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Abstract. We consider the problem of finding the optimal values α, β ∈ R for
which the inequality

αG(a, b) + (1− α)C(a, b) < L(a, b) < βG(a, b) + (1− β)C(a, b)

holds for all a, b > 0, a 6= b, where G(a, b), L(a, b) and C(a, b) are respectively
the geometric, logarithmic and anti-harmonic means of a and b.
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1. INTRODUCTION

Given a, b > 0, a 6= b, the geometric, logarithmic and anti-harmonic means
are defined by

G =
√
ab, L = b−a

ln b−ln a , C = a2+b2

a+b .

It is well-known that

(1) G < L < C.

In this paper we find the values of the parameters α, β ∈ R for which the
inequality

αG(a, b) + (1− α)C(a, b) < L(a, b) < βG(a, b) + (1− β)C(a, b)

holds for all positive numbers a 6= b.
Recently, results of this type have been obtained for various triplets of

means. Not being exhaustive, we mention Alzer and Qiu [1] for geometric,
exponential (identric) and arithmetic means, Xia and Chu [4] for harmonic,
logarithmic respectively identric and arithmetic means, and Chu et al. [3] for
harmonic, Seiffert and arithmetic means. Several theorems concerning three
means chosen from

(2) H < G < L < I < A < Q < S < C
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are proved in [2]. For those means Symbolic Algebra Program Maple was
used to find the interval where the parameters α and β can vary, and then the
proofs were given.

We can use Maple also to understand the expected degree of difficulty of
the proof. Doing so, we found that the problem involving the means G, L and
C is among the more difficult ones.

2. MAIN RESULT

Theorem 1. The inequality

(3) αG(a, b) + (1− α)C(a, b) < L(a, b) < βG(a, b) + (1− β)C(a, b)

holds for all positive numbers a 6= b if and only if α ≥ 1 and β < β0, where
β0 = g(x0) = 0.87002762..., with x0 the unique root of (7) which is greater
than 1, and with g defined in (6).

Proof. The double inequality (3) is equivalent to

(4) β < C(a,b)−L(a,b)
C(a,b)−G(a,b) < α.

Without loss of generality, we can consider 0 < a < b. Denoting by t = b/a,
t > 1, due to the homogeneity of the means, the problem reduces to find inf f
and sup f , where

(5) f(t) = C(1,t)−L(1,t)
C(1,t)−G(1,t) =

(t2+1) ln t−t2+1

(
√
t−1)

2
(t+
√
t+1) ln t

.

The function f is obviously bounded, 0 ≤ f(t) ≤ 1. We shall find inf f and
sup f for t > 1.

Define

(6) g(x) = f(x2) =
2(x4+1) lnx−x4+1

2(x−1)2(x2+x+1) lnx
, x > 1.

In order to find inf f = inf g and sup f = sup g we shall show first that

(*) g′ has a unique root in (1,∞).

Suppose for a moment that this is true and denote by x0 this root. We have
limx→1 g(x) = 8/9, limx→∞ g(x) = 1, g(7) = 0.87003995... < 8/9. It follows
that g has a minimal point in (1,∞), so this point must be x0. Furthermore,
g must be monotonic in (1, x0) and (x0,∞) and so β0 = inf g = g(x0), sup g =
max(1, 8/9) = 1.

So, it remains to prove (*).
The derivative of g is given by

g′(x) = h(x)

2x(x−1)3(x2+x+1)2(lnx)2
,
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where

(7)
h(x) = −2x (x+ 1)

(
x4 + 4x2 + 1

)
(lnx)2

+x (x− 1)
(
x4 + 2x3 + 6x2 + 2x+ 1

)
lnx

+ (x+ 1)
(
x2 + x+ 1

) (
x2 + 1

)
(x− 1)2 .

The equation g′(x) = 0 is equivalent to h(x) = 0, hence to

(8) lnx− (x5+2x4+6x3+2x2+x+
√
p)(x−1)

4x(x5+x4+4x3+4x2+x+1)
= 0,

where

(9)
p = 8x11 + 25x10 + 76x9 + 160x8 + 236x7 + 286x6

+236x5 + 160x4 + 76x3 + 25x2 + 8x.

We have considered in (8) the positive root of the quadratic in lnx equation
h(x) = 0. Let us denote the left hand side of (8) by k(x).

We have to show that k has a unique root in (1,∞). To this aim we compute
k′(x). The Computer Algebra System Maple will help us to do and organize
the computations.

We are interested in the numerator of k′(x) expressed in terms of d =
√
p,

where p is the polynomial given in (9), i.e.
> p:=8*x^11+25*x^10+76*x^9+160*x^8+236*x^7+286*x^6+236*x^5

+160*x^4+76*x^3+25*x^2+8*x;

The numerator of k′(x) is given by
> numer(normal(subs(p=d^2, normal(diff(k(x),x)))))

assuming d > 0:

> ndk := collect(%,d);

ndk :=
(
9x2 + 10x3 + 20x4 + 2x+ 2x9 + 20x6 + 9x8 + 10x7 + x10 + 24x5

+1) d− 1− 4x− 658x8 − 306x5 − 586x7 − 478x6 − 478x10 − 586x9

− 306x11−154x12−64x13−64x3−22x2−154x4−x16−22x14−4x15

Therefore the numerator ndk of k′(x) is of the form p1d+p0 (p0 and p1 being
polynomials) and a root of k′(x) must be a root of the polynomial p2

1p− p2
0.

We can factorize this polynomial using Maple:
> p0:= coeff(ndk,d,0):

> p1:= coeff(ndk,d,1):

> factor(p1^2*p-p0^2);

− (x− 1)4 (x+ 1)4 (x2 + 1
)2 (

x2 + x+ 1
) (
x4 + 4x2 + 1

)2(
x10 − x9 − 3x8 − 44x7 − 94x6 − 150x5 − 94x4 − 44x3 − 3x2 − x+ 1

)
It follows that any root of k′(x) in (1,∞) must be a root of the 10th degree
polynomial

P = x10 − x9 − 3x8 − 44x7 − 94x6 − 150x5 − 94x4 − 44x3 − 3x2 − x+ 1.
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But the polynomial P has a unique root in (1,∞). This can be verified using
the Sturm sequence.

Indeed, Maple gives:
> sturm(P,x,0,infinity);

1

We conclude that k′ has a unique root r ∈ (1,∞); actually r ∈ (4, 5) because
k′(4) > 0, k′(5) < 0. So, k′ > 0 in (1, r) and k′ < 0 in (r,∞). Since k(1) = 0
and limx→∞ k(x) = −∞ it follows that k has a unique root in (1,∞), actually
in (r,∞). So, we have proved (*).

The unique solution x0 of g′(x) = 0 can be easily approximated by using
the command
> Digits:=30:

> x0:=fsolve(h(x),x=4..infinity);

x0 := 7.27177296398582281915348781959

giving g(x0) = 0.87002762.... �
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