SOME GENERAL KANTOROVICH TYPE OPERATORS

PETRU I. BRAICA* and OVIDIU T. POP ${ }^{\dagger}$

Abstract

A general class of linear and positive operators of Kantorovich-type is constructed. The operators of this type which preserve exactly two test functions from the set $\left\{e_{0}, e_{1}, e_{2}\right\}$ are determined and their approximation properties and convergence theorems are studied.

MSC 2000. 41A10, 41A35, 41A36.
Keywords. Kantorovich operators, approximation and convergence theorem, Voronovskaja-type theorem.

1. INTRODUCTION

Let \mathbb{N} be the set of positive integers and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. In 1930, L. V. Kantorovich in [3] introduced the linear and positive operators $K_{m}: L_{1}([0,1]) \rightarrow$ $C([0,1]), m \in \mathbb{N}_{0}$, defined for any $f \in L_{1}([0,1]), x \in[0,1]$ and $m \in \mathbb{N}_{0}$ by

$$
\begin{equation*}
\left(K_{m} f\right)(x)=(m+1) \sum_{k=0}^{m}\binom{m}{k} x^{k}(1-x)^{m-k} \int_{\frac{k}{m+1}}^{\frac{k+1}{m+1}} f(t) \mathrm{d} t . \tag{1}
\end{equation*}
$$

The operators from (11) are called Kantorovich operators. We remark that these operators preserve only the test function e_{0}.

The aim of this paper is to construct and study a general class of linear positive operators which preserve exactly two test functions from the set $\left\{e_{0}, e_{1}, e_{2}\right\}$.

In [4], J. P. King introduced and studied a Bernstein type operator, which preserves only the test functions e_{0} and e_{2}. Therefore, we say that the operators constructed in this paper are operators of King's type.

In Section 2, we recall some results from [6], which we use for obtaining the main results of this paper.

In Section 3, respectively 4, we determine the unique operators from Section 2 , which preserve exactly the test functions e_{0} and e_{1}, respectively e_{0} and e_{2}. In the Sections 4 and 5, we give approximation, convergence and Voronovskaja's type theorems for the operators obtained.

[^0]
2. PRELIMINARIES

Let \mathbb{N} be the set of positive integers and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. In this section we recall some results from [8], which we shall use in the present paper. Let I, J be real intervals with the property $I \cap J \neq \emptyset$. For any $m, k \in \mathbb{N}_{0}, m \neq 0$, we consider the functions $\varphi_{m, k}: J \rightarrow \mathbb{R}$, with the property that $\varphi_{m, k}(x) \geq 0$, for any $x \in J$ and the linear positive functionals $A_{m, k}: E(I) \rightarrow \mathbb{R}$.

For any $m \in \mathbb{N}$ we define the operator $L_{m}: E(I) \rightarrow F(J)$, by

$$
\begin{equation*}
\left(L_{m} f\right)(x)=\sum_{k=0}^{\infty} \varphi_{m, k}(x) A_{m, k}(f) \tag{2}
\end{equation*}
$$

for any $x \in J$, where $E(I)$ and $F(J)$ are linear subspaces of real valued functions defined on I, resp. J, for which the sequence $\left(L_{n}\right)_{n \geq 0}$ defined above is convergent (in the topology of $F(J)$).

REMARK 1. The operators $\left(L_{m}\right)_{m \in \mathbb{N}}$ are linear and positive on $E(I \cap J)$.
For $m \in \mathbb{N}$ and $i \in \mathbb{N}_{0}$, we define $\left(T_{m, i}\right)$ by

$$
\begin{equation*}
\left(T_{m, i} L_{m}\right)(x)=m^{i}\left(L_{m} \psi_{x}^{i}\right)(x)=m^{i} \sum_{k=0}^{\infty} \varphi_{m, k}(x) A_{m, k}\left(\psi_{x}^{i}\right) \tag{3}
\end{equation*}
$$

for any $x \in I \cap J, \psi_{x}^{i}(t)=(t-x)^{i}, t \in I$.
In that follows $s \in \mathbb{N}_{0}$ is even and we assume that the next two conditions:

- there exist the smallest $\alpha_{s}, \alpha_{s+2} \in[0,+\infty)$, so that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{\left(T_{m, j} L_{m}\right)(x)}{m^{\alpha_{j}}}=B_{j}(x) \in \mathbb{R} \tag{4}
\end{equation*}
$$

for any $x \in I \cap J$ and $j \in\{s, s+2\}$

$$
\begin{equation*}
\alpha_{s+2}<\alpha_{s}+2 \tag{5}
\end{equation*}
$$

- $I \cap J$ is an interval.

Theorem 2. (see [8]) Let $f \in E(I)$ be a function. If $x \in I \cap J$ and f is s times differentiable in a neighborhood of $x, f^{(s)}$ is continuous in x, then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} m^{s-\alpha_{s}}\left(\left(L_{m} f\right)(x)-\sum_{i=0}^{s} \frac{f^{(i)}(x)}{m^{i} i!}\left(T_{m, j} L_{m}\right)(x)\right)=0 \tag{6}
\end{equation*}
$$

Assume that f is s times differentiable on $I, f^{(s)}$ is continuous on I and there exists a compact interval $K \subset I \cap J$, such that there exists $m(s) \in \mathbb{N}$ and constant $k_{j} \in \mathbb{R}$ depending on K, so for $m \geq m(s)$ and $x \in K$ the following inequalities

$$
\begin{equation*}
\frac{\left(T_{m, j} L_{m}\right)(x)}{m^{\alpha_{j}}} \leq k_{j} \tag{7}
\end{equation*}
$$

hold for $j \in\{s, s+2\}$.
Then the convergence expressed by (6) is uniform on K and

$$
\begin{align*}
& m^{s-\alpha_{s}}\left|\left(L_{m} f\right)(x)-\sum_{i=0}^{s} \frac{f^{(i)}(x)}{m^{i} i!}\left(T_{m, i} L_{m}\right)(x)\right| \tag{8}\\
& \quad \leq \frac{1}{s!}\left(k_{s}+k_{s+2}\right) \omega\left(f^{(s)} ; \frac{1}{\sqrt{m^{2+\alpha_{s}-\alpha_{s+2}}}}\right)
\end{align*}
$$

for any $x \in K, m \geq m(s)$, where $\omega(f ; \cdot)$ denotes the modulus of continuity of the function f.

Corollary 3. Let $f: I \rightarrow \mathbb{R}$ be a s times differentiable function on $I \cap J$ with $f^{(s)}$ continuous on $I \cap J$. Then

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(L_{m} f\right)(x)=B_{0}(x) f(x) \tag{9}
\end{equation*}
$$

if $s=0$ and $\alpha_{0}=0$, where B_{0} is defined by (4). If $s \geq 2$, then
(10) $\lim _{m \rightarrow \infty} m^{s-\alpha_{s}}\left[\left(L_{m} f\right)(x)-\sum_{i=0}^{s-1} \frac{1}{m^{i} i!}\left(T_{m, i} L_{m}\right)(x) f^{(i)}(x)\right]=\frac{1}{s!} B_{s}(x) f^{(s)}(x)$,
where B_{s} are defined by (4).
If f is a s times differentiable function on $I \cap J$, with $f^{(s)}$ continuous and bounded on $I \cap J$ and (7) takes place for an interval $K \subset I \cap J$, then the convergence in (9) and (10) are uniform on K.

3. THE CONSTRUCTION OF A GENERAL LINEAR AND POSITIVE OPERATORS

Let $J \subset R$ be an interval, $m_{0} \in \mathbb{N}_{0}, m_{0} \geq 2$ given, $\mathbb{N}_{1}=\left\{m \in \mathbb{N} \mid m \geq m_{0}\right\}$, the function $\alpha_{m}, \beta_{m}: J \rightarrow \mathbb{R}, \alpha_{m}(x) \geq 0, \beta_{m}(x) \geq 0$ for any $x \in J$ and $m \in \mathbb{N}_{1}$.

Definition 4. For $m \in \mathbb{N}_{1}$, we define the operator of the following form

$$
\begin{equation*}
\left(K_{m}^{*} f\right)(x)=(m+1) \sum_{k=0}^{m}\binom{m}{k} \alpha_{m}^{k}(x) \beta_{m}^{m-k}(x) \int_{\frac{k}{m+1}}^{\frac{k+1}{m+1}} f(t) \mathrm{d} t \tag{11}
\end{equation*}
$$

for any $f \in L_{1}([0,1])$ and $x \in J$.
Lemma 5. The following identities

$$
\begin{gather*}
\left(K_{m}^{*} e_{0}\right)(x)=\left(\alpha_{m}(x)+\beta_{m}(x)\right)^{m} \tag{12}\\
\left(K_{m}^{*} e_{1}\right)(x)=\frac{\left(\alpha_{m}(x)+\beta_{m}(x)\right)^{m-1}}{2(m+1)}\left((2 m+1) \alpha_{m}(x)+\beta_{m}(x)\right) \tag{13}
\end{gather*}
$$

$$
\begin{align*}
\left(K_{m}^{*} e_{2}\right)(x)= & \frac{\left(\alpha_{m}(x)+\beta_{m}(x)\right)^{m-2}}{3(m+1)^{2}}\left(3 m(m-1) \alpha_{m}^{2}(x)\right. \tag{14}\\
& \left.+6 m \alpha_{m}(x)\left(\alpha_{m}(x)+\beta_{m}(x)\right)+\left(\alpha_{m}(x)+\beta_{m}(x)\right)^{2}\right),
\end{align*}
$$

hold, for any $x \in J$ and any $m \in \mathbb{N}_{1}$.

Proof. For $m \in \mathbb{N}_{1}$ and $k \in\{0,1, \ldots, m\}$ we have

$$
\begin{aligned}
& \int_{\frac{k}{m+1}}^{\frac{k+1}{m+1}} e_{0}(t) \mathrm{d} t=\frac{1}{m+1}, \quad \int_{\frac{k}{m+1}}^{\frac{k+1}{m+1}} e_{1}(t) \mathrm{d} t=\frac{2 k+1}{(m+1)^{2}} \\
& \text { and } \int_{\frac{k}{m+1}}^{\frac{k+1}{m+1}} e_{2}(t) \mathrm{d} t=\frac{3 k^{2}+3 k+1}{(m+1)^{3}} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\left(K_{m}^{*} e_{0}\right)(x) & =(m+1) \sum_{k=0}^{m}\binom{m}{k} \alpha_{m}^{k}(x) \beta_{m}^{m-k}(x) \int_{\frac{k}{k+1}}^{\frac{k+1}{m+1}} e_{0}(t) \mathrm{d} t \\
& =\sum_{k=0}^{m}\binom{m}{k} \alpha_{m}^{k}(x) \beta_{m}^{m-k}(x),
\end{aligned}
$$

so (12) holds;

$$
\begin{aligned}
\left(K_{m}^{*} e_{1}\right)(x)= & (m+1) \sum_{k=0}^{m}\binom{m}{k} \alpha_{m}^{k}(x) \beta_{m}^{m-k}(x) \int_{\frac{k}{m+1}}^{\frac{k+1}{m+1}} e_{1}(t) \mathrm{d} t \\
= & \frac{1}{2(m+1)}\left(2 m \alpha_{m}(x) \sum_{k=1}^{m}\binom{m-1}{k-1} \alpha_{m}^{k-1}(x) \beta_{m}^{m-k}(x)\right. \\
& \left.\quad+\sum_{k=0}^{m}\binom{m}{k} \alpha_{m}^{k}(x) \beta_{m}^{m-1}(x)\right),
\end{aligned}
$$

so (13) holds and

$$
\begin{gathered}
\left(K_{m}^{*} e_{2}\right)(x)=(m+1) \sum_{k=0}^{m}\binom{m}{k} \alpha_{m}^{k}(x) \beta_{m}^{m-k}(x) \int_{\frac{k}{m+1}}^{\frac{k+1}{m+1}} e_{2}(t) \mathrm{d} t \\
=\frac{1}{3(m+1)^{2}}\left(3 m(m+1) \alpha_{m}^{2}(x) \sum_{k=2}^{m}\binom{m-2}{k-2} \alpha_{m}^{k-2}(x) \beta_{m}^{m-k}(x)\right. \\
\left.+6 m \alpha_{m}(x) \sum_{k=1}^{m}\binom{m-1}{k-1} \alpha_{m}^{k-1}(x) \beta_{m}^{m-k}(x)+\sum_{k=0}^{m}\binom{m}{k} \alpha_{m}^{k}(x) \beta_{m}^{m-k}(x)\right),
\end{gathered}
$$

from where (14) follows.
Remark 6. In the following, we will use Theorem 2, where $I=[0,1]$,

$$
\begin{equation*}
\varphi_{m, k}(x)=(m+1)\binom{m}{k} \alpha_{m}^{k}(x) \beta_{m}^{m-k}(x) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{m, k}(x)=\int_{\frac{k}{m+1}}^{\frac{k+1}{m+1}} f(t) \mathrm{d} t \tag{16}
\end{equation*}
$$

for any $x \in J, f \in L_{1}([0,1]), m \in \mathbb{N}_{1}$ and $k \in\{0,1, \ldots, m\}$.

4. KANTOROVICH-TYPE OPERATORS PRESERVING THE TEST FUNCTIONS e_{0} AND e_{1}

In this case, we impose the conditions $\left(K_{m}^{*} e_{0}\right)(x)=e_{0}(x)$ and $\left(K_{m}^{*} e_{1}\right)(x)=$ $e_{1}(x)$, for any $x \in J$ and $m \in \mathbb{N}_{1}$. From the conditions above, taking (12) and (13) into account, we have

$$
\begin{aligned}
& \left(\alpha_{m}(x)+\beta(x)\right)^{m}=1 \text { and } \\
& \frac{\left(\alpha_{m}(x)+\beta_{m}(x)\right)^{m-1}}{2(m+1)}\left((2 m+1) \alpha_{m}(x)+\beta_{m}(x)\right)=x,
\end{aligned}
$$

from where

$$
\begin{gather*}
\alpha_{m}(x)=\frac{2(m+1) x-1}{2 m}, \tag{17}\\
\beta_{m}(x)=\frac{2 m+1-2(m+1) x}{2 m}, \tag{18}
\end{gather*}
$$

for any $x \in[0,1]$ and $m \in \mathbb{N}_{1}$.
From $\alpha_{m}(x) \geq 0$ and $\beta_{m}(x) \geq 0$, for any $m \in \mathbb{N}_{1}$, we have

$$
\begin{equation*}
\frac{1}{2(m+1)} \leq x \leq \frac{2 m+1}{2(m+1)} . \tag{19}
\end{equation*}
$$

Lemma 7. The following

$$
\begin{equation*}
\left[\frac{1}{2\left(m_{0}+1\right)} ; \frac{2 m_{0}+1}{2\left(m_{0}+1\right)}\right] \subset\left[\frac{1}{2(m+1)} ; \frac{2 m+1}{2(m+1)}\right] \subset[0,1] \tag{20}
\end{equation*}
$$

hold for any $m \in \mathbb{N}_{1}$.
Proof. Because the function $\frac{1}{2(m+1)}$ is decreasing and the function $\frac{2 m+1}{2(m+1)}$ is increasing, relation 20 follows.

Taking the remarks above, we construct the sequence of operators $\left(K_{1, m}^{*}\right)_{m \geq m_{0}}$.
Definition 8. If $m \in \mathbb{N}_{1}$, we define the operator

$$
\begin{equation*}
=\frac{m+1}{(2 m)^{m}} \sum_{k=0}^{m}\binom{m}{k}(2(m+1) x-1)^{k}(2 m+1-2(m+1) x)^{m-k} \int_{\frac{k}{m+1}}^{\frac{k+1}{m+1}} f(t) \mathrm{d} t \tag{21}
\end{equation*}
$$

for any $f \in L_{1}([0,1])$ and any $x \in\left[\frac{1}{2\left(m_{0}+1\right)} ; \frac{2 m_{0}+1}{2\left(m_{0}+1\right)}\right]$.
Remark 9. In this case, we note $J=\left[\frac{1}{2\left(m_{0}+1\right)} ; \frac{2 m_{0}+1}{2\left(m_{0}+1\right)}\right]=I_{\left(m_{0}\right)}^{(1)}$.
Lemma 10. We have

$$
\begin{align*}
& \left(K_{1, m}^{*} e_{0}\right)(x)=1, \tag{22}\\
& \left(K_{1, m}^{*} e_{1}\right)(x)=x \tag{23}
\end{align*}
$$

and

$$
\begin{equation*}
\left(K_{1, m}^{*} e_{2}\right)(x)=\frac{m-1}{m} x^{2}+\frac{1}{m} x-\frac{5 m+3}{12 m(m+1)^{2}} \tag{24}
\end{equation*}
$$

for any $x \in I_{\left(m_{0}\right)}^{(1)}$ and $m \in \mathbb{N}_{1}$.
Proof. Results immediately from the condition above and (14).
Lemma 11. The following identities

$$
\begin{align*}
& \left(T_{m, 0} K_{1, m}^{*}\right)(x)=1, \tag{25}\\
& \left(T_{m, 1} K_{1, m}^{*}\right)(x)=0 \tag{26}
\end{align*}
$$

and

$$
\begin{equation*}
\left(T_{m, 2} K_{1, m}^{*}\right)(x)=m x(1-x)-\frac{m(5 m+3)}{12(m+1)^{2}} \tag{27}
\end{equation*}
$$

hold, for any $x \in I_{\left(m_{0}\right)}^{(1)}$ and $m \in \mathbb{N}_{1}$
Proof. By using Lemma 10 and relation (3), we have

$$
\begin{aligned}
& \left(T_{m, 0} K_{1, m}^{*}\right)(x)=\left(K_{1, m}^{*} e_{0}\right)(x)=1, \\
& \left(T_{m, 1} K_{1, m}^{*}\right)(x)=m\left(K_{1, m}^{*} \psi_{x}\right)(x)=m\left(\left(K_{1, m}^{*} e_{1}\right)(x)-x\left(K_{1, m}^{*} e_{0}\right)(x)\right)=0
\end{aligned}
$$

and

$$
\left(T_{m, 2} K_{1, m}^{*}(x)=m^{2}\left(K_{1, m}^{*} \psi_{x}^{2}\right)(x)=m^{2}\left(\left(K_{1, m}^{*} e_{1}\right)(x)+x^{2}\left(K_{1, m}^{*} e_{0}\right)(x)\right),\right.
$$

from where 27) follows.
Lemma 12. We have that

$$
\begin{gather*}
\lim _{m \rightarrow \infty}\left(T_{m, 0} K_{1, m}^{*}\right)(x)=1, \tag{28}\\
\lim _{m \rightarrow \infty} \frac{\left(T_{m, 2} K_{1, m}^{*}\right)(x)}{m}=x(1-x) \tag{29}
\end{gather*}
$$

for any $x \in I_{\left(m_{0}\right)}^{(1)}$ and $m(0) \in \mathbb{N}$ exists such that

$$
\begin{equation*}
\frac{\left(T_{m, 2} K_{1, m}^{*}\right)(x)}{m} \leq \frac{5}{4} \tag{30}
\end{equation*}
$$

for any $x \in I_{\left(m_{0}\right)}^{(1)}$ and $m \in \mathbb{N}_{1}, m \geq m(0)$.
Proof. The relation (28) and (29) results taking (25) and (28) into account.
By using the definition of limit a function and because $x(1-x) \leq \frac{1}{4}$ for any $x \in[0,1]$, from (29) the inequality (30) is obtained.

Theorem 13. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function on $[0,1]$. Then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} K_{1, m}^{*} f=f \tag{31}
\end{equation*}
$$

uniformly on $I_{\left(m_{0}\right)}^{(1)}$ and there exists $m(0) \in \mathbb{N}_{1}$ such that

$$
\begin{equation*}
\left|\left(K_{1, m}^{*} f\right)(x)-f(x)\right| \leq \frac{9}{4} \omega\left(f ; \frac{1}{\sqrt{m}}\right) \tag{32}
\end{equation*}
$$

for any $x \in I_{\left(m_{0}\right)}^{(1)}$ and $m \in \mathbb{N}_{1}, m \geq m_{0}$.
Proof. We apply Theorem 2 and Corollary 3 for $s=0, \alpha_{0}=0, \alpha_{2}=1$, $k_{0}=1$ and $k_{2}=\frac{9}{4}$.

THEOREM 14. If $f \in C([0,1]), x \in I_{\left(m_{0}\right)}^{(1)}$, f is two times differentiable in neighborhood of x and $f^{(2)}$ is continuous on x, then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} m\left(\left(K_{1, m}^{*} f\right)(x)-f(x)\right)=\frac{1}{2} x(1-x) f^{(2)}(x) \tag{33}
\end{equation*}
$$

Proof. We use the results from Corollary 3 for $s=2$.

5. KANTOROVICH-TYPE OPERATORS PRESERVING THE TEST FUNCTIONS e_{0} AND e_{2}

In this section, we impose the conditions $\left(K_{m}^{*} e_{0}\right)(x)=e_{0}(x)$ and $\left(K_{m}^{*} e_{2}\right)(x)=e_{2}(x)$, for any $x \in J$ and $m \in \mathbb{N}_{1}$. Then, taking (12) and (14) into account, we have $\left(\alpha_{m}(x)+\beta_{m}(x)\right)^{m}=1$ and

$$
\begin{aligned}
& \frac{\left(\alpha_{m}(x)+\beta_{m}(x)\right)^{m-2}}{3(m+1)^{2}}\left(3 m(m-1) \alpha_{m}^{2}(x)+6 m \alpha_{m}(x)\left(\alpha_{m}(x)+\beta_{m}(x)\right)\right. \\
& \left.\quad+\left(\alpha_{m}(x)+\beta_{m}(x)\right)^{2}\right)=x^{2}
\end{aligned}
$$

from where

$$
\begin{equation*}
\alpha_{m}(x)+\beta_{m}(x)=1 \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
3 m(m-1) \alpha_{m}^{2}(x)+6 m \alpha_{m}(x)+1-3(m+1)^{2} x^{2}=0 \tag{35}
\end{equation*}
$$

The discriminant of the equation (35) is

$$
\Delta_{m}=12 m\left(2 m+1+3(m-1)(m+1)^{2} x^{2}\right) \geq 0
$$

for any $x \in J$ and any $m \in \mathbb{N}_{1}, m \geq 2$ and we note

$$
\begin{equation*}
\delta_{m}(x)=3 m\left(2 m+1+3(m-1)(m+1)^{2} x^{2}\right) \tag{36}
\end{equation*}
$$

$x \in J, m \in \mathbb{N}_{1}, m \geq 2$.
If $m \in \mathbb{N}_{1}, m \geq 2$, then for

$$
\begin{equation*}
x \geq \frac{1}{(m+1) \sqrt{3}} \tag{37}
\end{equation*}
$$

the inequality $\frac{1-3(m+1)^{2} x^{2}}{3 m(m-1)} \leq 0$ is true, so the equation from 35 has exactly one positive solution. This is

$$
\begin{equation*}
\alpha_{m}(x)=\frac{-3 m+\sqrt{\delta_{m}(x)}}{3 m(m-1)} \tag{38}
\end{equation*}
$$

and then

$$
\begin{equation*}
\beta_{m}(x)=\frac{3 m^{2}-\sqrt{\delta_{m}(x)}}{3 m(m-1)} \tag{39}
\end{equation*}
$$

where $x \in J$, and to satisfy (37), $m \in \mathbb{N}_{1}, m \geq 2$.
Lemma 15. Let $m \in \mathbb{N}_{1}, m \geq 2$. Then $\beta_{m}(x) \geq 0, x \geq 0$ if and only if

$$
\begin{equation*}
0 \leq x \leq \frac{\sqrt{3 m^{2}+3 m+1}}{(m+1) \sqrt{3}} . \tag{40}
\end{equation*}
$$

Proof. From $\beta_{m}(x) \geq 0$ we have $3 m^{2} \geq \sqrt{\delta_{m}(x)}$, equivalent after calculus to $x^{2} \leq \frac{3 m^{2}+3 m+1}{3(m+1)^{2}}$, from where 40 follows.

Lemma 16. Let $m \in \mathbb{N}_{1}, m \geq 2$. If $x \in\left[\frac{1}{(m+1) \sqrt{3}} ; \frac{\sqrt{3 m^{2}+3 m+1}}{(m+1) \sqrt{3}}\right]$, then $\alpha_{m}(x) \geq 0$ and $\beta_{m}(x) \geq 0$.

Proof. Results immediately from (37) and (40).
Lemma 17. The following

$$
\begin{equation*}
\left[\frac{1}{\left(m_{0}+1\right) \sqrt{3}} ; \frac{\sqrt{3 m_{0}^{2}+3 m_{0}+1}}{\left(m_{0}+1\right) \sqrt{3}}\right] \subset\left[\frac{1}{(m+1) \sqrt{3}} ; \frac{\sqrt{3 m^{2}+3 m+1}}{(m+1) \sqrt{3}}\right] \subset[0,1] \tag{41}
\end{equation*}
$$

hold, for any $m \in \mathbb{N}_{1}$.
Proof. By using that the functions $\frac{1}{(m+1) \sqrt{3}}$ and $\frac{\sqrt{3 m^{2}+3 m+1}}{(m+1) \sqrt{3}}$ are decreasing, relations from (41) follows.

Definition 18. If $m \in \mathbb{N}_{1}$, we define the operator $K_{2, m}^{*}$ by

$$
\begin{align*}
\left(K_{2, m}^{*} f\right)(x)= & \frac{m+1}{3 m(m-1))^{m}} \sum_{k=0}^{m}\binom{m}{k}\left(-3 m+\sqrt{\delta_{m}(x)}\right)^{k} \tag{42}\\
& \times\left(3 m^{2}-\sqrt{\delta_{m}(x)}\right)^{m-k} \int_{\frac{k}{m+1}}^{\frac{k+1}{m+1}} f(t) d t
\end{align*}
$$

for any $f \in L_{1}([0,1])$ and any $x \in\left[\frac{1}{\left(m_{0}+1\right) \sqrt{3}} ; \frac{\sqrt{3 m_{0}^{2}+3 m_{0}+1}}{\left(m_{0}+1\right) \sqrt{3}}\right]$.
Remark 19. In this section, we note

$$
J=\left[\frac{1}{\left(m_{0}+1\right) \sqrt{3}} ; \frac{\sqrt{3 m_{0}^{2}+3 m_{0}+1}}{\left(m_{0}+1\right) \sqrt{3}}\right]=I_{\left(m_{0}\right)}^{(2)} .
$$

Lemma 20. We have

$$
\begin{gather*}
\left(K_{2, m}^{*} e_{0}\right)(x)=1, \tag{43}\\
\left(K_{2, m}^{*} e_{1}\right)(x)=\frac{2 \sqrt{\delta_{m}(x)}-3 m-3}{6(m-1)(m+1)} \tag{44}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(K_{1, m}^{*} e_{2}\right)(x)=x^{2} \tag{45}
\end{equation*}
$$

for any $x \in I_{\left(m_{0}\right)}^{(2)}$ and $m \in \mathbb{N}_{1}$.
Proof. It is inferred from the conditions above and (13).
Lemma 21. The following identities

$$
\begin{gather*}
\left(T_{m, 0} K_{1, m}^{*}\right)(x)=1, \tag{46}\\
\left(T_{m, 1} K_{2, m}^{*}\right)(x)=m\left(\frac{2 \sqrt{\delta_{m}(x)}-3 m-3}{6(m-1)(m+1)}-x\right) \tag{47}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(T_{m, 2} K_{2, m}^{*}\right)(x)=2 m^{2} x\left(x-\frac{2 \sqrt{\delta_{m}(x)}-3 m-3}{6(m-1)(m+1)}\right) . \tag{48}
\end{equation*}
$$

hold, for any $x \in I_{\left(m_{0}\right)}^{(2)}$ and $m \in \mathbb{N}_{1}$
Proof. By using Lemma 12 and (3), we have that

$$
\begin{aligned}
& \left(T_{m, 0} K_{2, m}^{*}\right)(x)=\left(K_{2, m}^{*} e_{0}\right)(x)=1, \\
& \left(T_{m, 1} K_{2, m}^{*}\right)(x)=m\left(K_{2, m}^{*} \psi_{x}\right)(x)=m\left(\left(K_{2, m}^{*} e_{1}\right)(x)-x\left(K_{2, m}^{*} e_{0}\right)(x)\right),
\end{aligned}
$$

so (47) holds and

$$
\begin{aligned}
\left(T_{m, 2} K_{2, m}^{*}\right)(x) & =m^{2}\left(K_{2, m}^{*} \psi_{x}^{2}\right)(x) \\
& =m^{2}\left(\left(K_{2, m}^{*} e_{2}\right)(x)-2 x\left(K_{2, m}^{*} e_{1}\right)(x)+x^{2}\left(K_{2, m} e_{0}\right)(x)\right),
\end{aligned}
$$

from where (48) is obtained.
Lemma 22. The following identity

$$
\begin{equation*}
\lim _{m \rightarrow \infty} m\left(\frac{2 \sqrt{\delta_{m}(x)}-3 m-3}{6(m-1)(m+1)}-x\right)=\frac{x-1}{2} \tag{49}
\end{equation*}
$$

holds for any $x \in I_{\left(m_{0}\right)}^{(2)}$.
Proof. We have

$$
\begin{gathered}
\lim _{m \rightarrow \infty}\left(\frac{m^{2}}{(m-1)(m+1)} \cdot \frac{\sqrt{\delta_{m}(x)}-3(m-1)(m+1) x}{3 m}-\frac{m}{2(m-1)}\right) \\
=-\frac{1}{2}+\lim _{m \rightarrow \infty} \frac{\sqrt{\delta_{m}(x)}-3(m-1)(m+1) x}{3 m} \\
=-\frac{1}{2}+\lim _{m \rightarrow \infty} \frac{\delta_{m}(x)-9(m-1)^{2}(m+1)^{2} x^{2}}{3 m\left(\sqrt{\delta_{m}(x)}+3(m-1)(m+1) x\right)}
\end{gathered}
$$

and after a few calculations, identity (49) follows.

Lemma 23. We have that

$$
\begin{gather*}
\lim _{m \rightarrow \infty}\left(T_{m, 0} K_{2, m}^{*}\right)(x)=1, \tag{50}\\
\lim _{m \rightarrow \infty} \frac{\left(T_{m, 2} K_{2, m}^{*}\right)(x)}{m}=x(1-x) \tag{51}
\end{gather*}
$$

for any $x \in I_{\left(m_{0}\right)}^{(2)}$ and $m(0) \in \mathbb{N}$ exists such that

$$
\begin{equation*}
\frac{\left(T_{m, 2} K_{2, m}^{*}\right)(x)}{m} \leq \frac{5}{4} \tag{52}
\end{equation*}
$$

for any $x \in I_{\left(m_{0}\right)}^{(2)}$ and $m \in \mathbb{N}_{1}, m \geq m(0)$.
Proof. The relations (50) and (51) imply (46), (48) and (49). By using the definition of the limit of a function and because $x(1-x) \leq \frac{1}{4}$ for any $x \in[0,1]$, from (51) the relation 52 is obtained.

Theorem 24. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function on $[0,1]$. Then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} K_{2, m}^{*} f=f \tag{53}
\end{equation*}
$$

uniformly on $x \in I_{\left(m_{0}\right)}^{(2)}$ and there exists $m(0) \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|\left(K_{2, m}^{*} f\right)(x)-f(x)\right| \leq \frac{9}{4} \omega\left(f ; \frac{1}{\sqrt{m}}\right) \tag{54}
\end{equation*}
$$

for any $x \in I_{\left(m_{0}\right)}^{(2)}$ and any $m \in \mathbb{N}_{1}, m \geq m(0)$.
Proof. Theorem 24 is a results from Theorem 2 and Corollary 3 for $s=0$, $\alpha_{0}=0, \alpha_{2}=1, k_{0}=1$ and $k_{2}=\frac{5}{4}$.

THEOREM 25. If $f \in C([0,1]), x \in I_{\left(m_{0}\right)}^{(2)}$, f is two times differentiable in a neighborhood of $x, f^{(2)}$ is continuous in x, then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} m\left(\left(K_{2, m}^{*} f\right)(x)-f(x)\right)=\frac{x-1}{2} f^{(1)}(x)+\frac{x(1-x)}{2} f^{(2)}(x) \tag{55}
\end{equation*}
$$

Proof. Taking Lemma 22 into account and applying Theorem 2 for $s=2$, we obtain the relation (55).

REFERENCES

[1] O. Agratini, An asymptotic formula for a class of approximation processes of King's type, Studia Sci. Math. Hungar, 47 (2010) No. 4, pp. 435-444.
[2] P.I. Braica, O. T.Pop and A. D. Indrea, About a King-type operator, Appl. Math. Inf. Sci., 6 (2012) No. 1, pp. 145-148.
[3] L.V. Kantorovich, Sur certain développements suivant les polinômes de la forme de S. Bernstein, C. R. Acad. URSS, I, II (1930), pp. 563-568, pp. 595-600.
[4] J.P. King, Positive linear operators which preserve x^{2}, Acta Math. Hungar., 99 (3) (2003), pp. 203-208.
[5] H. Gonska and P. Pitul, Remarks on an article of J. P. King, Comment. Math. Univ. Carolina, 46 (2005) No. 4, pp. 645-665.
[6] O.T. Pop, About some linear and positive operators defined by infinite sum, Dem. Math., XXXIX (2006) No. 2, pp. 377-388.
[7] O.T. Pop, D. Bărbosu and P.I. Braica, Some general linears and positive operators (to appear)
[8] O.T. Pop, The generalization of Voronovskaja's theorem for a class of linear and positive operators, Rev. Anal. Numér. Théor. Approx., 34 (2005), pp. 79-91. 지
[9] E. Voronovskaja, Détermination de la forme asymptotique d'approximation des fonctions par les polynômes de S. N. Bernstein, C. R. Acad. Sci. URSS, 1932, pp. 79-85.

Received by the editors: August 8, 2012.

[^0]: * Secondary School "Grigore Moisil", 1 Mileniului 1 St. 440037 Satu Mare, Romania, e-mail: petrubr@yahoo.com.
 ${ }^{\dagger}$ National College "Mihai Eminescu", 5 Mihai Eminescu St., 440014 Satu Mare, Romania, e-mail: ovidiutiberiu@yahoo.com.

