗


≤ F

(
x∗, z∗;∇

s∗∑
i=1

t∗i (f (z∗, ȳ∗i )− λ∗h (z∗, ȳ∗i ))

+∇2
s∗∑
i=1

t∗i (f (z∗, ȳ∗i )− λ∗h (z∗, ȳ∗i )) p
∗

)

+ F

x, z;∇ m∑
j=1

µ∗jgj (z∗) +∇2
m∑
j=1

µ∗jgj (z∗) p∗


< −

(
ρ11

α1(x∗,z∗) +
ρ21

α2(x∗,z∗)

)
d2 (x∗, z∗) < 0 (by (iii)).

Thus, we have a contradiction. Hence z∗ = x∗. �

Theorem 3.5 (Strict converse duality) Let x∗ be an optimal solution to
(P) and

(
z∗, µ∗, λ

∗
, s∗, t∗, ȳ∗, p∗

)
be optimal solution to (MD). Assume that

are satisfied the conditions:
(i) ∇gj (x∗) , j ∈ J (x∗), are linearly independent,

(ii)

(
s∗∑
i=1

t∗i (f (·, ȳ∗i )− λ∗h (·, ȳ∗i )) ,
m∑
j=1

µ∗jgj (·)

)
is second order strictly

pseudoquasi (F, α, ρ, d)-type I at z∗,

(iii)
ρ11

α1(x∗,z∗) +
ρ21

α2(x∗,z∗) ≥ 0.

Then, z∗ = x∗; that is, z∗is an optimal solution to (P).

Proof. We proceed as in the proof of Theorem 3.4 and obtain

s∗∑
i=1

t∗i f (x∗, ȳ∗i )− λ∗h (x∗, ȳ∗i ) <
s∗∑
i=1

t∗i (f (z∗, ȳ∗i )− λ∗h (z∗, ȳ∗i ))

− 1
2p
∗T∇2

s∗∑
i=1

t∗i (f (z∗, ȳ∗i )− λ∗h (z∗, ȳ∗i )) p
∗.(3.12)

From (3.3), and the second part of the hypothesis on(
s∗∑
i=1

t∗i (f (·, ȳ∗i )− λ∗h (·, ȳ∗i )) ,
m∑
j=1

gj (·)

)
at z∗, we have

F

x∗, z∗;α1(x∗, z∗)

∇ m∑
j=1

µ∗jgj (z∗)+∇2
m∑
j=1

µ∗jgj (z∗) p∗

≤−ρ2
1d

2 (x∗, z∗) .
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As α2 (x∗, z∗) > 0 and as F is sublinear, it follows that

(3.13) F

x∗, z∗;
∇ m∑

j=1

µ∗jgj (z∗) +∇2
m∑
j=1

µ∗jgj (z∗) p∗

 ≤ −ρ21d
2(x∗,z∗)

α2(x∗,z∗) .

From relation (3.1), (3.13) and the sublinearity of F , we obtain

F

(
x∗, z∗;

(
∇

s∗∑
i=1

t∗i (f (z∗, ȳ∗i )− λ∗h (z∗, ȳ∗i ))

+∇2
s∗∑
i=1

t∗i (f (z∗, ȳ∗i )− λ∗h (z∗, ȳ∗i )) p
∗

))
≥ ρ21d

2(x∗,z∗)
α2(x∗,z∗) .

In view of
ρ11

α1(x∗,z∗) +
ρ21

α2(x∗,z∗) ≥ 0, α1 (x∗, z∗) > 0 and the sublinearity of F ,

the above inequality becomes

F

(
x∗, z∗;α1 (x∗, z∗)

(
∇

s∗∑
i=1

t∗i (f (z∗, y∗i )− λ∗h (z∗, y∗i ))

+∇2
s∗∑
i=1

t∗i (f (z∗, y∗i )− λ∗h (z∗, y∗i )) p
∗

)
≥ −ρ1

1d
2 (x∗, z∗) .

Using the first part of the hypothesis on(
s∗∑
i=1

t∗i (f (·, ȳi)−λ∗h (·, ȳi)) ,
m∑
j=1

gj (·)

)
at z∗, it follows that

s∗∑
i=1

t∗i (f (x∗, ȳ∗i )− λ∗h (x∗, ȳ∗i )) >

s∗∑
i=1

t∗i (f (z∗, ȳ∗i )− λ∗h (z∗, ȳ∗i ))

− 1
2p
∗T∇2

s∗∑
i=1

t∗i (f (z∗, ȳ∗i )−λ∗h (z∗, ȳ∗i )) p
∗.

which is a contradiction to (3.12). Hence, z∗ = x∗. �

4. CONCLUSIONS

In this paper, we have discussed the second order duality for dual model
of minmax fractional programming problems under the assumptions of gen-
eralized (F, α, ρ, d)-type I convexity. It will be interesting to see whether or
not the second order duality results developed in this paper still hold for the
following nondifferentiable minmax fractional programming problems:

(P1) Min sup
y∈Y

φ(x,y)+(xTBx)
1/2

ψ(x,y)−(xTDx)1/2
subject to g (x) ≤ 0, x ∈ Rn,
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where Y is a compact subset of Rm,φ (., .) , ψ (., .) : Rn × Rm → R and
g (., .) : Rn → R are continuously differentiable functions, and B and D are
two positive semidefinite n× n symmetric matrices.

(P2) Min sup
v∈W

Re[φ(ξ,v)+(zTBz)1/2]
Re[ψ(ξ,v)−(zTDz)1/2]

, subject to − g (ξ) ∈ S0, ξ ∈ C2n,

where ξ = (z, z̄) , v = (w, w̄) for z ∈ Cn, w ∈ C l, φ ( ·, ·) : C2n × C2l → C
and ψ (·, ·) : C2n × C2l → C are analytic with respect to ξ, W is a specified
compact subset in C2l, S0 is a polyhedral cone in Cm and g : C2n → Cm is
analytic. Also B,D ∈ Cn×n are positive semidefinite Hermitian matrices.

This would be task of some of our forthcoming works.
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