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Abstract. A general class of linear and positive operators of Kantorovich-type is
constructed. The operators of this type which preserve exactly two test functions
from the set {e0, e1, e2} are determined and their approximation properties and
convergence theorems are studied.
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1. INTRODUCTION

Let N be the set of positive integers and N0 = N∪{0}. In 1930, L. V. Kan-
torovich in [3] introduced the linear and positive operators Km : L1([0, 1]) →
C([0, 1]), m ∈ N0, defined for any f ∈ L1([0, 1]), x ∈ [0, 1] and m ∈ N0 by

(1) (Kmf)(x) = (m+ 1)

m∑
k=0

(
m
k

)
xk(1− x)m−k

∫ k+1
m+1

k
m+1

f(t)dt.

The operators from (1) are called Kantorovich operators. We remark that
these operators preserve only the test function e0.

The aim of this paper is to construct and study a general class of lin-
ear positive operators which preserve exactly two test functions from the set
{e0, e1, e2}.

In [4], J. P. King introduced and studied a Bernstein type operator, which
preserves only the test functions e0 and e2. Therefore, we say that the opera-
tors constructed in this paper are operators of King’s type.

In Section 2, we recall some results from [6], which we use for obtaining the
main results of this paper.

In Section 3, respectively 4, we determine the unique operators from Section
2, which preserve exactly the test functions e0 and e1, respectively e0 and e2. In
the Sections 4 and 5, we give approximation, convergence and Voronovskaja’s
type theorems for the operators obtained.
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2. PRELIMINARIES

Let N be the set of positive integers and N0 = N ∪ {0}. In this section we
recall some results from [8], which we shall use in the present paper. Let I, J
be real intervals with the property I ∩ J 6= ∅. For any m, k ∈ N0, m 6= 0, we
consider the functions ϕm,k : J → R, with the property that ϕm,k(x) ≥ 0, for
any x ∈ J and the linear positive functionals Am,k : E(I)→ R.

For any m ∈ N we define the operator Lm : E(I)→ F (J), by

(2) (Lmf)(x) =
∞∑
k=0

ϕm,k(x)Am,k(f),

for any x ∈ J , where E(I) and F (J) are linear subspaces of real valued
functions defined on I, resp. J , for which the sequence (Ln)n≥0 defined above
is convergent (in the topology of F (J)).

Remark 1. The operators (Lm)m∈N are linear and positive on E(I∩J). �

For m ∈ N and i ∈ N0, we define (Tm,i) by

(3) (Tm,iLm)(x) = mi(Lmψ
i
x)(x) = mi

∞∑
k=0

ϕm,k(x)Am,k(ψ
i
x)

for any x ∈ I ∩ J , ψix(t) = (t− x)i, t ∈ I.
In that follows s ∈ N0 is even and we assume that the next two conditions:
• there exist the smallest αs, αs+2 ∈ [0,+∞), so that

(4) lim
m→∞

(Tm,jLm)(x)

mαj
= Bj(x) ∈ R

for any x ∈ I ∩ J and j ∈ {s, s+ 2}

(5) αs+2 < αs + 2.

• I ∩ J is an interval.

Theorem 2. (see [8]) Let f ∈ E(I) be a function. If x ∈ I ∩ J and f is s

times differentiable in a neighborhood of x, f (s) is continuous in x, then

(6) lim
m→∞

ms−αs

(
(Lmf)(x)−

s∑
i=0

f (i)(x)
mii!

(Tm,jLm)(x)

)
= 0.

Assume that f is s times differentiable on I, f (s) is continuous on I and there
exists a compact interval K ⊂ I ∩ J , such that there exists m(s) ∈ N and
constant kj ∈ R depending on K, so for m ≥ m(s) and x ∈ K the following
inequalities

(7)
(Tm,jLm)(x)

mαj
≤ kj ,
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hold for j ∈ {s, s+ 2}.
Then the convergence expressed by (6) is uniform on K and

ms−αs

∣∣∣∣∣(Lmf)(x)−
s∑
i=0

f (i)(x)
mii!

(Tm,iLm)(x)

∣∣∣∣∣(8)

≤ 1
s! (ks + ks+2)ω

(
f (s); 1√

m2+αs−αs+2

)
,

for any x ∈ K, m ≥ m(s), where ω(f ; ·) denotes the modulus of continuity of
the function f .

Corollary 3. Let f : I → R be a s times differentiable function on I ∩ J
with f (s) continuous on I ∩ J . Then

(9) lim
m→∞

(Lmf)(x) = B0(x)f(x)

if s = 0 and α0 = 0, where B0 is defined by (4). If s ≥ 2, then

(10) lim
m→∞

ms−αs

[
(Lmf)(x)−

s−1∑
i=0

1
mii!

(Tm,iLm)(x)f (i)(x)

]
= 1
s! Bs(x)f (s)(x),

where Bs are defined by (4).

If f is a s times differentiable function on I ∩ J , with f (s) continuous and
bounded on I ∩ J and (7) takes place for an interval K ⊂ I ∩ J , then the
convergence in (9) and (10) are uniform on K.

3. THE CONSTRUCTION OF A GENERAL LINEAR AND POSITIVE OPERATORS

Let J ⊂ R be an interval, m0 ∈ N0, m0 ≥ 2 given, N1 = {m ∈ N|m ≥ m0},
the function αm, βm : J → R, αm(x) ≥ 0, βm(x) ≥ 0 for any x ∈ J and
m ∈ N1.

Definition 4. For m ∈ N1, we define the operator of the following form

(11) (K∗mf)(x) = (m+ 1)
m∑
k=0

(
m
k

)
αkm(x)βm−km (x)

∫ k+1
m+1

k
m+1

f(t)dt

for any f ∈ L1([0, 1]) and x ∈ J .

Lemma 5. The following identities

(12) (K∗me0)(x) = (αm(x) + βm(x))m,

(13) (K∗me1)(x) = (αm(x)+βm(x))m−1

2(m+1) ((2m+ 1)αm(x) + βm(x)),

and

(K∗me2)(x) = (αm(x)+βm(x))m−2

3(m+1)2

(
3m(m− 1)α2

m(x)(14)

+ 6mαm(x)(αm(x) + βm(x)) + (αm(x) + βm(x))2
)
,

hold, for any x ∈ J and any m ∈ N1.
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Proof. For m ∈ N1 and k ∈ {0, 1, . . . ,m} we have∫ k+1
m+1

k
m+1

e0(t)dt = 1
m+1 ,

∫ k+1
m+1

k
m+1

e1(t)dt = 2k+1
(m+1)2

and

∫ k+1
m+1

k
m+1

e2(t)dt = 3k2+3k+1
(m+1)3

.

Then

(K∗me0)(x) = (m+ 1)
m∑
k=0

(
m
k

)
αkm(x)βm−km (x)

∫ k+1
m+1

k
k+1

e0(t)dt

=

m∑
k=0

(
m
k

)
αkm(x)βm−km (x),

so (12) holds;

(K∗me1)(x) = (m+ 1)

m∑
k=0

(
m
k

)
αkm(x)βm−km (x)

∫ k+1
m+1

k
m+1

e1(t)dt

= 1
2(m+1)

(
2mαm(x)

m∑
k=1

(
m−1
k−1

)
αk−1
m (x)βm−km (x)

+
m∑
k=0

(
m
k

)
αkm(x)βm−1

m (x)

)
,

so (13) holds and

(K∗me2)(x) = (m+ 1)
m∑
k=0

(
m
k

)
αkm(x)βm−km (x)

∫ k+1
m+1

k
m+1

e2(t)dt

= 1
3(m+1)2

(
3m(m+ 1)α2

m(x)
m∑
k=2

(
m−2
k−2

)
αk−2
m (x)βm−km (x)

+6mαm(x)
m∑
k=1

(
m−1
k−1

)
αk−1
m (x)βm−km (x) +

m∑
k=0

(
m
k

)
αkm(x)βm−km (x)

)
,

from where (14) follows. �

Remark 6. In the following, we will use Theorem 2, where I = [0, 1],

(15) ϕm,k(x) = (m+ 1)
(
m
k

)
αkm(x)βm−km (x)

and

(16) Am,k(x) =

∫ k+1
m+1

k
m+1

f(t)dt
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for any x ∈ J , f ∈ L1([0, 1]), m ∈ N1 and k ∈ {0, 1, . . . ,m}. �

4. KANTOROVICH-TYPE OPERATORS PRESERVING THE TEST

FUNCTIONS e0 AND e1

In this case, we impose the conditions (K∗me0)(x) = e0(x) and (K∗me1)(x) =
e1(x), for any x ∈ J and m ∈ N1. From the conditions above, taking (12) and
(13) into account, we have

(αm(x) + β(x))m = 1 and

(αm(x)+βm(x))m−1

2(m+1) ((2m+ 1)αm(x) + βm(x)) = x,

from where

(17) αm(x) = 2(m+1)x−1
2m ,

(18) βm(x) = 2m+1−2(m+1)x
2m ,

for any x ∈ [0, 1] and m ∈ N1.
From αm(x) ≥ 0 and βm(x) ≥ 0, for any m ∈ N1, we have

(19) 1
2(m+1) ≤ x ≤

2m+1
2(m+1) .

Lemma 7. The following

(20)
[

1
2(m0+1) ; 2m0+1

2(m0+1)

]
⊂
[

1
2(m+1) ; 2m+1

2(m+1)

]
⊂ [0, 1]

hold for any m ∈ N1.

Proof. Because the function 1
2(m+1) is decreasing and the function

2m+1
2(m+1) is increasing, relation (20) follows. �

Taking the remarks above, we construct the sequence of operators (K∗1,m)m≥m0 .

Definition 8. If m ∈ N1, we define the operator

(K∗1,mf)(x)(21)

= m+1
(2m)m

m∑
k=0

(
m
k

)
(2(m+ 1)x− 1)k(2m+ 1− 2(m+ 1)x)m−k

∫ k+1
m+1

k
m+1

f(t)dt

for any f ∈ L1([0, 1]) and any x ∈
[

1
2(m0+1) ; 2m0+1

2(m0+1)

]
.

Remark 9. In this case, we note J =

[
1

2(m0+1) ; 2m0+1
2(m0+1)

]
=I

(1)
(m0). �

Lemma 10. We have

(22) (K∗1,me0)(x) = 1,

(23) (K∗1,me1)(x) = x
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and

(24) (K∗1,me2)(x) = m−1
m x2 + 1

m x− 5m+3
12m(m+1)2

for any x ∈ I(1)
(m0) and m ∈ N1.

Proof. Results immediately from the condition above and (14). �

Lemma 11. The following identities

(25) (Tm,0K
∗
1,m)(x) = 1,

(26) (Tm,1K
∗
1,m)(x) = 0

and

(27) (Tm,2K
∗
1,m)(x) = mx(1− x)− m(5m+3)

12(m+1)2

hold, for any x ∈ I(1)
(m0) and m ∈ N1

Proof. By using Lemma 10 and relation (3), we have

(Tm,0K
∗
1,m)(x) = (K∗1,me0)(x) = 1,

(Tm,1K
∗
1,m)(x) = m(K∗1,mψx)(x) = m((K∗1,me1)(x)− x(K∗1,me0)(x)) = 0

and

(Tm,2K
∗
1,m(x) = m2(K∗1,mψ

2
x)(x) = m2

(
(K∗1,me1)(x) + x2(K∗1,me0)(x)

)
,

from where (27) follows. �

Lemma 12. We have that

(28) lim
m→∞

(Tm,0K
∗
1,m)(x) = 1,

(29) lim
m→∞

(Tm,2K∗1,m)(x)

m = x(1− x)

for any x ∈ I(1)
(m0) and m(0) ∈ N exists such that

(30)
(Tm,2K∗1,m)(x)

m ≤ 5
4

for any x ∈ I(1)
(m0) and m ∈ N1, m ≥ m(0).

Proof. The relation (28) and (29) results taking (25) and (28) into account.
By using the definition of limit a function and because x(1 − x) ≤ 1

4 for any
x ∈ [0, 1], from (29) the inequality (30) is obtained. �

Theorem 13. Let f : [0, 1]→ R be a continuous function on [0, 1]. Then

(31) lim
m→∞

K∗1,mf = f
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uniformly on I
(1)
(m0) and there exists m(0) ∈ N1 such that

(32)
∣∣(K∗1,mf)(x)− f(x)

∣∣ ≤ 9
4 ω
(
f ; 1√

m

)
for any x ∈ I(1)

(m0) and m ∈ N1, m ≥ m0.

Proof. We apply Theorem 2 and Corollary 3 for s = 0, α0 = 0, α2 = 1,
k0 = 1 and k2 = 9

4 . �

Theorem 14. If f ∈ C([0, 1]), x ∈ I(1)
(m0), f is two times differentiable in

neighborhood of x and f (2) is continuous on x, then

(33) lim
m→∞

m
(
(K∗1,mf)(x)− f(x)

)
= 1

2 x(1− x)f (2)(x).

Proof. We use the results from Corollary 3 for s = 2. �

5. KANTOROVICH-TYPE OPERATORS PRESERVING THE TEST

FUNCTIONS e0 AND e2

In this section, we impose the conditions (K∗me0)(x) = e0(x) and
(K∗me2)(x) = e2(x), for any x ∈ J and m ∈ N1. Then, taking (12) and
(14) into account, we have (αm(x) + βm(x))m = 1 and

(αm(x)+βm(x))m−2

3(m+1)2

(
3m(m− 1)α2

m(x) + 6mαm(x)(αm(x) + βm(x))

+ (αm(x) + βm(x))2
)

= x2,

from where

(34) αm(x) + βm(x) = 1

and

(35) 3m(m− 1)α2
m(x) + 6mαm(x) + 1− 3(m+ 1)2x2 = 0.

The discriminant of the equation (35) is

∆m = 12m(2m+ 1 + 3(m− 1)(m+ 1)2x2) ≥ 0,

for any x ∈ J and any m ∈ N1, m ≥ 2 and we note

(36) δm(x) = 3m(2m+ 1 + 3(m− 1)(m+ 1)2x2),

x ∈ J , m ∈ N1, m ≥ 2.
If m ∈ N1, m ≥ 2, then for

(37) x ≥ 1
(m+1)

√
3

the inequality 1−3(m+1)2x2

3m(m−1) ≤ 0 is true, so the equation from (35) has exactly

one positive solution. This is

(38) αm(x) =
−3m+

√
δm(x)

3m(m−1)
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and then

(39) βm(x) =
3m2−

√
δm(x)

3m(m−1)

where x ∈ J , and to satisfy (37), m ∈ N1, m ≥ 2.

Lemma 15. Let m ∈ N1, m ≥ 2. Then βm(x) ≥ 0, x ≥ 0 if and only if

(40) 0 ≤ x ≤
√

3m2+3m+1
(m+1)

√
3

.

Proof. From βm(x) ≥ 0 we have 3m2 ≥
√
δm(x), equivalent after calculus

to x2 ≤ 3m2+3m+1
3(m+1)2

, from where (40) follows. �

Lemma 16. Let m ∈ N1, m ≥ 2. If x ∈
[

1
(m+1)

√
3

;
√

3m2+3m+1
(m+1)

√
3

]
, then

αm(x) ≥ 0 and βm(x) ≥ 0.

Proof. Results immediately from (37) and (40). �

Lemma 17. The following

(41)

[
1

(m0+1)
√

3
;

√
3m2

0+3m0+1

(m0+1)
√

3

]
⊂
[

1
(m+1)

√
3

;
√

3m2+3m+1
(m+1)

√
3

]
⊂ [0, 1]

hold, for any m ∈ N1.

Proof. By using that the functions 1
(m+1)

√
3

and
√

3m2+3m+1
(m+1)

√
3

are decreasing,

relations from (41) follows. �

Definition 18. If m ∈ N1, we define the operator K∗2,m by

(K∗2,mf)(x) = m+1
3m(m−1))m

m∑
k=0

(
m
k

) (
−3m+

√
δm(x)

)k
(42)

×
(

3m2 −
√
δm(x)

)m−k ∫ k+1
m+1

k
m+1

f(t)dt

for any f ∈ L1([0, 1]) and any x ∈
[

1
(m0+1)

√
3

;

√
3m2

0+3m0+1

(m0+1)
√

3

]
.

Remark 19. In this section, we note

J =

[
1

(m0+1)
√

3
;

√
3m2

0+3m0+1

(m0+1)
√

3

]
=I

(2)
(m0). �

Lemma 20. We have

(43) (K∗2,me0)(x) = 1,

(44) (K∗2,me1)(x) =
2
√
δm(x)−3m−3

6(m−1)(m+1)
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and

(45) (K∗1,me2)(x) = x2

for any x ∈ I(2)
(m0) and m ∈ N1.

Proof. It is inferred from the conditions above and (13). �

Lemma 21. The following identities

(46) (Tm,0K
∗
1,m)(x) = 1,

(47) (Tm,1K
∗
2,m)(x) = m

(
2
√
δm(x)−3m−3

6(m−1)(m+1) − x
)

and

(48) (Tm,2K
∗
2,m)(x) = 2m2x

(
x− 2

√
δm(x)−3m−3

6(m−1)(m+1)

)
.

hold, for any x ∈ I(2)
(m0) and m ∈ N1

Proof. By using Lemma 12 and (3), we have that

(Tm,0K
∗
2,m)(x) = (K∗2,me0)(x) = 1,

(Tm,1K
∗
2,m)(x) = m(K∗2,mψx)(x) = m

(
(K∗2,me1)(x)− x(K∗2,me0)(x)

)
,

so (47) holds and

(Tm,2K
∗
2,m)(x) = m2(K∗2,mψ

2
x)(x)

= m2
(
(K∗2,me2)(x)− 2x(K∗2,me1)(x) + x2(K2,me0)(x)

)
,

from where (48) is obtained. �

Lemma 22. The following identity

(49) lim
m→∞

m

(
2
√
δm(x)−3m−3

6(m−1)(m+1) − x
)

= x−1
2

holds for any x ∈ I(2)
(m0).

Proof. We have

lim
m→∞

(
m2

(m−1)(m+1) ·
√
δm(x)−3(m−1)(m+1)x

3m − m
2(m−1)

)
= −1

2 + lim
m→∞

√
δm(x)−3(m−1)(m+1)x

3m

= −1
2 + lim

m→∞
δm(x)−9(m−1)2(m+1)2x2

3m
(√

δm(x)+3(m−1)(m+1)x
)

and after a few calculations, identity (49) follows. �
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Lemma 23. We have that

(50) lim
m→∞

(Tm,0K
∗
2,m)(x) = 1,

(51) lim
m→∞

(Tm,2K∗2,m)(x)

m = x(1− x)

for any x ∈ I(2)
(m0) and m(0) ∈ N exists such that

(52)
(Tm,2K∗2,m)(x)

m ≤ 5
4

for any x ∈ I(2)
(m0) and m ∈ N1, m ≥ m(0).

Proof. The relations (50) and (51) imply (46), (48) and (49). By using the
definition of the limit of a function and because x(1−x) ≤ 1

4 for any x ∈ [0, 1],
from (51) the relation (52) is obtained. �

Theorem 24. Let f : [0, 1]→ R be a continuous function on [0, 1]. Then

(53) lim
m→∞

K∗2,mf = f

uniformly on x ∈ I(2)
(m0) and there exists m(0) ∈ N such that

(54)
∣∣(K∗2,mf)(x)− f(x)

∣∣ ≤ 9
4 ω
(
f ; 1√

m

)
for any x ∈ I(2)

(m0) and any m ∈ N1, m ≥ m(0).

Proof. Theorem 24 is a results from Theorem 2 and Corollary 3 for s = 0,
α0 = 0, α2 = 1, k0 = 1 and k2 = 5

4 . �

Theorem 25. If f ∈ C([0, 1]), x ∈ I(2)
(m0), f is two times differentiable in a

neighborhood of x, f (2) is continuous in x, then

(55) lim
m→∞

m
(
(K∗2,mf)(x)− f(x)

)
= x−1

2 f (1)(x) + x(1−x)
2 f (2)(x).

Proof. Taking Lemma 22 into account and applying Theorem 2 for s = 2,
we obtain the relation (55). �
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