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A CLASS OF NUMERICAL METHODS FOR AUTONOMOUS INITIAL

VALUE PROBLEMS
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Abstract. In this paper we introduce a class of explicit numerical methods
for approximating the solutions of scalar initial value problems for first order
differential equations, using a nonlinear interpolation formula. We show that
the methods generated in this way can be identified as explicit Runge-Kutta
methods and we analyze some particular cases. Finally, numerical examples are
provided.
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1. INTRODUCTION

Consider a scalar initial value problem (IVP):

(1)

{
y′ = f(x, y), x ∈ I
y(x0) = y0,

where: I ⊆ R, y0 ∈ R, f : I × R → R and x0 ∈ I. We assume that
I = [x0, x0 + T ], 0 < T < ∞ and the function f satisfies all requirements
necessary to insure the existence of a unique solution y on the bounded interval
I, see [1], [2] for details.

In this paper we present a numerical method to approximate the solution of
IVP (1) using a particular case of a nonlinear interpolation formula analyzed
in [5] and [7]. Another particular case was utilized in [4].

For a 5-times differentiable function h : I → R consider the function g :
I → R given by

(2) g(x) = h(x0)+ 1
2(x−x0)[h′(x0+α1(x−x0))+h′(x0+α2(x−x0))], x ∈ I,

where α1 = 3−
√

3
6 and α2 = 3+

√
3

6 .
It is showed in [5] that the function g verifies

(3) h(i)(x0) = g(i)(x0), i = 0, 4 and |h(x)− g(x)| ≤ 71
4320M5|x− x0|5, x ∈ I,
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where M5 = sup
x∈I
|h(5)(x)|. Also, we observe that the coefficients α1, α2 satisfy

the equalities

(4)

{
α1 + α2 = 1, α2

1 + α2
2 = 2

3 ,

α3
1 + α3

2 = 1
2 , α4

1 + α4
2 = 7

18 .

In the next sections, for simplicity, we consider only the autonomous case, i.e.
f = f(y). The general case can be treated using similar arguments.

The paper is structured as follows. In Section 2 we derive the numerical
method and in Section 3 we analyze its versions corresponding to the particular
cases of the parameter. In Section 4 numerical examples are provided to
exemplify the results obtained in the previous sections.

2. THE NUMERICAL METHOD

The interval I = [x0, x0 +T ] is partitioned by the point set {xn|n = 0, N,N ∈
N}, where xn are given by a prescribed rule, and we denote by yn a numerical
approximation to the exact solution y of (1) at xn.

We suppose that the exact solution y of initial value problem (1) is 5-times
differentiable at least. Conditions for regularity of exact solution of an initial
value problem can be found in [2].
Using the results presented above we deduce that there exists an approxima-
tion ỹ of y given by

ỹ(x) = y(x0) + 1
2(x− x0)[y′(x0 + α1(x− x0)) + y′(x0 + α2(x− x0))]

= y(x0) + 1
2(x− x0)[f(y(x0 + α1(x− x0))) + f(y(x0 + α2(x− x0)))],(5)

for all x ∈ I. From (3) we deduce that this approximation verifies

ỹ(i)(x0) = y(i)(x0), i = 0, 4 and |ỹ(x)− y(x)| < 71
4320M5|x− x0|5, x ∈ I,

where M5 = sup
x∈I
|y(5)(x)|.

The unknown quantities y(x0 +αi(x− x0)), i = 1, 2, in (5) can be approxi-
mated in the same manner and we continue this approximation procedure for
the next unknown values y(x0 + αp1α

q
2(x− x0)), p, q = 1, 2, . . . .

Using the notation

urs(x) = y(x0 + αr1α
s
2(x− x0))

the algorithm described above can be written for the firsts p steps in the
following compact form

u00(x) = y(x0) + 1
2(x− x0)[f(u10(x)) + f(u01(x))](6)

ui−jj(x) = y(x0) + 1
2α

i−j
1 αj2(x− x0)[f(ui−j+1j(x)) + f(ui−jj+1(x))]

j = 0, . . . , i, i = 1, . . . , p

and we can define ỹ(x) = u00(x), x ∈ I.
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Taking into account that

1
2α

p−j
1 αj2(x− x0)→ 0, j = 0, p, as p→∞,

we can choose p = p0 such that y(x0) approximates up00, up0−10, . . . , u0p0 with
any given accuracy, since y is a continuous function. From (6) we obtain

ũ00(x) = y(x0) + 1
2(x− x0)[f(ũ10(x)) + f(ũ01(x))](7)

ũi−jj(x) = y(x0) + 1
2α

i−j
1 αj2(x− x0)[f(ũi−j+1j(x)) + f(ũi−jj+1(x))]

j = 0, . . . , i, i = 1 . . . , p0 − 1

ũp0−jj(x) = y(x0), j = 0, . . . , p0.

We use this recurrence relation to construct a numerical method for the scalar
initial value problem (1). Replacing x by x1 in (7) we obtain an approximation
ũ00(x1) for the exact value y(x1). We denote this approximation by y1 and we
apply again the algorithm (7) for x2, but, instead of y(x0) = y0, we consider
the value y1 previously computed. We repeat this procedure for each xn,
n = 1, N .

Using the notation

unqr = yn + 1
2α

q
1α

r
2hn[f(unq+1r) + f(unqr+1)],

the above algorithm can be written in the following way

yn+1 = yn + 1
2hn[f(un10) + f(un01)](8)

uni−jj = yn + 1
2α

i−j
1 αj2hn[f(uni−j+1j) + f(uni−jj+1)]

j = 0, i, i = 1, p0 − 1,

unp0−jj = yn, j = 0, p0

where hn = xn+1 − xn, n = 0, N − 1.
For p0 = 1 we obtain the Euler forward method given by

(9) yn+1 = yn + hnf(yn), n = 1, N − 1.

We have the following equivalence result.

Theorem 1. The method (8) can be identified as an p0(p0+1)
2 –stages explicit

Runge-Kutta method with the Butcher array given by

c = [0, αp0−1
1 , αp0−2

1 α2, . . . , α
p0−1
2 , . . . , αp0−j1 , αp0−j−1

1 α2, . . . , α
p0−j
2 , . . . , α1, α2]T ,

bT = [0, 0, . . . , 0, 1
2 ,

1
2 ]

A =



Bp0−1
. . .

. . . Bp0−2
. . . ©

. . . Bp0−3
. . .

© . . .
. . .

. . .
. . . B1
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where

Bp0−1 =


0

αp0−1
1

αp0−2
1 α2 ©
. . .

αp0−1
2

 ,

Bp0−j =


α
p0−j
1
2

α
p0−j
1
2

α
p0−j−1
1 α2

2
α
p0−j−1
1 α2

2 ©

© . . .
α
p0−j
2
2

α
p0−j
2
2

 , j = 2, p0 − 1.

Proof. We know that for a q-stages explicit Runge-Kutta method with the
Butcher array (see e.g. [1], [3])

c A

bT

the approximation for the new point xn+1 = xn + hn is given by

(10) yn+1 = yn + hn

q∑
i=1

biki,

where 
k1 = f(xn, yn),

ki = f(xn + cihn, yn + hn

i−1∑
j=1

aijkj), i = 2, q.

It easy to see that (10) provides for autonomous case and for the above Butcher
array a rule of the form (8), which concludes the proof. �

3. METHOD (??) WHEN p0 = 2, 3 AND 4

For p0 = 2 we obtain

(11) yn+1 = yn+1
2hn[f(yn+α1hnf(yn))+f(yn+α2hnf(yn))], n = 1, N − 1.

The method (11) can be written in a more suitable form

yn+1 = yn + 1
2hn[f(un10) + f(un01)],

un10 = yn + α1hnf(yn), un01 = yn + α2hnf(yn)

and can be identified as a 3–stages explicit Runge-Kutta method with the
Butcher array given by

0
α1 α1 0
α2 α2 0 0

0 1
2

1
2
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As in [6], we suppose that

(12) ‖f‖ < M and ‖f (j)‖ < Lj

Mj−1 ,

where ‖f‖ = sup{|f(t)| : t ∈ I } and M , L are positive real numbers.
The convergence order of the method (11) is provided in the following result.

Theorem 2. The method (11) has convergence order 2 and the coefficient
of principal local truncation error C3 has the following bound ‖C3‖ ≤ 1

6ML2.

Proof. Following [3], in order to obtain the local truncation error of the
method (11) we consider the operator

(13) L[z(x);h] = z(x+h)−z(x)−h
2 [f(z(x)+α1f(z(x)))+f(z(x)+α2f(z(x)))],

where z is an arbitrary function defined on I, sufficiently differentiable and
z′(x) = f(z(x)), for all x ∈ I.
Expanding in Taylor series with respect to x and using (4) we obtain

(14) L[z(x);h] = h3

6 [f ′(z(x))]2f(z(x)) +O(h4).

Then, using the definition for the convergence order given in [3] we deduce
that the method has second-order of accuracy. Also, substituting z by the
exact solution y, x by xn and supposing localizing assumption yi = y(xi),
i = 1, n the local truncation error can be written as

(15) Tn+1 = h3

6 [f ′(y(xn))]2f(y(xn)) +O(h4).

Moreover, the coefficient of principal local truncation error is given by

(16) C3 = 1
6 [f ′(y(xn))]2f(y(xn)).

Next, using (12) we have for C3 the following bound

‖C3‖ = 1
6‖(f

′)2f‖ ≤ 1
6‖f

′‖2‖f‖ ≤ 1
6ML2,

which concludes the proof. �

Following [2], for the Runge-Kutta methods in addition of the row-sum con-
dition, Ae = Ce, and consistency condition, bT e = 1, the sufficient conditions
for order 2 are given by

(17) bTCe = 1
2 bTAe = 1

2 ,

where e = [1, . . . , 1] and C = diag(c). A simple calculus shows that the method
(11) verifies conditions (17) and it represents a validation for (14).
The stability function and absolute stability region of the method (11) are
provided in the following result.

Theorem 3. The method (11) has the stability function given by

(18) R(z) = 1 + z + z2

2 , z ∈ C.
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Proof. Following [3], we apply the method (11) to the scalar test equation

y′ = λy, λ ∈ C, Reλ < 0,

and we obtain the difference equation

yn+1 = yn[1 + (λhn) + 1
2(α1 + α2)(λhn)2].

Denoting z = λhn and using (4) we obtain the stability function

R(z) = 1 + z + z2

2 .

Note that this function is the same as the stability function for 2 stages explicit
Runge-Kutta methods of order 2. �

The absolute stability region is given by

(19) R = {z ∈ C : |1 + z + 1
2z

2| < 1}

and it is plotted using scanning technique in Figure 1. The computations have
been carried out using Matlab software.
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Fig. 1. Absolute stability regions for method (8) when p0 = 2, 3, 4.
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For p0 = 3 we obtain the method

yn+1 = yn + 1
2hn[f(un10) + f(un01)](20)

un10 = yn + 1
2α1hn[f(un20) + f(un11)]

un01 = yn + 1
2α2hn[f(un11) + f(un02)]

un2−jj = yn + α2−j
1 αj2hnf(yn), j = 0, 2

which can be identified as a 6–stages explicit Runge-Kutta method with the
Butcher array given by

0
α2

1 α2
1 0

α1α2 α1α2 0 0
α2

2 α2
2 0 0 0

α1 0 α1
2

α1
2 0 0

α2 0 0 α2
2

α2
2 0 0

0 0 0 0 1
2

1
2

The convergence order of the method (20) is provided in the following result.

Theorem 4. The method (20) has convergence order 3 and the coefficient of
the principal local truncation error C4 has the following bound ‖C4‖ ≤ 1

24ML3.

Proof. Using (4) and similar arguments to those presented in the proof of
Theorem 2 we obtain

(21) L[z(x);h] = h4

24 [f ′(z(x))]3f(z(x)) +O(h5).

Therefore we deduce that this method has convergence order 3. Also, we can
determine the local truncation error as

(22) Tn+1 = h4

24 [f ′(y(xn))]3f(y(xn)) +O(h5)

and the coefficient of principal local truncation error is given by

C4 = 1
24 [f ′(y(xn))]3f(y(xn)).

Using (12) we obtain ‖C4‖ < 1
24ML3, which concludes the proof. �

A simple calculus shows that the method (20) verifies the sufficient condi-
tions for order 3, see [2] for details,

(23) bTCe = 1
2 , bTC2e = 1

3 , bTACe = 1
6

and it represents a validation for (21).

Theorem 5. The method (20) has the stability function given by

(24) R(z) = 1 + z + z2

2 + z3

6 , z ∈ C.

Proof. Using similar arguments as in the proof of Theorem 3. �
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We observe that method (20) has the same stability function as 3 stages
explicit Runge-Kutta methods of order 3. The absolute stability region defined
by

(25) R = {z ∈ C : |1 + z + 1
2z

2 + 1
6z

3| < 1}

is plotted in Figure 1.
For p0 = 4 we obtain the method

yn+1 = yn + 1
2hn[f(un10) + f(un01)](26)

uni−jj = yn + 1
2α

i−j
1 αj2hn[f(uni−j+1j) + f(uni−jj+1)]

j = 0, i, i = 1, 2,

un3−jj = yn + α3−j
1 αj2hnf(yn) j = 0, 3

and can be identified as a 10–stages explicit Runge-Kutta method with the
Butcher array given by

0 0
α3

1 α3
1 0

α2
1α2 α2

1α2 0 0
α1α

2
2 α1α

2
2 0 0 0

α3
2 α3

2 0 0 0 0

α2
1 0

α2
1

2
α2
1

2 0 0 0
α1α2 0 0 α1α2

2
α1α2

2 0 0 0

α2
2 0 0 0

α2
2

2
α2
2

2 0 0 0
α1 0 0 0 0 0 α1

2
α1
2 0 0

α2 0 0 0 0 0 0 α2
2

α2
2 0 0

0 0 0 0 0 0 0 0 1
2

1
2

Using (4) and similar arguments to those used above we deduce that the
method (26) has convergence order 4. The stability function is given by

(27) R(z) = 1 + z + z2

2 + z3

6 + z4

24

and we observe that it is the same as stability function for 4 stages explicit
Runge-Kutta methods of order 4. The absolute stability region defined by

(28) R = {z ∈ C : |1 + z + 1
2z

2 + 1
6z

3 + 1
24z

4| < 1}

is plotted in Figure 1.
We restrict ourselves to the cases when p0 takes the values 2, 3 and 4.

For p0 ≥ 5 methods obtain from (8) have a form much more complicated
with a high cost of calculus and the results concerning accuracy are not so
outstanding. From the next theorem we deduce that the convergence order is
not grater than 4.

Theorem 6. For p0 ≥ 5 the method (8) has maximal convergence order 4.
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Proof. Following [3], we consider the operator

L[z(x), h] = z(x+ h)− z(x)− h
2 [f(z(x+ α1h)) + f(z(x+ α2h))]

= z(x+ h)− z(x)− h
2 [z′(x+ α1h) + z′(x+ α2h)],

where z is an arbitrary function defined on I, 5-times differentiable at least
and z′(x) = f(z(x)), for all x ∈ I.

Next, using Taylor series with respect to x and (4) we obtain

L[z(x), h] = h5( 1
120 −

1
48

7
18)z(5)(x) +O(h6).

Then, from the definition of convergence order given in [3] we deduce that
for p0 ≥ 5 method (8) has convergence order 4, which concludes the proof. �

Note that the method (8) is a zero-stable method because it verifies root-
condition. Also, since the convergence order is grater than 2 for all p0 ≥ 2 we
conclude that it satisfies the consistency condition. It follows that our method
represents a convergent method, see [3] for details.

4. NUMERICAL EXAMPLES

We consider the initial value problems.

Example 7.

(29)

{
y′(x) = cos2(y(x)), x ∈ [0, 20]

y(0) = 0.

The exact solution is y : [0, 20]→ R given by y(x) = arctan(x). �

Example 8.

(30)

{
y′(x) = y(x)

4 (1− y(x)
20 ), x ∈ [0, 20]

y(0) = 1.

The exact solution is y : [0, 20]→ R given by

y(x) = 20
1+19 exp(−x/4) . �

We apply the methods (11), (20) and (26) with constant steplength to
determine numerical solutions for the above examples.
As a measure of the performance we consider the errors obtained as the max-
imum of the absolute errors on the mesh points xn = nh, n = 0, N

Emax = max{|y(xn)− yn| : n = 0, 1, . . . , N},
for different values of step h.

In the next tables we present results given by the proposed methods (11),
(20) (26) in comparison with results given by Adams-Bashforth methods of
orders 2, 3, 4 defined by

A−B(2) : yn+1 − yn = h
2 (3fn − fn−1),

A−B(3) : yn+1 − yn = h
12(23fn − 16fn−1 + 5fn−2),
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A−B(4) : yn+1 − yn = h
24(55fn − 59fn−1 + 37fn−2 − 9fn−3).

Also, we present results given by the explicit Runge-Kutta methods with
order equal with number of stages defined by the following Butcher arrays

0
1
2 0

0 1

0
1
2

1
2

1 −1 2
1
6

2
3

1
6

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

R−K(2) R−K(3) R−K(4)

h 1.0e− 01 1.0e− 02 1.0e− 03 1.0e− 04 1.0e− 05

(11) 5.755e− 04 5.415e− 06 5.381e− 08 5.378e− 10 5.377e− 12

A−B(2) 2.209e− 03 2.251e− 05 2.256e− 07 2.257e− 09 2.257e− 11

R−K(2) 5.755e− 04 5.415e− 06 5.381e− 08 5.378e− 10 5.377e− 12

(20) 1.333e− 05 1.244e− 08 1.235e− 11 1.254e− 14 2.464e− 14

A−B(3) 1.109e− 03 1.166e− 06 1.166e− 09 1.166e− 12 2.464e− 14

R−K(3) 2.028e− 05 2.077e− 08 2.082e− 11 1.976e− 14 2.486e− 14

(26) 2.202e− 07 2.050e− 11 2.886e− 15 1.110e− 14 2.464e− 14

A−B(4) 1.109e− 03 1.166e− 06 1.166e− 09 1.166e− 12 2.442e− 14

R−K(4) 5.357e− 07 5.337e− 11 5.884e− 15 1.132e− 14 2.486e− 14

Table 1. Emax for Example 7

h 1.0e− 01 1.0e− 02 1.0e− 03 1.0e− 04 1.0e− 05

(11) 5.878e− 04 5.952e− 06 5.959e− 08 5.960e− 10 5.929e− 12

A−B(2) 1.892e− 03 1.907e− 05 1.908e− 07 1.908e− 09 1.892e− 11

R−K(2) 4.805e− 04 4.861e− 06 4.867e− 08 4.866e− 10 4.757e− 12

(20) 2.725e− 06 2.764e− 09 2.744e− 12 4.192e− 13 6.359e− 13

A−B(3) 1.387e− 03 1.404e− 05 1.406e− 07 1.406e− 09 1.404e− 11

R−K(3) 4.048e− 06 4.083e− 09 4.137e− 12 4.209e− 13 6.359e− 13

(26) 9.951e− 09 9.912e− 13 6.750e− 14 4.192e− 13 6.359e− 13

A−B(4) 1.420e− 03 1.407e− 05 1.406e− 07 1.406e− 09 1.404e− 11

R−K(4) 1.779e− 08 1.788e− 12 6.750e− 14 4.192e− 13 6.323e− 13

Table 2. Emax for Example 8

We analyze the results and we can see that for the above examples the
proposed methods are at least comparable to the classical ones.

We observe that if length of the step decreases 10 times then the error
magnitude for methods (11), (20) and (26) decreases 102, 103 and 104 times,
respectively. These results represent a validation of the fact that the conver-
gence orders for the methods (11), (20) and (26) are 2, 3 and 4, respectively.

Because the method is explicit we indicate to be used especially for non-stiff
problems, where the requirements on the steplength imposed by stability are
no restrictive than the requirements imposed by accuracy, see [1] and [3] for



92 Flavius-Olimpiu Pătrulescu 11

more details. Also, we expect that the method (8) gives better results in the
case of a variable steplength.
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