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REMARKS ON THE QUENCHING ESTIMATE FOR A NONLOCAL

DIFFUSION PROBLEM WITH A REACTION TERM

HALIMA NACHID∗

Abstract. In this paper, we address the following initial value problem

ut =
∫

Ω
J(x− y)(u(y, t)− u(x, t))dy + f(u(x, t)) in Ω× (0, T ),

u(x, 0) = u0(x) ≥ 0 in Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, f : (−∞, b)→
(0,∞) is a C1 convex nondecreasing function, lims→b− f(s) = ∞,

∫∞ dσ
f(σ)

<

∞, with b a positive constant, J : RN → R is a kernel which is measurable,
nonnegative and bounded in RN . Under some conditions, we show that the
solution of a perturbed form of the above problem quenches in a finite time and
estimate its quenching time. We also prove the continuity of the quenching time
as a function of the initial datum. Finally, we give some numerical results to
illustrate our analysis.
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1. INTRODUCTION

Let Ω be a bounded domain in RN with smooth boundary ∂Ω. Consider
the following initial value problem

ut =

∫
Ω
J(x− y)(u(y, t)− u(x, t))dy + f(u(x, t)) in Ω× (0, T ),(1)

u(x, 0) = u0(x) ≥ 0 in Ω,(2)

where f : (−∞, b)→ (0,∞) is a C1 convex nondecreasing function,
∫∞ dσ

f(σ) <

∞, lims→b− f(s) =∞, with b a positive constant, J : RN → R is a kernel which
is measurable, nonnegative and bounded in RN . In addition, J is symmetric
(J(z) = J(−z)) and

∫
RN J(z)dz = 1. The initial datum u0 ∈ C0(Ω), 0 ≤
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u0(x) < b in Ω. Let us notice that, if f(s) = (b − s)−p with p a positive
constant, then f satisfies the above conditions. Here, (0, T ) is the maximal
time interval on which the solution u exists. The time T may be finite or
infinite. When T is infinite, then we say that the solution u exists globally.
When T is finite, then the solution u develops a singularity in a finite time,
namely,

lim
t→T
‖u(·, t)‖∞ = b,

where ‖u(·, t)‖∞ = supx∈Ω |u(x, t)|. In this last case, we say that the solution
u quenches in a finite time, and the time T is called the quenching time of the
solution u. Recently, nonlocal diffusion has been the subject of investigation
of many authors (see, [2], [8], [11], [13], [15], [17], [19], [20], [25], [29], [32], and
the references cited therein). Nonlocal evolution equations of the form

ut =

∫
RN

J(x− y)(u(y, t)− u(x, t))dy,

and variations of it, have been used by several authors to model diffusion
processes (see, [4], [5], [11], [19], [20]). The solution u(x, t) can be interpreted
as the density of a single population at the point x, at the time t, and J(x−y)
as the probability distribution of jumping from location y to location x. Then
the convolution (J ∗ u)(x, t) =

∫
RN J(x − y)u(y, t)dy is the rate at which

individuals are arriving to position x from all other places, and −u(x, t) =
−
∫
RN J(x − y)u(y, t)dy is the rate at which they are leaving location x to

travel to any other site (see, [19]). For the problem described in (1)–(2), the
integral is taken over Ω. Consequently, there is no individuals that arrive or
leave the domain Ω. It is the reason why in the title of the paper, we have
added Neumann boundary condition. On the other hand, the term of the
source f(u) can be rewritten as follows

f(u(x, t)) =

∫
RN

J(x− y)f(u(x, t))dy.

Therefore, in view of the above equality, the term f(u) can be interpreted as
a force that decreases the rate of individuals which are leaving location x to
travel to any other site, provoking as we shall see later, the phenomenon of
quenching of the solution u. For local diffusions, solutions which quench in
a finite time has been the subject of investigation of many authors (see, for
instance [10], [18], [23], [24], [26], [28], [30], and the reference cited therein).

Similar results have been obtained in [32], where the authors considered
analogous problems within the framework of the phenomenon of blow-up (we
say that a solution blows up in a finite time if it reaches the value infinity in
a finite time).

The first paper which deals with blow-up of (1)–(2) that we are aware as
that of Perez-LLanos and Rossi in [32], where they considered the problem
(1)-(2) in the case where f(u) = up with p = const > 1. They proved that
the solution u of (1)–(2) blows up in a finite time and localized the blow-up
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set. Some results about blow-up rate are also given. In the same way, in [29],
Nabongo and Boni examined the initial value problem

ut = ε

∫
Ω
J(x− y)(u(y, t)− u(x, t))dy + f(u) in Ω× (0, T ),

u = 0 on (R− Ω)× (0, T ),

u(x, 0) = u0(x) ≥ 0 in Ω,

where ε is a positive parameter. They showed that, if ε is small enough, then
the solution u of the above problem blows up in a finite time, and its blow-up
time goes to that of the solution of the following ODE{

α′(t) = f(α(t)), t > 0,
α(0) = maxx∈Ω u0(x),

as ε goes to zero. In this paper, we are interested in the the phenomenon of
quenching of the solution u, and the continuity of the quenching time for the
problem describe in (1)-(2). More precisely, consider the following initial value
problem

vt =

∫
Ω
J(x− y)(v(y, t)− v(x, t))dy + f(v) in Ω× (0, Th),(3)

v(x, 0) = uh0(x) in Ω,(4)

where uh0 ∈ C0(Ω), 0 ≤ uh0(x) ≤ u0(x) in Ω, limh→0 u
h
0 = u0. Here (0, Th) is

the maximal time interval of existence of the solution v. In the current paper,
under some hypotheses, we show that the solution v of (3)–(4) quenches in a
finite time and estimate its quenching time. We demonstrate in passing that,
when the norm of the initial datum is large enough, then the solution v of
(3)–(4) quenches in a finite time and its quenching time goes to that of the
solution of a certain differential equation

α′(t) = f(α(t)), t > 0, α(0) = ‖uh0‖∞,

as ‖uh0‖∞ goes to b. Finally, under some hypotheses, we prove that the so-
lution v of (3)–(4) quenches in a finite time and its quenching time goes to
that of the solution u of (1)–(2) when h goes to zero. The remainder of the
paper is organized in the following manner. In the next section, we prove the
local existence and uniqueness of solutions. In the third section, under some
conditions, we show that the solution v of (3)–(4) quenches in a finite time
and estimate its quenching time. We also show that its quenching time goes
to that of the solution u of (1)–(2) when h goes to zero, in the last section, we
give some computational results to illustrate our analysis.
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2. LOCAL EXISTENCE

In this section, we shall establish the existence and uniqueness of nonneg-
ative solutions of (1)–(2) in Ω × (0, T ) for all small T . We shall also prove
some results concerning the maximum principle within the framework of non-
local diffusion problems for our subsequent use. Let us notice that results
on local existence and uniqueness are known for our problem if one modifies
slightly the proof given by Perez-LLanos and Rossi in [32]. However, for the
sake of completeness, we outline them. Let t0 be fixed, and define the func-
tion space Yt0 = {u;u ∈ C([0, t0], C(Ω))} equipped with the norm defined by
‖u‖Yt0 = max0≤t≤t0 ‖u(·, t)‖∞ for u ∈ Yt0 . It is easy to see that Yt0 is a Banach
space. Introduce the set

Xt0 = {u;u ∈ Yt0 , ‖u‖Yt0 ≤ b0},

where b0 = ‖u0‖∞+b
2 . We observe that Xt0 is a nonempty bounded closed

convex subset of Yt0 . Define the map R as follows

R : Xt0 → Xt0

R(v)(x, t) = u0(x) +

∫ t

0

∫
Ω
J(x− y)(v(y, s)− v(x, s))dyds+

∫ t

0
f(v(x, s))ds.

Theorem 1. Assume that u0 ∈ C0(Ω), and 0 ≤ u0(x) < b in Ω. Then R
maps Xt0 into Xt0, and R is strictly contractive if t0 is approximately small
relative to ‖u0‖∞.

Proof. Due to the fact that
∫

Ω J(x−y)dy ≤
∫
RN J(x−y)dy = 1, a straight-

forward computation reveals that

|R(v)(x, t)− u0(x)| ≤ 2‖v‖Yt0 t+ f(‖v‖Yt0 )t,

which implies that ‖R(v)‖Yt0 ≤ ‖u0‖∞ + 2b0t0 + f(b0)t0. If

t0 ≤ b0−‖u0‖∞
2b0+f(b0) ,(5)

then
‖R(v)‖Yt0 ≤ b0.

Therefore, if (5) holds, then R maps Xt0 into Xt0 . Now, we are going to prove
that the map R is strictly contractive. Let v, z ∈ Xt0 . Setting α = v − z, we
discover that

|(R(v)−R(z))(x, t)| ≤
∣∣∣∣∫ t

0

∫
Ω
J(x− y)(α(y, s)− α(x, s))dyds

∣∣∣∣
+

∣∣∣∣∫ t

0
(f(v(x, s))− f(z(x, s)))ds

∣∣∣∣ .
Use Taylor’s expansion to obtain

|(R(v)−R(z))(x, t)| ≤ 2‖α‖Yt0 t+ t‖v − z‖Yt0f
′(‖β‖Yt0 ),
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where β is an intermediate function between v and z. We deduce that

‖R(v)−R(z)‖Yt0 ≤ 2‖α‖Yt0 t0 + t0‖v − z‖Yt0f
′(‖β‖Yt0 ),

which implies that ‖R(v)−R(z)‖Yt0 ≤ (2t0 + t0f
′(b0))‖v − z‖Yt0 . If

t0 ≤ 1
4+2f ′(b0) ,(6)

then ‖R(v) − R(z)‖Yt0 ≤
1
2‖v − z‖Yt0 . Hence, we see that R(v) is a strict

contraction in Yt0 and the proof is complete. �

It follows from the contraction mapping principle that for appropriately
chosen t0 > 0, R has a unique fixed point u(x, t) ∈ Yt0 which is a solution
of (1)-(2). If ‖u‖Yt0 < b, then taking as initial datum u(·, t0) ∈ C0(Ω) and

arguing as before, it is possible to extend the solution up to some interval [0, t1)
for certain t1 > t0. Now, to end this section, we shall provide some results
about the maximum principle tailored to our study. The following lemma is
a version of the maximum principle for nonlocal problems.

Lemma 2. Let a ∈ C0(Ω × [0, T )), and let u ∈ C0,1(Ω × [0, T )) satisfying
the following inequalities

(7) ut−
∫

Ω
J(x− y)(u(y, t)−u(x, t))dy+a(x, t)u(x, t) ≥ 0 in Ω× (0, T ),

u(x, 0) ≥ 0 in Ω.(8)

Then, we have u(x, t) ≥ 0 in Ω× (0, T ).

Proof. Let T0 be any positive quantity satisfying T0 < T . Since a(x, t) is
bounded in Ω×[0, T0], then there exists λ such that a(x, t)−λ > 0 in Ω×[0, T ].
Define z(x, t) = eλtu(x, t) and let m = minx∈Ω,t∈[0,T0] z(x, t). Due to the fact

that z is continuous in Ω× [0, T0], then it achieves its minimum in Ω× [0, T0].
Consequently, there exists (x0, t0) ∈ Ω × [0, T0] such that m = z(x0, t0). We
get z(x0, t0) ≤ z(x0, t) for t ≤ t0 and z(x0, t0) ≤ z(y, t0) for y ∈ Ω. This
implies that

zt(x0, t0) ≤ 0,

∫
Ω
J(x0 − y)(z(y, t0)− z(x0, t0))dy ≥ 0.(9)

With the aid of the first inequality of the lemma, it is not hard to see that

zt(x0, t0)−
∫

Ω
J(x0 − y)(z(y, t0)− z(x0, t0))dy + a(x0, t0)− λ)z(x0, t0) ≥ 0.

We deduce from (9) that (a(x0, t0) − λ)z(x0, t0 ≥ 0. Since a(x0, t0) − λ > 0,
we get z(x0, t0) ≥ 0. This implies that u(x, t) ≥ 0 in Ω× [0, T0], and the proof
is complete. �

An immediate consequence of the above lemma is the following comparison
lemma. Its proof is straightforward.
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Lemma 3. Let a ∈ C0(Ω× [0, T )) and let u, v ∈ C0,1(Ω× [0, T )) satisfying
the following inequalities

ut −
∫

Ω
J(x− y)(u(y, t)− u(x, t))dy + a(x, t)u(x, t)

≥ vt −
∫

Ω
J(x− y)(v(y, t)− v(x, t))dy + a(x, t)v(x, t) in Ω× (0, T ),

u(x, 0) ≥ v(x, 0) in Ω.

Then, we have u(x, t) ≥ v(x, t) in Ω× (0, T ).

Remark 4. Invoking the mean value theorem and Lemma 2.2, it is not
hard to see that v(x, t) ≤ u(x, t) as long as all of them are defined. We infer
that Th ≥ T . �

3. THE QUENCHING TIME

In this section, under some conditions, we show that the solution v of (3)–(4)
quenches in a finite time and estimate its quenching time. We demonstrate
in passing that, if the L∞ norm of the initial datum is large enough, then
the solution v of (3)–(4) quenches in a finite time and its quenching time
goes to that of the solution of a differential equation as ‖uh0‖∞ goes to b.
Finally, we gather some results that we deem useful to prove the continuity of
the quenching time time. Our first result says that the solution v of (3)–(4)
always quenches in a finite time if the initial datum is nonnegative. It is stated
in the following theorem.

Theorem 5. Let v be the solution of (3)–(4). Then v quenches in a finite
time, and its quenching time Th obeys the following estimate

Th ≤
∫ b

A

ds
f(s) ,

where A = 1
|Ω|
∫

Ω u
h
0(x)dx.

Proof. Since (0, Th) is the maximal time interval on which
‖v(., t)‖∞ < b, our aim is to show that Th is finite and satisfies the above
inequality. Due to the fact that the initial datum uh0 is nonnegative in Ω, we
know from Lemma 2.1 that the solution v is also nonnegative in Ω × (0, Th).
Integrating both sides of (3) over (0, t), we find that

v(x, t)− uh0(x) =

∫ t

0

∫
Ω
J(x− y)(v(y, s)− v(x, s))dyds

+

∫ t

0
f(v(x, s))ds for t ∈ (0, Th).
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Integrate again in the x variable and apply Fubini’s theorem to obtain∫
Ω
v(x, t)dx−

∫
Ω
uh0(x)dx =

∫ t

0

(∫
Ω
f(v(x, s)

)
ds for t ∈ (0, Th).(10)

Set

w(t) = 1
|Ω|

∫
Ω
v(x, t)dx for t ∈ [0, Th).

Taking the derivative of w in t and using (10), we arrive at

w′(t) =

∫
Ω

1
|Ω|f(v(x, t))dx, for t ∈ (0, Th)

It follows from Jensen’s inequality that w′(t) ≥ f(w(t)) for t ∈ (0, Th), or
equivalently

dw
f(w) ≥ dt for t ∈ (0, Th).

Integrate the above inequality over (0, Th) to obtain

Th ≤
∫ b

w(0)

ds
f(s) .

Since the quantity on the right hand side of the above inequality is finite, we
deduce that v quenches in a finite time at the time Th which obeys the above
inequality. Use the fact that w(0) = A to complete the rest of the proof. �

The above theorem allows us to obtain an estimate which depends on the
L1 norm of the initial datum. This kinds of estimation is not interesting in
order to obtain the continuity of the quenching time as a function of the initial
datum. Therefore, we shall give another result which reveals an estimate of
the of the quenching time that depends on the L∞ norm of the initial datum.
This result is stated in the theorem below.

Theorem 6. Let A =
∫ b

0
dσ
f(σ) . If A < 1, then the solution v of (3)–(4)

quenches in a finite time, and its quenching time Th obeys the following esti-
mate

Th ≤ 1
1−A

∫ b

‖uh0‖∞

dσ
f(σ) .

Proof. Since (0, Th) is the maximal time interval of existence of the solution
v, our aim is to show that Th is finite and satisfies the above inequality. As in
the proof of Theorem 3.1, an application of Lemma 2.1 reveals that the solution
v is nonnegative in Ω × (0, Th). Due to the fact that J(z) is nonnegative for
z ∈ RN , and∫

Ω
J(x− y)dy ≤

∫
RN

J(x− y)dy = 1 for x ∈ Ω,

we note that

vt(x, t) ≥ −v(x, t) + f(v(x, t)) in Ω× (0, Th),
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which implies that

vt(x, t) ≥ f(v(x, t))
(

1− v(x,t)
f(v(x,t))

)
in Ω× (0, Th).

It is not hard to see that∫ b

0

dσ
f(σ) ≥ sup

0≤t<b

∫ t

0

dσ
f(σ) ≥ sup

0≤t<b

t
f(t) ,

because f(s) is nondecreasing for s ∈ [0, b). We infer that

vt(x, t) ≥ (1−A)f(v(x, t)) in Ω× (0, Th),

or equivalently
dv
f(v) ≥ (1−A)dt in Ω× (0, Th).(11)

Integrate the above inequality over (0, Th) to obtain

(1−A)Th ≤
∫ b

uh0 (x)

dσ
f(σ) in Ω.

It follows that

Th ≤ 1
1−A

∫ b

‖uh0‖∞

dσ
f(σ) .

We conclude that the solution v of (3)–(4) quenches in a finite time, because
the quantity on the right hand side of the above inequality is finite. This
finishes the proof. �

Remark 7. Let t0 ∈ (0, Th). Integrating the inequality (11) over (t0, Th),
we find that

(1−A)(Th − t0) ≤
∫ b

v(x,t0)

dσ
f(σ) for x ∈ Ω,

which implies that

Th − t0 ≤ 1
1−A

∫ b

‖v(·,t0)‖∞

dσ
f(σ) . �

It is worth noting that the above estimate is crucial to obtain the continuity
of the quenching time as a function of the initial datum. Let us notice that the
condition A < 1 of the above theorem is very restrictive in certain situations.
By the following theorem, we avoid this condition in the case where the L∞

norm of the initial datum is large enough.

Theorem 8. Let v be the solution of (3)–(4), and suppose that the initial
datum at (4) obeys the following condition f(‖uh0‖∞) > b. Then, the solution
v quenches in a finite time, and its quenching time Th is estimated as follows

Th ≤
f(‖uh0‖∞)

f(‖uh0‖∞)−b

∫ b

‖uh0‖∞

dσ
f(σ) .
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Proof. Since (0, Th) is the maximal time interval of existence of the solution
v, our aim is to show that Th is finite and satisfies the above inequality. Owing
to Lemma 2.1, we know that the solution v is nonnegative in Ω×(0, Th) because
the initial datum uh0 is nonnegative in Ω. We note that∫

Ω
J(x− y)dy ≤

∫
RN

J(x− y)dy = 1 for x ∈ Ω,

which implies that

vt(x, t) ≥ −v(x, t) + f(v(x, t)) in Ω× (0, Th).(12)

Let x0(t) ∈ Ω be such that

U(t) = max
x∈Ω

v(x, t) = v(x0(t), t) for t ∈ (0, Th).

It is easy to see that

U ′(t) = max
x∈Ω

vt(x, t) for t ∈ (0, Th).

Consequently, replacing x by x0(t) in (12), we have

U ′(t) ≥ vt(x, t) ≥ −U(t) + f(U(t)) for t ∈ (0, Th).

This estimate may be rewritten as follows

U ′(t) ≥ f(U(t))
(

1− U(t)
f(U(t))

)
for t ∈ (0, Th).

According to the fact that U(t) ≤ b, the above estimate becomes

U ′(t) ≥ f(U(t))
(

1− b
f(U(t))

)
for t ∈ (0, Th).(13)

We note that U ′(0) > 0, and we claim that U ′(t) > 0 for t ∈ (0, Th). To prove
the claim, we argue by contradiction. Let t0 be the first t ∈ (0, Th) such that
U ′(t) > 0 for t ∈ (0, t0), but U ′(t0) = 0. This implies that U(t0) ≥ U(0) =
‖uh0‖∞. Therefore, we get

0 = U ′(t0) ≥ f(‖uh0‖∞)
(

1− b
f(‖uh0‖∞)

)
> 0,

which is a contradiction, and the claim is proved. In view of the claim, we
find that U(t) ≥ ‖uh0‖∞ for t ∈ (0, Th), and making use of (13), we arrive at

U ′(t) ≥
(

1− b
f(‖uh0‖∞)

)
f(U(t)) for t ∈ (0, Th),

or equivalently

dU
f(U) ≥

(
1− b

f(‖uh0‖∞)

)
dt for t ∈ (0, Th).(14)

Integrating the above estimate over (0, Th) we obtain(
1− b

f(‖uh0‖∞)

)
Th ≤

∫ b

‖uh0‖∞

dσ
f(σ) ,
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which implies that

Th ≤
f(‖uh0‖∞)

f(‖uh0‖∞)−b

∫ b

‖uh0‖∞

dσ
f(σ) .

We use the fact that the quantity on the right hand side of the above inequality
is finite to complete the rest of the proof. �

Remark 9. Let t0 ∈ (0, Th). Integrating the estimate (14) over (t0, Th), we
discover that

Th − t0 ≤
f(‖uh0‖∞)

f(‖uh0‖∞)−b

∫ b

‖v(·,t0)‖∞

dσ
f(σ) . �

Up to now, the results obtained allow us to see some upper bounds of
the quenching time. In the theorem below, we derive a lower bound of the
quenching time when quenching occurs.

Theorem 10. Suppose that the solution v of (3)–(4) quenches in a finite
time Th. Then, we have

Th ≥
∫ b

‖uh0‖∞

dσ
f(σ) .

Proof. Let α(t) be the solution of the following ordinary differential equation

α′(t) = f(α(t)), t ∈ (0, Te), α(0) = ‖uh0‖∞,
where (0, Te) is the maximal time interval of existence of the solution α(t).

By a routine computation, one easily sees that Te =
∫ b
‖uh0‖∞

dσ
f(σ) . Now, let us

introduce the function z defined as follows

z(x, t) = α(t) in Ω× [0, Te).

A straightforward calculation yields

zt(x, t) =

∫
Ω
J(x− y)(z(y, t)− z(x, t))dy + f(z(x, t)) in Ω× (0, Te),

z(x, 0) ≥ v(x, 0) in Ω.

Set
w(x, t) = z(x, t)− v(x, t) in Ω× [0, T∗),

where T∗ = min{Th, Te}. Making use of the mean value theorem, we find that

wt(x, t) ≥
∫

Ω
J(x− y)(w(y, t)− w(x, t))dy

+ f ′(ξ(x, t))w(x, t) in Ω× (0, T∗),

w(x, 0) ≥ 0 in Ω,

where ξ(x, t) is an intermediate value between v(x, t) and z(x, t). It follows
from Lemma 2.1 that

w(x, t) ≥ 0 in Ω× (0, T∗),
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or equivalently

v(x, t) ≤ α(t) in Ω× (0, T∗).(15)

We claim that Th ≥ Te. To prove the claim, we argue by contradiction.
Suppose that Th < Te. In view of (15), we see that ‖v(·, Th)‖∞ ≤ α(Th) <
b, which contradicts the fact that (0, Th) is the maximum time interval of
existence of the solution v. This demonstrates the claim, and the proof is
complete. �

Remark 11. Combining Theorems 3.1 and 3.4, we note that, if the initial
datum at (4) satisfies uh0 = β = const ≥ 0, then the solution v of (3)–(4)

quenches in a finite time Th =
∫ b
β

dσ
f(σ) . �

With the aid of Theorems 3.3 and 3.4, we can derive the following interesting
result.

Theorem 12. Let v be the solution of (3)–(4), and suppose that the initial
datum (4) obeys the following condition f(‖uh0‖∞) > b. Then, the solution
v quenches in a finite time, and its quenching time Th obeys the following
estimates

0 ≤ Th − Te ≤ bTe
f(‖uh0‖∞)

+ o
(

Te
f(‖uh0‖∞)

)
as ‖uh0‖∞ → b,

where Te =
∫ b
‖uh0‖∞

dσ
f(σ) .

Proof. Since (0, Th) is the maximal time interval of existence of the solution
u, our aim is to show that Th is finite and satisfies the above estimates. Making
use of Theorems 3.3 and 3.4, we find that Te is finite and obeys the following
estimates

Te ≤ Th ≤ Te

1− b
f(‖uh0‖∞)

.(16)

Apply Taylor’s expansion to obtain

1

1− b
f(‖uh0‖∞)

= 1 + b
f(‖uh0‖∞)

+ o
(

1
f(‖uh0‖∞)

)
as ‖uh0‖∞ → b.

Use (16) and the above relation to complete the rest of the proof. �

Remark 13. The estimates of Theorem 3.5 can be rewritten as follows

0 ≤ Th
Te
− 1 ≤ b

f(‖uh0‖∞)
+ o

(
b

f(‖uh0‖∞)

)
as ‖uh0‖∞ → b.

We infer that

lim
‖uh0‖∞→b

Th
Te

= 1. �
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4. CONTINUITY OF THE QUENCHING TIME

In this section, under some assumptions, we show that the solution v of
(3)–(4) quenches in a finite time, and its quenching time goes to that of the
solution u of (1)–(2) when the parameter h goes to zero. In order to obtain
the above result, we firstly reveal that the solution v approaches the solution
u in any interval Ω × [0, T − τ ] where τ in(0, T ). This result is stated in the
following theorem.

Theorem 14. Assume that the problem (1)–(2) has a solution u ∈ C0,1(Ω×
[0, T )) such that supt∈[0,T−τ ] ‖u(·, t)‖∞ ≤ b−α, where α ∈ (0, b) and τ ∈ (0, T ).

Suppose that the initial datum at uh0 satisfies the following condition

‖uh0 − u0‖∞ = o(1) as h→ 0.(17)

Then, the problem (3)–(4) admits a unique solution v ∈ C0,1(Ω× [0, Th)), and
the following relation holds

sup
t∈[0,T−τ ]

‖v(·, t)− u(·, t)‖∞ = O(‖uh0 − u0‖∞) as h→ 0,

where τ ∈ (0, T ).

Proof. The problem (3)–(4) admits a unique solution v ∈ C0,1(Ω× [0, Th)).
In Remark 2.1, we have mentioned that Th ≥ T . Let t(h) ≤ T − τ be the first
t such that

‖v(·, t)− u(·, t)‖∞ < α
2 for t ∈ (0, t(h)).(18)

We know from (17) that t(h) > 0 for h small enough. An application of the
triangle inequality yields

‖v(·, t)‖∞ ≤ ‖u(·, t)‖∞ + ‖v(·, t)− u(·, t)‖∞ for t ∈ (0, t(h)),

which implies that

‖v(·, t)‖∞ ≤ b− α+ α
2 ≤ b−

α
2 for t ∈ (0, t(h)).(19)

Introduce the error e defined as follows

e(x, t) = v(x, t)− u(x, t) in Ω× [0, t(h)).

Making use of the mean value theorem, we find that

et(x, t) =

∫
Ω
J(x−y)(e(y, t)−e(x, t))dy+f ′(ξ(x, t))e(x, t) in Ω×(0, t(h)),

e(x, 0) = uh0(x)− u0(x) in Ω,

where ξ(x, t) is an intermediate value between v(x, t) and u(x, t). Set

z(x, t) = e(L+1)t‖uh0 − u0‖∞ in Ω× [0, T ],
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where L = f ′(b − α
2 ). Due the fact that ‖u(·, t)‖∞ ≤ b − α for t ∈ (0, t(h)),

having in mind (19), it is not hard to see that L ≥ f ′(ξ(x, t)) ∈ Ω× (0, t(h)).
A straightforward computation reveals that

zt(x, t) ≥
∫

Ω
J(x−y)(z(y, t)−z(x, t))dy+f ′(ξ(x, t))z(x, t) in Ω×(0, t(h)),

z(x, 0) ≥ e(x, 0) in Ω.

Invoking Lemma 2.2, we obtain

z(x, t) ≥ e(x, t) in Ω× (0, t(h)).

In the same way, we also prove that

z(x, t) ≥ −e(x, t) in Ω× (0, t(h)),

which implies that

‖v(·, t)− u(·, t)‖∞ ≤ e(L+1)t‖uh0 − u0‖∞ for t ∈ (0, t(h)).(20)

Now, we claim that t(h) = T − τ . To prove the claim, we argue by contradic-
tion. Suppose that t(h) < T − τ . In view of (18) and (20), it is easy to check
that

α
2 ≤ ‖v(·, t(h))− u(·, t(h))‖∞ ≤ e(L+1)T ‖uh0 − u0‖∞.

Since the term on the right hand side of the above inequality goes to zero as
h goes to zero, infer that α

2 ≤ 0, which is a contradiction. This demonstrates
the claim, and the proof is complete. �

At the moment, we are in a position to prove the main result of this section.

Theorem 15. Assume that the problem (1)–(2) has a solution u which
quenches in a finite time T such that u ∈ C0,1(Ω × [0, T )). Suppose that the
initial datum at uh0 satisfies the condition (17). Then, under the assumption of
Theorem 3.2, the problem (3)–(4) admits a unique solution v which quenches
in a finite time, and the following relation holds

lim
h→0

Th = T.

Proof. Let 0 < ε < T/2. There exists a positive constant α ∈ (0, b) such
that

1
1−A

∫ b

b−α

dσ
f(σ) <

ε
2 .(21)

Since u quenches at the time T , then there exists a time T0 ∈ (T−ε/2, T ) such
that ‖u(·, t)‖∞ ≥ b− α

2 for t ∈ [T0, T ). Invoking Theorem 4.1, we note that the
problem (3)–(4) admits a unique solution v, and the following estimate holds
‖v(·, T0)− u(·, T0)‖∞ ≤ α

2 . Making use of the triangle inequality, we find that

‖v(·, T0)‖∞ ≥ ‖u(·, T0)‖∞ − ‖v(·, T0)− u(·, T0)‖∞,
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which implies that

‖v(·, T0)‖∞ ≥ b− α
2 −

α
2 = b− α.

In Remark 2.1 of the paper, we have revealed that Th ≥ T . We infer from (21)
and Remark 3.1 that

0 ≤ Th − T ≤ Th − T0 + T0 − T ≤ ε
2 + ε

2 = ε,

and the proof is complete. �

Remark 16. If in Theorem 4.2 we replace the assumption of Theorem 3.2
by that of Theorem 3.3, then the result of Theorem 4.2 remains valid. �

5. NUMERICAL RESULTS

In this section, we give some computational experiments to confirm the
theory given in the previous section. We consider the problem (1)-(2) in the
case where Ω = (−1, 1), f(u) = (1− u)p with p > 1,

J(x) =

{
3
2x

2, if |x| < 1,

0, if |x| ≥ 1,

u0(x) = γ(2−ε(sin(πx))2

4 ) with γ > 0, ε ∈ (0, 1]. We start by the construction
of some adaptive schemes as follows. Let I be a positive integer, and let
h = 2/I. Define the grid xi = −1 + ih, 0 ≤ i ≤ I, and approximate the

solution u of (1)-(2) by the solution U
(n)
h = (U

(n)
0 , · · · , U (n)

I )T of the following
explicit scheme

U
(n+1)
i −U(n)

i
∆tn

=

I−1∑
j=0

hJ(xi − xj)(U (n)
j − U (n)

i ) + (1− U (n)
i )−p, 0 ≤ i ≤ I,

U
(0)
i =ϕi, 0 ≤ i ≤ I,

where ϕi = γ(2−ε(sin(πxi))
2

4 ). In order to permit the discrete solution to re-
produce the properties of the continuous one when the time t approaches the
quenching time T , we need to adapt the size of the time step so that we take

∆tn = h2(1− ‖U (n)
h ‖∞)p+1

with ‖U (n)
h ‖∞ = max0≤i≤I |U (n)

i |. Let us notice that the restriction on the time
step ensures the nonnegativity of the discrete solution. We also approximate

the solution u of (1)–(2) by the solution U
(n)
h of the implicit scheme below

U
(n+1)
i −U(n)

i
∆tn

=
I−1∑
j=0

hJ(xi − xj)(U (n+1)
j − U (n+1)

i ) + (1− U (n)
i )−p, 0 ≤ i ≤ I,

U
(0)
i =ϕi, 0 ≤ i ≤ I.
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As in the case of the explicit scheme, here, we also choose

∆tn = h2(1− ‖U (n)
h ‖∞)p+1.

Let us again remark that for the above implicit scheme, existence and non-
negativity of the discrete solution are also guaranteed using standard methods
(see, for instance [9]). We need the following definition.

Definition 17. We say that the discrete solution U
(n)
h of the explicit scheme

or the implicit scheme quenches in a finite time if limn→∞ ‖U (n)
h ‖∞ = 1, and

the series
∑∞

n=0 ∆tn converges. The quantity
∑∞

n=0 ∆tn is called the numerical

quenching time of the discrete solution U
(n)
h .

In the following tables, in rows, we present the numerical quenching times,
the numbers of iterations, the CPU times and the orders of the approximations
corresponding to meshes of 16, 32, 64, 128. We take for the numerical blow-up
time tn =

∑n−1
j=0 ∆tj which is computed at the first time when

∆tn = |tn+1 − tn| ≤ 10−16.

The order (s) of the method is computed from

s = log((T4h−T2h)/(T2h−Th))
log(2) .

Tables 1–8 show the numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the explicit
and implicit Euler method.

I tn n CPU time s

16 0.1267303 74 1.1 -

32 0.1254584 295 1.8 -

64 0.1251387 1179 6.26 1.992

128 0.1250586 4715 78 1.996

Table 1. Explicit Euler method, p = 1, γ = 1, ε = 1/100

I tn n CPU time s

16 0.1267353 75 1.8 -

32 0.1254588 295 2.1 -

64 0.1251389 1179 6.26 1.995

128 0.1250587 4715 78 1.996

Table 2. The implicit Euler method, p = 1, γ = 1, ε = 1/100
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I tn n CPU time s

16 0.0326408 35 2.2 -

32 0.0319626 139 15.6 -

64 0.0317912 554 74 1.98

128 0.0317480 2215 79 2.01

Table 3. The explicit Euler method, p = 1, γ = 1.5, ε = 1

I tn n CPU time s

16 0.0326418 35 2.4 -

32 0.0319629 139 16.1 -

64 0.0317915 554 75.4 1.981

128 0.0317481 2215 79 1.985

Table 4. The implicit Euler method, p = 1, γ = 1.5, ε = 1

I tn n CPU time s

16 0.0321300 35 1.4 -

32 0.0314844 137 6.1 -

64 0.0313305 548 62 2.89

128 0.0312703 2189 96 1.35

Table 5. The explicit Euler method, p = 1, γ = 1.5, ε = 1/100

I tn n CPU time s

16 0.0321305 35 1.6 -

32 0.0314846 137 6.1 -

64 0.0313325 548 63 2.08

128 0.0312713 2189 98 1.31

Table 6. The implicit Euler method, p = 1, γ = 1.5, ε = 1/100

I tn n CPU time s

16 3.684595 e-4 4 1.5 -

32 3.371334 e-4 13 9.6 -

64 3.190056 e-4 52 78 2.02

128 3.145623 e-4 207 499 0.78

Table 7. The explicit Euler method, p = 1, γ = 1.95, ε = 1

I tn n CPU time s

16 3.684596 e-4 4 2.5 -

32 3.371394 e-4 13 10.6 -

64 3.190086 e-4 52 79 2.02

128 3.145624 e-4 207 499 0.78

Table 8. The implicit Euler method, p = 1, γ = 1.95, ε = 1

Remark 18. If we consider the problem (1)–(2) in the case where f(u) =
(1−u)−1 and u0(x) = 1/2, then we know from Remark 3.3 that the quenching
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time of the solution u equals 0.125. We observe from Tables 1 to 2 that when
ε is small enough, then the numerical quenching time is approximately equal
to 0.125. This fact confirms the result established within the framework of the
continuity. On the other hand, the quenching time Te of the solution of the
following differential equation α′(t) = (1 − α(t))−1, t > 0, α(0) = γ

2 is given

explicitly by Te = (2− γ)2/8, and

Te =
{

3.145e− 4 when γ = 1.95
}
.

We note from Tables 3 to 4 that, when γ = 1.95, then numerical quenching
time of the discrete solution is approximately equal that to Te. These results
illustrate the idea of Theorem 3.5. �

For other illustrations, in what follows, we shall give some plots. In the
following figures, we can appreciate that the discrete solution quenches in a
finite time.

Fig. 1. Evolution of the discrete solu-

tion, γ = 1, ε = 1
100

(explicit scheme).

Fig. 2. Evolution of the discrete solu-

tion, γ = 1, ε = 1
100

(implicit scheme).

Fig. 3. Evolution of the discrete solu-
tion, γ = 1.5, ε = 1 (explicit scheme).

Fig. 4. Evolution of the discrete solu-
tion, γ = 1.5, ε = 1 (implicit scheme).
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Fig. 5. Evolution of the discrete solu-
tion, γ = 1.95, ε = 1 (explicit scheme).
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Fig. 6. Evolution of the discrete solu-
tion, γ = 1.95, ε = 1 (implicit scheme).
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