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ON THE REFINEMENTS OF JENSEN-MERCER’S INEQUALITY?

M. ADIL KHAN,*V ASIF R. KHAN*Y and J. PECARICHY

Abstract. In this paper we give refinements of Jensen-Mercer’s inequality and
its generalizations and give applications for means. We prove n-exponential
convexity of the functions constructed from these refinements. At the end we
discuss some examples.
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1. INTRODUCTION

In paper [§ A. McD. Mercer proved the following variant of Jensen’s in-
equality, to which we will refer as to the Jensen-Mercer inequality.

THEOREM 1. Let [a,b] be an interval in R, and z1,...,x, € [a,b]. Let
wi, w2, ..., wy, be nonnegative real numbers such that > ;. w; = 1. If ¢ is a
convez function on [a,b], then

(1) Glatd=> wzi| <pla)+¢b) = > wid(xs).
i=1 i=1

Given two real row n-tuples x = (x1,...,2,) and y = (y1,...,yn), ¥y is said
to majorize x, if

k k
oy <D
=1

i=1

"Department of Mathematics, University of University of Peshawar, Pakistan,
e-mail: adilbandai@yahoo.com.

V' Abdus Salam School of Mathematical Sciences, GC University, 68-B, New Muslim
Town, Lahore 54600, Pakistan.

*Department of Mathematical Sciences, University of Karachi, University Road, Karachi,
Pakistan, e-mail: asif_rizkhan@yahoo.com.

tUniversity of Zagreb, Faculty of Textile Technology Zagreb, Croatia,
e-mail: pecaric@mahazu.hazu.hr.

#This research work is funded by Higher Education Commission Pakistan. The research
of the third author was supported by the Croatian Ministry of Science, Education and Sports
under the Research Grants 117-1170889-0888.


www.ictp.acad.ro/jnaat
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holds for £k =1,2,...,n — 1 and

n n
§ €T = E Yi,
=1 =1

where z(;] > ... > zp,, and yp) > ... > yp,), are the entries of x and y, re-
spectively, in nonincreasing order (see [0, p. 10]).

The following extension of (1] is given in [9].

THEOREM 2. Let ¢ : [a,b] — R be a continuous conver function on [a,b).
Suppose that a = (a1, ..., am) with a; € [a,b], and X = (x;5) is a real n x m
matriz such that x;; € [a,b] for alli=1,...,n; j=1,...,m.

If a majorizes each row of X, that is

T = (Ti1, ooy Tim) < (a1, .y am) = a for each i =1,...,n;

then we have the inequality

m m—1 n m m—1 n
(2) D aj =D > wimi | <Y blag) = DY wig(wiy),
j=1 j=1 i=1 j=1 j=1 i=1

where 1" | w; = 1 with w; > 0.

In this paper we give refinements of , and give applications for means.
We construct functionals from these refinements and prove mean value theo-
rems. The notion of n-exponential convexity is introduced in [10]. The class
of n-exponential convex functions is more general than the class of log-convex
functions. We follow the method illustrated in [I0] to give the n-exponential
convexity and exponential convexity for these functionals.

2. MAIN RESULTS

Let ¢ : [a,b] — R be a convex function. If x; € [a,b] and w; > 0, i €
{1,2,...,n} with > ;w; = 1. Throughout the paper we assume that I C
{1,2,...,n} with I # ( and I # {1,2,...,n} unless stated. We define W; =
Yicrwi and Wy =1 =% . ;w;. For the convex function ¢ and the n-tuple
x = (1,...,2p) and w = (wy,...,w,) as above, we can define the following
functional

(3)
D(w,x,¢; 1) := Wr¢ (a—i—b— V%Zwi:ﬁ) +Wro [ atb— gz > win
i€l iel
It is worth to observe that for I = {k}, k € {1,...,n} we have the functional
Di(w,x,¢) := D(w,x,¢; {k})
=wip(a+b— k) + (1 —wg)od (a 4b— iy Wi Wk wixi*w’“m’“) )

1—wy
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The following refinement of is valid.

THEOREM 3. Let [a,b] be an interval in R, and x1,...,x, € [a,b]. Let
Wi, W2, ..., Wy, be positive real numbers such that > ¢ jw; =1. If ¢ : [a,b] = R
is a convez function, then for any non empty subset I of {1,...,n} we have

4 ¢ ( . Zwixi) < D(w,x,6:1) < ¢la) + (b) — 3 wid(ay).
=1 =1

Proof. By the convexity of the function ¢ we have

ofo+0= Y wn) = oL wi(u0-)

=o( (o0 Wi oo )

i€l i€l

< W1¢<W%Zwi(a+b—xi>) +WT¢<m1fTZwi(a+b_xi>)
iel iel

= D(w,x,¢;1) ;

for any I, which proves the first inequality in .
By the Jensen-Mercer inequality we also have

D(w,x,6:1) = Wid(a+b— gh > wiai) + Wro(a+b - = > wa,)
iel i€l
< Wi (8la) +0(0) = gt D wislws) ) + Wy (6(a) +9(b) = = > wis(ay))
iel iel

= ¢la) + B(b) — sz‘fﬁ(%‘)

for any I, which proves the second inequality in . ]

REMARK 4. In [7] from the proof of Theorem 2.3 we have left inequality of

[@. O

REMARK 5. We observe that the inequality can be written in an equiv-
alent form as

(5) : ( +h- Zwm) < min D(w, %, ¢: 1)

=1

(6) max D(w,x, ¢; 1) < ¢(a) + ¢(b) > wig(as).
=1
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The following special cases of and @ can be given:

o) <a +b— ; wﬂi) < ke?lnnn} Dy(w,x, ¢)
and

D < ip(x;). O
px KW, %, ) < ¢(a quﬁx

The case of uniform distribution, namely, when w; = % forallt =1,2,...,nis
of interest as well. If we consider a natural number m withm € {1,2,...,n—1}
and if we define

=1 j=m+1

then we can state the following result:

COROLLARY 6. If ¢ : [a,b] — R is a convex function, z; € |a,b], 1
{1,2,...,n}, then for any m € {1,2,....n — 1} we have

<a+b— sz>_ m (X, ¢) < ¢(a) + ¢(b) %Z d(24).

In particular, we have the bounds

¢ (a n ;az ) - mE{{I}.l.I,}z—l} (x,9)
and

max Dy (x,¢) < ¢(a) + ¢(b) — £ Z o(zi).
i=1

me{l,...n—1}
The following refinement of is valid.

THEOREM 7. Let ¢ : [a,b] — R be a continuous convex function on [a,b].
Suppose that a = (a1, ..., am) with a; € [a,b], and X = (x;5) is a real n x m
matriz such that x;; € [a,b] for alli=1,...,n; j=1,...,m

If a majorizes each row of X, then for any non empty subset I of {1,...,n}
we have

(7)
m—1 n

> a; =Y ) wiay | < Dw, X, 1) <Y dlay) —
=1 i=1

=1 i=1

m—1

n
sz¢ xz]

=1 i=1
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where
(8)
D(w, X, ¢;1) :=
m m—1 m m—1
=W Zaj — WLI Z Zwixij + Wj(b Zaj — WLT Z Zwiaﬁij ,
j=1 j=1 iel J=1 J=1 eI

Wi =3 e wi, Wp =3, c7wi, Yo w =1 with w; > 0.

Proof. The proof is similar to the proof of Theorem |3 but use instead
of . O

As above we can give the following remark.

REMARK 8.
m -1 n
¢ Zaj - : Zwixij < IIIIIHD(W,X,¢;I)
j=1 7=1 =1
and
m m—1 n
IIlIaXD(W,X, o, 1) < z;¢(aj) — Z; Z;wlqﬁ(x”) O

Jj= Jj=1 =

REMARK 9. If in wesetm =2,a1 =a,ao =bandx;; =x;fori=1,...,n
we get . O

An m x m matrix A = (a;;) is said to be doubly stochastic, if aj; > 0 and
Z;n:l ajk = > peqa;, = 1 for all j,k =1,...,m. It is well known [0, p. 20]
that if A is an m x m doubly stochastic matrix, then

(9) aA < a for each real m-tuple a = (a1, aq, ..., an).
By applying Theorem |7| and @D, one obtains:

COROLLARY 10. Let ¢ : [a,b] — R be a continuous convex function on [a, b].
Suppose that a = (a1, ...,am) with a; € [a,b] j =1,....,m and Ai, As, ..., Ay
are m X m doubly stochastic matrices. Set

aA1
X = (ZUU) = .
al,
Then inequalities in hold.

REMARK 11. In [4] Dragomir has given related refinements of Jensen’s in-
equality. O
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3. APPLICATIONS

For ) #1 C {1,...,n} let A;, Gy, H; and MIM be the arithmetic, geometric,
harmonic means, and power mean of order r € R, respectively of z; € [a, ],
where 0 < a < b, formed with the positive weights w;, ¢ € I. For I =
{1,...,n} we denote the arithmetic, geometric, harmonic and power means by

A,,G,, H, and M,ET] respectively.

If we define
/I[: = a+b—WLIZwil’i:(l+b—A[
el
Gr: = —%—T =%

-1
ﬁli _ (a_leb_lV[l/erwixil) _ (a_1+b_lfo1)_1

iel
I S G (M}T})T)i T A0,
@1, r =20,
where N
Ml (WI Dier 71%951") TLor#0;

S\ T
ngil ) TZOa
el

then the following inequalities hold.
THEOREM 12.

(10)(2) Gy < mIin A‘I/V’A;VT and A, > max A‘I/VIA;VT,

(11) (4i) G, < mlin [WIGI + WTGT] and A,, > max [WIGI + Wjéj .

Proof. (i) Applying Theorem [3| to the convex function ¢(x) = —Inzx, we
obtain
(12) —InA4, < —WIIHAI—WTID NYS —InG,.

Now follows from Remark |5 and .

(ii) Applying Theorem (3| to the convex function ¢(z) = exp(x), and replacing
a,b, and z; with Ina,Inb, and In z; respectively and using Remark b}, we obtain

(). O
The following particular case of Theorem [12]is of interest.
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COROLLARY 13.

1 . 1
— < —_— > .
(1) &, S i o and i 2 WaX =y
‘. 1 . %% T 1 T
1 -~ Vi LEI RSN Wi LEI )
(i) & < IIlIIIl [Gz + GT} and 2 mIaX [Gz + GT}

Proof. Directly from Theorem (12| by the substitutions a — %, b— %, T —
L O

T

THEOREM 14. For r < 1, we have the following inequalities
Y : vid vid
Nl < win [woatf? + wnt!)
(13) A, = max [WIM[W + WTMTM] .
Forr > 1, the inequalities in are reversed.
1

Proof. For r < 1, r # 0, use Theorem (3| for the convex function ¢(x) = zr,

and replacing a,b, and z; with a",b", and z] respectively and for r = 0 use

Theorem [3| for the convex function ¢(x) = exp(x); replacing a, b, and x; with
Ina,Inb, and In x; respectively, we obtain (|13) by Remark
1

If » > 1, then the function ¢(z) = x7 is concave, so the inequalities in |D
are reversed. O

COROLLARY 15.
ﬁIn < mIin [W[f{[ + ngf} ,

REMARK 16. Obviously, part (ii) of Theoremis also a direct consequences
of Theorem [I4] O

THEOREM 17. Letr;s € R, r < s.
(i) If s > 0, then

() < o o (5 ().
s () e (30 o )]
(i) If s < 0, then inequalities in are reversed.

Proof. Let s > 0. Using Theorem [3] and Remark [f] to the convex function
S
¢(x) = zr, and replacing a, b, and x; with a”,b", and z] respectively, we obtain
(14).
. s . ce
If s < 0, then the function ¢(x) = xr, is concave so inequalities in are
reversed. g
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Let ¢ : [a,b] — R be a strictly monotonic and continuous function. Then for
a given n- tuple x = (21, ...,x,) € [a,b]™ and positive n- tuple w = (wy, ..., wy,)
with Y7 | w; = 1, the value

Mq[gn] =¢ ! (Z wiéb(l“i))
=1

is well defined and is called quasi — arithmetic mean of x with wight w (see
for example [2, p. 215]). If we define

Mgb] =¢7 <¢(a) +¢(b) - Zwi¢($i)> :
=1

then we have the following results.

THEOREM 18. Let ¢, : [a,b] — R be strictly monotonic and continuous
functions. If 1o ¢~ is convex on [a,b], then

o (3 < e (5 0 (5]
(15) " (M(;”]) > max [Wﬂp (Mq[ﬁ) + W (Mg])} ,

where M = ¢71 <¢<a> + o) — 7= Y wm(xi)) :

i€
Proof. Applying Theoremto the convex function f = 9o¢~! and replacing
a,b, and x; with ¢(a), #(b), and ¢(z;) respectively and then using Remark

we obtain . O
REMARK 19. Theorems and [17] follow from Theorem [I8], by choosing
adequate functions ¢,1) and appropriate substitutions. O

4. FURTHER GENERALIZATION

Let E be a nonempty set, 2 be an algebra of subsets of E, and L be a linear
class of real valued functions f : £ — R having the properties:

L1: fge L= (af +pg) €L foral o, €R;

L2:1€L,ie.,if f(t)=1forallt € E, then f € L;

L3: fel EieA= fxg €,
where x g, is the indicator function of E;. It follows from Lo, L3 that xg, € L
for every E; € .

An isotonic linear functional A : L. — R is a functional satisfying the fol-
lowing properties:
Al : Alaf + Bg) = aA(f) + BA(g) for f,g€ L,a, 5 €R;
A2 : feL,f(t)>0on E= A(f) >0;
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It follows from L3 that for every E; € 2 such that A(xg,) > 0, the functional

Ap defined for all f € L as Ai(f) = Aj{é&)) is an isotonic linear functional
1

with A(1) = 1. Furthermore, we observe that

Let ¢ : [a,b] — R be a continuous function. In [3], under the above assump-
tions, the following variant of the Jessen inequality is proved, if ¢ is convex,
then

(16) ¢la+b—A(f)) < ¢a) + ¢(b) — A(S(f));
if ¢ is concave then the inequality is reversed.
The following refinement of holds.
THEOREM 20. Under the above assumptions, if ¢ is convex, then

(17)  dla+b—A(f)) < D(A, f,¢; E1) < ¢(a) + 6(b) — A((f));

where
(18) E(A7 f) ¢7 El) =

A(f-xE,) A(fx )
=)o (a0 = HEEY) + Ao (o+0 - HEES)

for all By € A such that 0 < A(xg,) <1

Proof. The first inequality follows by using definition of convex function
and the second follows by using for A;(f) instead of A(f). O

REMARK 21. In [7] from the proof of Theorem 4.1 we have left inequality
of (18). O

REMARK 22. We observe that the inequality can be written in an
equivalent form as

FEied
and

¢(a) + ¢(b) — A(6(f)) = max D(4, f,¢; Er). O

FEiel

The following particular case of Theorem [20|is of interest:

COROLLARY 23. Let (2, P, ) be a probability measure space, and let f :
Q — [a,b] be a measurable function. Then for any continuous convez function
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¢ : la,b] = R, and for any set Ey in P with u(Ey), n(Q\E1) > 0 we have

qﬁ(a—i—b—/ﬂfdu) Sérll'g]lj [M(E1)¢><a+b—u(11~;1)/&fd“>

Proof. This is a special case of Theorem [20] for the functional A defined on
the class L*(p) as A(f) = [, fdp. O

REMARK 24. We also may obtain similar results as in Theorem [1§] for the
generalized quasi-arithmetic means of Mercers type defined in [3], as

Mgy (f, A) = ¢~ (8(a) + p(b) — A($(/)))-

5. N-EXPONENTIAL CONVEXITY OF THE JENSEN-MERCER DIFFERENCES

Under the assumptions of Theorem |3| using we define the following func-
tionals:

(19)‘?1(W, X, qb) = D(W7 X, ¢; I) - d)(a +b— Z wzxz) >0,
=1
(20)¥2(w,x,6) = ¢(a) +d(b) = Y wid(x;) — D(w,x, ;1) >0,
=1

@DW3(w,x,0) = ¢(a) +d(b) = Y _wid(wi) — pla+b— ) wiz;) > 0.
i=1 i=1

Also, under the assumptions of Theorem m using we define the functionals
as follows:

m m—1 n
(22) u(w,X,0) = DwW, X, ¢50) — (D a;— > > wizy) >0,
j=1 j=1 i=1

m m—1 n

(23) Us(w,X,¢) = > a;) = > > wi(wi) — D(w,X, ;1) >0,

j=1 j=1 i=1
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(24)
m—1 n m m—1 n
Ug(w, X, ) = quaj D widay) - Z =) wiay) > 0.
= j=1 i=1 j=1 j=1 i=1

Similarly, under the assumptions of Theorem [20| using we define the fol-
lowing functionals:

(25)  Wr(A, f,¢) = D(A, f,¢;E1) —¢la+b— A(f)) >0,

(26)  Ws(A,f.0) = ¢(a)+(b) — A(6(f)) — D(A, f, 3 E1) > 0,

(27)  Wo(A, f,¢) = o(a)+é(b) — A(¢(f)) — dla+b— A(f)) = 0.

Now we are in position to give mean value theorems for ¥;(.,.,¢), j =
1,2,...,9.

THEOREM 25. Let ¢ € C?*([a,b]), £ = (x1,....,2n) € [a,b]" and w =
(w1, ..., wy) be n-tuple of positive real numbers such that >, w; = 1. Then
there exists ¢j € [a,b] such that

V(w,x,¢) = @\Pj(w, x, ¢o), where ¢o(x) = xQ;j =1,2,3.
Proof. Fix j =1,2,3.
Since the functions
¢1 = 527 — ¢(x), da(x) = p(x) — a?
an

are convex, where I' = max ¢”(z) and v = min ¢"(z), we have
z€[a,b] z€la,b]

(28) U,(w,x,¢01) >0

(29) \IJ] (W’ X, ¢2) = 0.

From and we get
%\I/j(W,X, ¢0) < \Ifj(W,X, ¢) < g\Ifj(W,X, ¢0)

If W;(w,x,¢p) = 0 then there is nothing to prove. Suppose ¥;(w,x, ¢g) > 0

We have
20 (w,x,0)

(w X,$0)
Hence, there exists ¢; € [a, b] such that

\Pj(W,X, (b) = 2 écj)\:[jj(wvx7 ¢0)

YT <T.

0

THEOREM 26. Let ¢,% € C?*([a,b]), ¢ = (x1,...,7,) € [a,b]" and w =
(w1, ..., wy) be n-tuple of positive real numbers such that Y ;" w; = 1. Then
there ezists ¢ € |a,b] such that

Vi(wae) _ ¢(c)
\Ilj(w7z7¢) - w/l(C;)7 j - 1727 3'

provided that the denominators are non-zero.
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Proof. Let us define
gj :a](b_bjw? .7:172737
where a; = ¥;(w,x,7), b =¥;(w,x,0).

Obviously g; € C?([a,b]), by using Theorem [25 there exists ¢; € [a,b] such
that

(15420 — B0 0, ) 0.
Since ¥;(w, X, ¢p) # 0 (otherwise we have a contradiction with W;(w,x, ) #
0 by Theorem , we get

\P'(W,X,¢) J— ¢N(C') —
Witwax) — o) = 123

]

THEOREM 27. Let ¢ € C*([a,b]), a = (a1,...,an) with a; € [a,b], and

X = (z45) is a real n x m matriz such that x;; € [a,b] for alli=1,...,n; j =

1,...,m and a majorizes each row of X. Then there exists ¢ € [a,b] such
that

Ui (w, X, ¢) = LLD W, (w, X, ¢o), where do(z) = 2%k = 4,5, 6.

THEOREM 28. Let ¢, € C%([a,b]). Suppose that a = (ay,...,am) with
a; € [a,b], and X = (xi;) is a real n x m matriz such that x;; € [a,b] for all
1=1,...,n;7=1,...,m and a majorizes each row of X. Then there exists
¢k € |a,b] such that

Uy (w, X, (cx) . .
Vi) = ey k=456
provided that the denominators are non-zero.

THEOREM 29. Suppose ¢ € C%([a,b]) and L satisfy properties Ly, L, on
a nonempty set K. Assume that A is an isotonic linear functional on L with
A(1) = 1. Let f € L be such that ¢(f) € L. Then there exists ¢; € [a,b] such
that

Ui(A, f,¢) = “XDW;(A, f,d0), where go(z) = 2%j =7,8,9.

THEOREM 30. Suppose ¢, € C?([a,b]) and L satisfy properties L1, Lz, on
a nonempty set E. Assume that A is an isotonic linear functional on L with
A(1) = 1. Let f € L be such that ¢(f),(f) € L. Then there exists c; € [a, b]

such that s e
Jj\AJ, _ Cj .
\I/](Azfvw) - 1[1//(6]')7 J = 77 87 9
provided that the denominators are non-zero.

REMARK 31. If the inverse of i—l,/, exists, then from the above mean value
theorems we can give generalized means

ANE \IJ(,,(;S) .
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DEFINITION 32 ([10]). A function ¢ : J — R is n-exponentially convex in
the Jensen sense on the interval J if

n
> opayg (B5H) >0
k=1
holds for ap, e R and zp € J, k=1,2,...,n.
A function ¢ : J — R is n-exponentially convex if it is n-exponentially
convex in the Jensen sense and continuous on J.

REMARK 33. From the definition it is clear that 1-exponentially convex
functions in the Jensen sense are in fact nonnegative functions. Also, n-
exponentially convex functions in the Jensen sense are m-exponentially convex
in the Jensen sense for every m € N, m < n. O

ProrosiTiON 34. If ¢ : J — R is an n-exponentially convex function,

m
then the matrix [(;5 (“TJ””) } - s a positive semi-definite matriz for all m €

N, m < n. Particularly,

det [¢ (MT—HC[)]Z?lzl =0

forallmeN, m=1,2,...n.

DEFINITION 35. A function ¢ : J — R is exponentially convex in the Jensen
sense on I if it is n-exponentially convex in the Jensen sense for alln € N. A
function ¢ : J — R is exponentially convex if it is exponentially convex in the
Jensen sense and continuous.

REMARK 36. It is easy to show that ¢ : [a,b] — RT is log-convex in the
Jensen sense if and only if

a?¢(x) + 2080 (*5¥) + 526 (y) = 0
holds for every a, € R and z,y € [a,b]. It follows that a function is log-
convex in the Jensen-sense if and only if it is 2-exponentially convex in the
Jensen sense.
Also, using basic convexity theory it follows that a function is log-convex if
and only if it is 2-exponentially convex. U

When dealing with functions with different degree of smoothness divided
differences are found to be very useful.

DEFINITION 37. The second order divided difference of a function ¢ : [a,b)
— R at mutually different points yo,y1,y2 € [a,b] is defined recursively by

_ Syir) =)
- Yi+1—Yi » U= 0’ 1

Wi, Yiv1; O]

C 1 1,020 —[yo,y1:9)
(31) [y07y17y27¢] - %
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REMARK 38. The value [yo,y1,¥2; @] is independent of the order of the
points g, y1, and y». By taking limits this definition may be extended to
include the cases in which any two or all three points coincide as follows:

Y0, Y1, Y2 € [a, b]

lim [yo, Y1, Y2; (;5] = [yo’ Yo, Y2; d)] — f(yQ)_f(?ZO):‘ﬁ (%0)(92—1/0)
Y1—Yo Y2 yo)

) y27éyo

provided that ¢’ exists, and furthermore, taking the limits y; — 30,7 = 1,2 in

, we get

[y07y07y0§¢] = y_h_rgo[yo,yl,y%¢] = % for i =1,2
provided that gb” exists on [a,b]. 0

We use an idea from [5] to give an elegant method of producing an n-
exponentially convex functions and exponentially convex functions applying
the functionals ¥;(.,.,¢), j =1,...,9, on a given family with the same prop-
erty.

THEOREM 39. Let A = {¢; : t € J}, where J is an interval in R, be a
family of functions defined on an interval [a,b], such that the function t —
[Yo, Y1, Y2; Pt] is m-exponentially conver in the Jensen sense on J for every
three mutually different points yo,y1,y2 € [a,b]. Let V;(.,.,¢) (1 =1,2,...,9)
be linear functionals defined as in (19)—(27). Then t — V;(.,.,¢¢) is an n-
exponentially convex function in the Jensen sense on J. If the function t —
U;(.,.,¢) is continuous on J, then it is n-exponentially convex on J.

Proof. Fix 1 < j <9.
Let us define the function

n
W(y) = Z bkbld)tkl (y)a
k=1
where ty; = tk—;tl, tre Jbp e R, E=1,2,...,n.
Since the function ¢ — [yo, Y1, y2; ¢¢] is n-exponentially convex in the Jensen
sense, we have

n
o, y1, y23w] = Y babilyo, y1, y2: ér,,] > 0,
k=1

which implies that w is a convex function on [a,b] and therefore we have
U;(.,.,w)>0;5=1,2,...,9. Hence

Z bkbl\l}j('? * ¢tkz) > 0.

k=1

We conclude that the function ¢ — W;(.,.,¢;) is an n-exponentially convex
function in the Jensen sense on J.
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If the function ¢ — V,(.,., ¢¢) is continuous on J, then it is n-exponentially
convex on J by definition. O

As a consequence of the above theorem we can give the following corollary.

COROLLARY 40. Let A = {¢; : t € J}, where J is an interval in R, be a
family of functions defined on an interval [a,b], such that the function t —
[Y0, Y1, Y2; Pt] is exponentially convex in the Jensen sense on J for every three
mutually different points yo,y1,y2 € [a,b]. Let V;(.,.,¢¢) (j = 1,2,...,9) be
linear functionals defined as in —(27). Thent — W;(.,., ¢;) is an exponen-
tially convex function in the Jensen sense on J. If the functiont — W;(.,., ¢;)
is continuous on J, then it is exponentially convexr on J.

COROLLARY 41. Let A = {¢; : t € J}, where J is an interval in R, be
a family of functions defined on an interval [a,b], such that the function t —
[Yo, Y1, Y2; Pi] is 2-exponentially convex in the Jensen sense on J for every three
mutually different points yo,y1,y2 € [a,b]. Let V;(.,.,¢¢) (j = 1,2,...,9) be
linear functionals defined as in 7(27). Then the following statements hold:
(i) If the functiont — W;(.,., ¢¢) is continuous on J, then it is 2-exponentially
convex on J, and thus log conver on J.
(ii) If the function t — V;(.,., @) is strictly positive and differentiable on J,
then for every s,t,u,v € J, such that s < u and t < v, we have

(32) 5837t(.,.,\11j,A) < %u,v(-,-,‘l’j,/\)
where
1
U;i(,,0s) ) s—t
) S , s#t,
(33) %i,t(A) = %S,t(-’ ) \I/jv A) = (‘1/](.7.,5?))

—U.(.,.,Ps
e (355 ) =,
jb7)¢$7¢% € A.

Proof. (i) See Remark |36/ and Theorem
(ii) From the definition of convex function ¢, we have the following in-
equality [11} p.2]
(34) B(s) = d(t) ~ ¢w) —o(v)

s—t u—v ’

Vs, t,u,v € J such that s <wu, t <w, s #t, u#w.
Since by (i), ¥,(.,., ¢s) is log-convex, so set ¢(z) = InV¥;(.,., ¢;) in
we have

(35) In \I[J(7=¢S) —In \p](=7¢i) < In lI]j('rv(bU)_ln \II](77¢‘U)

s—t u—v

for s <wu, t <w, s #t, u# v, which equivalent to . The cases for
s =t, u = v follow from by taking limit.
O

REMARK 42. In [I] authors gave related results for the Jensen Mercer in-
equality. O



16 On the refinements of Jensen-Mercer’s inequality 7

6. EXAMPLES

In this section we will vary on choice of family of functions in order to
give some examples of exponentially convex functions and to construct some
means in the same way as given in [5] and [10]. For simplicity we assume

that J(a, X,w) =37 a; — > 7" ZZ L wizi;. Let ¢ be any function, ¢t € J
where J is an interval in R we apply the conditions:

Jim A(¢r) = A(Jim 60).

t—to

lim A(d)t-}—Ai)t*A@)t) —A <}E§t ¢t+2tt¢t> ‘

EXAMPLE 43. Let
A ={¢:R—1[0,00): t € R}
be the family of functions defined by
LetT  t£0,

t2

Y(x) =

%mQ, t= 0.

Since, ¥¢(z) is a convex function on R and ¢ (x) is exponentially convex

function [5], using analogous arguing as in the proof of Theorems [39| we have

that t — [yo, Y1, y2; ¥¢] is exponentially convex (and so exponentially convex in

the Jensen sense). Using Corollary 40| we conclude that ¢ — W;(.,.,1); j =
.,9 are exponentially convex in the Jensen sense. It is easy to see that

these mappings are continuous, so they are exponentially convex.

Assume that t — U;(.,.,¢) > 0 (j = 1,2,...,9). By using this family of

convex functions in for j =1,2,...,9, we obtain the following means:
1 ( 9 71/15)
*(1 (W)(,,wn> sEL
J U, (sesidahs 2 _
L=y 3y~ s=t#0,
5 (-1d-0) s —1—
3W;(-yth0) -

In particular for 57 = 6 we have

t2 Z e aj Z Z w; eSlij 765‘](8 X,w)
re, = %tln ( — — ) , s FEt; s, t#0,
’ : (0, T Sy T )

s — Sy ae™ T S = wizize’"ii —J(a, X w)es/ (2. Xw) -2 5 #0

S,8 - Z T, eea] _Z Z ", w; 6990” _esJ(a,X,w) s Y
6 _ 111,1( (Z et 20 i 1weswijeSJ(aXW))> s#0

s,0 — & 3 y

s SQ(ZJ 1 J =0 I wa 7J2(an))
™Lad— Z;L lwlac”—J?’(an)

1A — j=1%
0,0 3 1a]—z i wird -T2 (a,X,w))
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Since Fst =In %it(Al) (j=1,2,...,9), s0 by these means are monotonic.
O

EXAMPLE 44. Let
Ay ={pt:(0,00) > R:t € R}
be the family of functions defined by

zt
m7 t #0717
pi(zr) = —Inz, t=0,

rlnzx, t=1.

Since p¢(x) is a convex function for z € R* and ¢t — ¢}/ (x) is exponentially
convex, so by the same arguments given in previous example we conclude that
(.. ,(pt) j =1,...,9 are exponentially convex. We assume that [a,b] C RT
and Ui, 00) > 0(] =1,...,9). By using this family of convex functions in
for i=1,2,...,9 we have the following means:

1
f, o ] e (3 - eRs) s=tr o
) exp 1—%) s—1=0,
exp _1—%%%%§), s=t=1.

In particular for 7 = 6 we have
1

f&z(ml)ZJlj Zlsz@Xm>kﬂs#us¢#aL

s(s—1) ity al —Z LS wat —Jt(a,X,w)

6 _
FS’S = &Xp <s}s—2f)

27 1Inajaj —Z Zl lwllnx”:r” In J(a,X,w)J*(a,X,w)
T S wiat, (@ X W)

1
fG _ J 1a]_ ;n_ll Zz 11Uz$5 —JS(aXW) s 5 # 0
50 7\ s(1-s) >t na; =370 Z " wilnzgj—In J(a,X,w) ) )

>,$750,1,

1
76 _ e S S ity (X w Ts40
s,1 s(s=1) 327 ajlna;— Z E * L wizij Inzg;—J(a,X,w)In J(a,X,w) ’
f‘ﬁ — ex 1_ Zj:l In? aj_ijl S w;In? z;;—1n? J(a,X,w)
0,0 = €XP 2T Iy — 37 Sy wi Iy —In J (a,X,w))
6 — ex 7172] 10,]111 a;—> 0 Zl L wizij In? 25— J(a,X,w) In? J(a,X,w)
L1 p 2( ajlna; =377 T wimsg Inag;—J(a,X,w) In J(a,X,w))

Since F]t = B/ +(A2) (G =1,2,...,9), so by these means are monotonic.
O

] 1
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ExXaMPLE 45. Let

Az ={6; : (0,00) — (0,00) : t € (0,00)}

be the family of functions defined by

e—oVit
Oy (x) = <.

Since t — %Gt(:p) =e oV ig exponentially convex, being the Laplace trans-
form of a non-negative function [5], so by same argument given in Example
we conclude that ¥;(.,.,6;); j=1,...,9 are exponentially convex. We assume
that [a,b] € R" and ¥,(.,.,0;) > 0(j = 1,...,9). For this family of convex
functions B ;(Az) (j =1,2,...,9) from become

1
] qjj('vﬂs) s—t
%it(Avg) - (\I]](vvet)> " S # t’
P 2V/s(V;(,,05) )’ .

In particular for j = 6 we have

1

D (A )_ i 2jm eiaj\/g_z:;nz_ll i1 wie i VE _e=J(@XwW)VE\ 51 "

st 3) — S'Zm e—ajﬂiszl Zn w_e—wij\/zie—J(a,X,w)\/z 78# ’

j=1 j=1 i=1 Wi

6
SBs,s(‘/\3> =
o [ L T @Y R L wiage TV (@ Xow)e @XWVE

P 2vs 2 eiaj\/g_z;n:_ll 2oit wie Tii Ve _e—J(a, X, w)\/s s )
Monotonicity of B7 ,(A3) follows from (32)). By (30
y s,t y
Dy =—(s+vt)lnB,(As) (j=1.2,..,9)

defines a class of means. O

EXAMPLE 46. Let
Ay = {¢t : (0,00) — (0,00) ite (0,00)}
be the family of functions defined by

bu(z) = { (lgta;z, t#1,

2 =1

Since j—;@(x) =% = e ®nt 5 0, for > 0, so by same argument given in
Example 43| we conclude that t — W;(.,.,¢¢); j = 1,...,9 are exponentially
convex. We assume that [a,b] C RT and ¥,(.,.,¢;) > 0(j = 1,...,9). For this
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family of convex functions ‘Bg7t(A4) (j=1,2,...,9) from become

1
\II'('7'7¢S) ;
) (w;(.7.,¢t))( » s7t
= v ~a~77;d~¢s 2 —
By 1 (Ag) exp | — S{I,j(_r%) — slns), s=t#1,

1 '(.,.,id.d)l)
XD\ 370, (dr) )

In particular for 7 = 6 we have
1
6 _ [(nt)? Xjtys” i 11 S wis” i —s 7T (@Xow) | 5=t
%S,t(AZL) - <( Ins ) Zm,zl 19 7ZJ Z ', wit ™ Tij _4—J(a,X,w) S # t?

%6 (A ) = 12521 458 sz DI lwx” “Tij — J(a,X,w)s— 7 (@:Xw)
A B 2 18_“J—Z Z L wgs T —s— I (@, X,w)

slns) 8 7& 1

1

6 2( 187(13—2 Zl lwls 1ij_s—J(aXW)) E
Ay) = .

Boalha) <<lns> [zg 145 TS P X ’

=1
Doy (A ) _ 271 ' Zz 1w21' 3 —J3(a,X,w)
LIV 5 T a2 Y wird —J% (8 X, w)

Monotonicity of 87 +(A4) follows from . By
[, =—L(s,t)In B (A1) (5 =1,2,...,9)

defines a class of means, where L(s,t) is Logarithmic mean defined as:

—1
L(S,t) — { lnz—lnt’ S ?é 6

s, s=t.
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