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ABOUT BOUNDS FOR THE ELLIPTIC INTEGRAL

OF THE FIRST KIND

PÁL A. KUPÁN∗ and RÓBERT SZÁSZ∗

Abstract. We deduce an inequality using elementary methods which makes it
possible to prove a conjecture regarding the upper bound of the elliptic integral
of the first kind, furthermore we also improve the lower bound.
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1. INTRODUCTION

Legendre’s complete elliptic integral of the first kind is defined for r ∈ (0, 1)
by

K(r) =

∫ π/2

0

1√
1−r2 sin t

dt.

This integral is a special case of Gauss’s hypergeometric function

2F1(a, b; c;x) =
∞∑
n=0

(a,n)(b,n)
(c,n)

xn

n! , x ∈ (−1, 1),

where (a, n) =
∏n−1
k=0(a+ k). We have

(1) K(r) = π
2 2F1(1

2 ,
1
2 ; 1; r2) = π

2

[
1 +

∞∑
n=1

(
1·3·...·(2n−1)

2·4·...·(2n)

)2
r2n
]
.

In [1] the authors posed the problem to determine the best values α∗ and β∗

such that

(2) π
2

(
arth(r)
r

)3/4+α∗r

< K(r) < π
2

(
arth(r)
r

)3/4+β∗r

, r ∈ (0, 1).

This problem is equivalent to the following: determine the best values α∗ and
β∗ such that

α∗ <
[
G(r)− 3

4

]
/r < β∗, r ∈ (0, 1), where G(r) = log(2K(r)/π)

log([arth(r)]/r) .

The first part of this problem had been solved by the authors in [1] showing
that α∗ = 0. Concerning the second part they conjectured that the mapping
G : (0, 1) → R is strictly increasing and convex. Since limr↗1G(r) = 1,
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this conjecture would imply β∗ = 1/4. The result β∗ = 1/4 has been proved
recently in [4]. The basic tool used in their proof is Theorem 1.25 from [2]. It
seems very difficult to prove the conjecture regarding the monotonicity of G.
In the following we will show that a different elementary approach leads to a
result, which improves the upper bound conjectured in [1].
In order to prove our results, we need certain lemmas, which will be exposed
in the next section.

2. PRELIMINARIES

Lemma 1. If an =
(

1·3·...·(2n−1)
2·4·...·(2n)

)2
, bn = 4

π(4n+1) , cn = 1

π(n+
4
π−1)

, xn =

an
bn
, n ∈ N∗, yn = an

cn
, n ∈ N∗, then the sequence

(
xn
)
n∈N∗ is strictly increas-

ing, the sequence
(
yn
)
n∈N∗ is strictly decreasing for n ≥ 2 and limn→∞ xn =

limn→∞ yn = 1.

Proof. Since

xn+1

xn
= (4n+5)(2n+1)2

(4n+1)(2n+2)2
= 16n3+36n2+24n+5

16n3+36n2+24n+4
> 1

it follows that xn+1 > xn, n ∈ N∗. On the other hand, we have an =(
1·3·...·(2n−1)

2·4·...·(2n)

)2
<
(

2·4·6·...·(2n)
3·5·...·(2n+1)

)2
. This implies an <

1
2n+1 and finally we get

xn < π(4n+1)
4(2n+1) < π

2 , n ∈ N∗. Consequently, (xn)n∈N∗ is convergent. Wallis

product formula implies that limn→∞ xn = 1. Thus we have

1 > xn+1 > xn ≥ x1 = 5π
16 = 0.981 . . . .

An analogous calculation implies the assertion regarding
(
yn
)
n∈N∗ . �

Lemma 2. For all real numbers r ∈ (0, 1), we have

K(r) < π
2

{
1 + 1

4r
2 + 4

π

∞∑
n=2

r2n

4n+1

}
.(3)

Proof. We use the notations and the results of Lemma 1

2
πK(r) = 1 +

∞∑
n=1

anr
2n = 1 +

∞∑
n=1

(
1·3·...·(2n−1)

2·4·...·(2n)

)2
r2n,

and let

h(r) = 1 + a1r
2 +

∞∑
n=2

bnr
2n = 1 + 1

4r
2 + 4

π

∞∑
n=2

r2n

4n+1 .

We introduce the notations 2
πK(r) = 1 + u(r) and h(r) = 1 + v(r). Lemma 1

implies an < bn, n ∈ N∗, n ≥ 2, and consequently u(r) < v(r) for all r ∈ (0, 1).
Thus, inequality (3) holds. �
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Lemma 3. For all real numbers r ∈ (0, 1), we have

π
2

{
1 + 1

π

∞∑
n=1

r2n

n+
4
π−1

}
< K(r).(4)

Proof. We use the notations and the results of Lemma1 in our proof again.
We recall that

2
πK(r) = 1 +

∞∑
n=1

anr
2n = 1 +

∞∑
n=1

(
1·3·...·(2n−1)

2·4·...·(2n)

)2
r2n,

and let

k(r) = 1 + 1
π

∞∑
n=2

r2n

n+
4
π−1

.

Lemma 1 implies cn < an, n ∈ N∗, n ≥ 2, and consequently k(r) < 2
πK(r) for

all r ∈ (0, 1). Thus, inequality (4) holds. �

Lemma 4. (Bernoulli’s inequality) If α ≥ 1 and a > −1, then

(5) (1 + a)α ≥ 1 + aα.

If b ∈ [0, 1] and α ∈ (1, 2), then

(6) (1 + b)α ≥ 1 + αb+ α(α−1)
2 b2 + α(α−1)(α−2)

6 b3.

Proof. We prove the second inequality. Let g : [0, 1] → R be the function

defined by g(b) = (1 + b)α − 1 − αb − α(α−1)
2 b2 − α(α−1)(α−2)

6 b3. We have

g′(b) = α(1 + b)α−1 − α − α(α− 1)b − α(α−1)(α−2)
2 b2, g′′(b) = α(α − 1)[(1 +

b)α−2 − 1 − (α − 2)b] and g′′′(b) = α(α − 1)(α − 2)[(1 + b)α−3 − 1]. Thus
g′′(0) = 0 implies that g′′(b) > 0, b ∈ (0, 1). An analogous argumentation
shows that g′ and g are strictly increasing on (0, 1) and so g(0) = 0 implies
inequality (6). �

Lemma 5. Let w : (0, 1) → R be the function defined by arth(r)
r = 1 +∑∞

n=1
1

2n+1r
2n = 1+w(r). If w(r)+w(r)v(r) =

∑∞
n=1 δnr

2n, then δn ≤ 1
3 , n ∈

N, n ≥ 1.

Proof. Indeed δ1 = 1
3 , δ2 = 17

60 , and if n ≥ 3, then

δn = 1
2n+1 + 1

8n−4 + 4
π

n−2∑
k=1

1
(2k+1)(4(n−k)+1)

= 1
2n+1 + 1

8n−4 + 4
π(4n+3)

n−2∑
k=1

(
1

2k+1 + 2
4(n−k)+1

)
= 1

2n+1 + 1
8n−4 + 4

π(4n+3)

( n−2∑
k=1

1
2k+1 +

n−1∑
k=2

2
4k+1

)
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< 1
2n+1 + 1

8n−4 + 4
π(4n+3)

3(n−2)
5

≤ 1
5 + 1

20 + 4
25π <

1
3 .

�

Lemma 6. [4] Let (an)n≥1 and (bn)n≥1 be two sequences of real numbers,
and let the power series

u(x) =

∞∑
n=1

anx
n and v(x) =

∞∑
n=1

bnx
n

be convergent for |x| < 1. If bn > 0, n = 1, 2, 3, ..., and if the sequence(
an
bn

)
n≥1

is strictly increasing (resp. decreasing), then the function

u
v : (0, 1)→ R is strictly increasing (resp. decreasing).

3. THE MAIN RESULT

Recall that

v(r) = 1
4r

2 + 4
π

∞∑
n=2

1
4n+1r

2n,

and

w(r) = arth(r)
r − 1 =

∞∑
n=1

1
2n+1r

2n.

Theorem 7. If r ∈ (0, 1), then the following inequality holds:

(7) 1 + v(r) <
(
1 + w(r)

)3
4 +

1
4 r

2

.

Proof. We begin with the remark that (7) is equivalent to

(8)

(
1 + w(r)−v(r)

1+v(r)

) 4
1−r2

> 1 + w(r), r ∈ (0, 1).

The inequality (5) from Lemma 4 implies that(
1 + w(r)−v(r)

1+v(r)

) 4
1−r2

> 1 + 4
1−r2

w(r)−v(r)
1+v(r) , r ∈ (0, 1).

Thus, in order to prove (8), we have to show that

(9) 4(w(r)−v(r))
(1−r2)(1+v(r))

> w(r), r ∈ (0, 1).

We have w(r)− v(r) > 1
12r

2, r ∈ (0, 1). Thus

r2

3(1−r2)(1+v(r))
> w(r), r ∈ (0, 1)

implies (9). This inequality is equivalent to

r2

3(1−r2)
> w(r) + w(r)v(r), r ∈ (0, 1).
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According to Lemma 5, we have

r2

3(1−r2)
=

∞∑
n=1

1
3r

2n >

∞∑
n=1

cnr
2n = w(r) + w(r)v(r),

and the proof is completed. �

Theorem 1 and Lemma 2 imply the following result.

Corollary 8. If r ∈ (0, 1), then

K(r) < π
2

(
arth(r)
r

)3
4 +

1
4 r

2

.

Theorem 9. If r ∈ (0, 1), then

(10) 1 + 1
π

∞∑
n=1

r2n

n+
4
π−1

>

(
arth(r)
r

)3
4 +

r4

200
.

Proof. We introduce the notations µ1 = 4
π −1 and z(r) = 1

π

∑∞
n=1

r2n

n+
4
π−1

=

1
π

∑∞
n=1

r2n

n+µ1
. Using this notation, (10) will be equivalent to

(11)
(
1 + z(r)

) 200
r4+150

>1+w(r)
.

We shall prove this inequality in three steps. First assume that r ∈ [0, 1
5 ].

In this case we use the second inequality of Lemma 4 putting α = 200
r4+150

and

b = z(r), and we obtain

(12) (1 + z(r))α ≥ 1 + αz(r) + α(α−1)
2 (z(r))2 + α(α−1)(α−2)

6 (z(r))3.

On the other hand we have α(α−1)(2−α)
6 < 1

20 ,
α(α−1)

2 > 0.22, (z(r))3 < r6

50 , r ∈
(0, 1

5). Thus, inequality (12) implies

(1 + z(r))α ≥ 1 + αz(r) + 0.22(z(r))2 − r6

1000 , r ∈ [0, 1
5 ],

and consequently, in order to prove (11) we have to show that

1 + αz(r) + 0.22(z(r))2 − r6

1000 ≥ 1 + w(r), r ∈ [0, 1
5 ].

This inequality is equivalent to

(13) 0.22
(

1
π

∞∑
n=1

r2n

n+µ1

)2
> r6

1000 +
∞∑
n=1

(
1

2n+1 −
α

π(n+µ1)

)
r2n, r ∈ [0, 1

5 ].

Let us denote the coefficient of r2n in 0.22
(

1
π

∑∞
n=1

r2n

n+µ1

)2
by dn, n ≥ 2.

In order to prove inequality (13), we will show that

(14) d2r
4 ≥ r6

1000 +
(

1
3 −

α
π(1+µ1)

)
r2 +

(
1
5 −

α
π(2+µ1)

)
r4, r ∈ [0, 1

5 ],
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and

(15) dn ≥ 1
2n+1 −

α
π(n+µ1) , n ≥ 3.

The inequality (14) holds, because

d2r
4 = 0.22 1

16r
4 ≥

[
1

25000 + 1
450·25 +

(
1
5 −

200

(4+π)(
1

625 +150)

)]
r4

≥ r6

1000 + 1
450+3r4

r6 +
(

1
5 −

200
(4+π)(r4+150)

)
r4

= r6

1000 + (1
3 −

α
π(1+µ1)

)
r2 +

(
1
5 −

α
π(2+µ1)

)
r4, r ∈ [0, 1

5 ].

It is sufficient to prove (15) for r = 1
5 . We have

dn = 0.22
π2

n−1∑
k=1

1
(n−k+µ1)(k+µ1) = 0.44

π2
1

n+2µ1

n−1∑
k=1

1
k+µ1

.

If r = 1
5 , inequality (15) is equivalent to

(16) tn =
2·62500(n+

1
2 )

46876π(n+µ1) + 0.88
π2

n+
1
2

n+2µ1

n−1∑
k=1

1
k+µ1

> 1, n ∈ N∗, n ≥ 3.

We prove now that the sequence (tn)n≥3 is strictly increasing.

tn+1 − tn

> 2·62500
46876π

(
n+

3
2

n+
4
π

− n+
1
2

n+
4
π−1

)
+ 0.88

π2

n+
3
2

n+
8
π−1

( n∑
k=1

1
k+µ1

−
n−1∑
k=1

1
k+µ1

)
= 0.88

π2

n+
3
2

(n+
8
π−1)(n+

4
π−1)

− 2·62500
46876

3
2π−

4
π2

(n+
4
π )(n+

4
π−1)

= 1

n+
4
π−1

(
0.88
π2

n+
3
2

n+
8
π−1
− 2·62500

46876

3
2π−

4
π2

n+
4
π

)
> 0, n ≥ 3.

Consequently, inequality (16) holds, and the proof of inequality (10) is done
for r ∈ [0, 1

5 ].

In the second step we will prove that inequality (10) holds if r ∈ [1
5 ,

97
100 ].

Let rk = 1
5 + k

200000 , k = 0, 154000. The functions 1+z(r) and
(
1+w(r)

)3
4 +

r4

200

are strictly increasing on [1
5 ,

97
100 ]. Thus, if the inequalities

(17) 1 + z(rk−1) ≥
(
1 + w(rk)

)3
4 +

r4k
200 , k = 1, 154000

hold, then the inequality-chains

1 + z(r) ≥ 1 + z(rk−1) ≥
(
1 +w(rk)

)3
4 +

r4k
200 ≥

(
1 +w(r)

)3
4 +

r4

200 , r ∈ [rk−1, rk],

imply (10) for r ∈ [1
5 ,

97
100 ]. The inequalities (17) can be verified easily using a

computer program.
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The third case is r ∈ [ 97
100 , 1). In this case we will prove the following in-

equality, which is stronger than (10):

1 + 1
π

∞∑
n=1

r2n

n+
4
π−1

>

(
arth(r)

r

)151
200

, r ∈ [ 97
100 , 1).

We define the function m : [ 97
100 , 1) → R by m(r) = 1 + z(r)−

(
1 + w(r)

)151
200 .

We have

m′(r) = w′(r)
(
z′(r)
w′(r) −

151
200

1

(1+w(r))
49
200

)
.

According to Lemma 6 the function z′

w′ : (0, 1)→ R is strictly decreasing, and

limr↗1
z′(r)
w′(r) = 2

π . Thus

z′(r)
w′(r) >

2
π >

151
200

1

(1+w(
97
100 ))

49
200

≥ 151
200

1

(1+w(r))
49
200

, r ∈ [ 97
100 , 1),

and it follows that the mapping m is strictly increasing. Consequently, the
inequality m( 97

100) > 0 implies m(r) > 0, r ∈ [ 97
100 , 1) and the proof is complete.

�

Remark 10. In order to prove the inequalities (17) we used the estimations

0 < z(r)− 1
π

p∑
n=1

r2n

n+µ1
< r2p+2

π(p+µ1+1)(1−r2)
,

0 < w(r)−
p∑

n=1

1
2n+1r

2n < r2p+2

(2p+3)(1−r2)
,

and applied numerical methods using the Matlab program.

4. FINAL COMMENTS

Theorem 2 and Corollary 1 imply the inequalities

π
2

(
arth(r)
r

)3
4 +

r4

200
< π

2

(
1 + 1

π

∞∑
n=1

r2n

n+
4
π−1

)
< K(r) < π

2

(
arth(r)
r

)3
4 +

1
4 r

2

,

for r ∈ (0, 1). Since

π
2

(
1 + 1

π

∞∑
n=1

r2n

n+
4
π−1

)
= π

2 + 1
2µ1

[2F1(1, µ1, µ1 + 1, r2)− 1]

it follows that the first inequality implies

π
2

(
arth(r)
r

)3/4

< π
2 + 1

2µ1
[2F1(1, µ1, µ1 + 1, r2)− 1], r ∈ (0, 1),
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which was conjectured in [3]. The second inequality has been established for
the first time in [3]. The third inequality implies a conjecture from [1]. The
authors of [4] proved that the following inequalities hold

π
2

(
arth(r)
r

)3
4 +α∗r

< K(r) < π
2

(
arth(r)
r

)3
4 +β∗r

, r ∈ (0, 1),

with the best possible constants α∗ = 0 and β∗ = 1/4. Our results are im-
provements of these inequalities.
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