ABOUT BOUNDS FOR THE ELLIPTIC INTEGRAL OF THE FIRST KIND

PÁL A. KUPÁN* and RÓBERT SZÁSZ*

Abstract

We deduce an inequality using elementary methods which makes it possible to prove a conjecture regarding the upper bound of the elliptic integral of the first kind, furthermore we also improve the lower bound.

MSC 2000. 33C05
Keywords. Hypergeometric function; Elliptic integral; Inequality; Bounds.

1. INTRODUCTION

Legendre's complete elliptic integral of the first kind is defined for $r \in(0,1)$ by

$$
\mathcal{K}(r)=\int_{0}^{\pi / 2} \frac{1}{\sqrt{1-r^{2} \sin t}} \mathrm{~d} t
$$

This integral is a special case of Gauss's hypergeometric function

$$
{ }_{2} F_{1}(a, b ; c ; x)=\sum_{n=0}^{\infty} \frac{(a, n)(b, n)}{(c, n)} \frac{x^{n}}{n!}, \quad x \in(-1,1)
$$

where $(a, n)=\prod_{k=0}^{n-1}(a+k)$. We have

$$
\begin{equation*}
\mathcal{K}(r)=\frac{\pi}{2}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; r^{2}\right)=\frac{\pi}{2}\left[1+\sum_{n=1}^{\infty}\left(\frac{1 \cdot 3 \cdot \ldots \cdot(2 n-1)}{2 \cdot 4 \cdot \ldots \cdot(2 n)}\right)^{2} r^{2 n}\right] \tag{1}
\end{equation*}
$$

In [1] the authors posed the problem to determine the best values α^{*} and β^{*} such that

$$
\begin{equation*}
\frac{\pi}{2}\left(\frac{\operatorname{arth}(r)}{r}\right)^{3 / 4+\alpha^{*} r}<K(r)<\frac{\pi}{2}\left(\frac{\operatorname{arth}(r)}{r}\right)^{3 / 4+\beta^{*} r}, \quad r \in(0,1) \tag{2}
\end{equation*}
$$

This problem is equivalent to the following: determine the best values α^{*} and β^{*} such that

$$
\alpha^{*}<\left[G(r)-\frac{3}{4}\right] / r<\beta^{*}, \quad r \in(0,1), \quad \text { where } \quad G(r)=\frac{\log (2 \mathcal{K}(r) / \pi)}{\log (\operatorname{arth}(r)] / r)}
$$

The first part of this problem had been solved by the authors in [1] showing that $\alpha^{*}=0$. Concerning the second part they conjectured that the mapping $G:(0,1) \rightarrow \mathbb{R}$ is strictly increasing and convex. Since $\lim _{r} \gamma_{1} G(r)=1$,

[^0]this conjecture would imply $\beta^{*}=1 / 4$. The result $\beta^{*}=1 / 4$ has been proved recently in [4]. The basic tool used in their proof is Theorem 1.25 from [2]. It seems very difficult to prove the conjecture regarding the monotonicity of G. In the following we will show that a different elementary approach leads to a result, which improves the upper bound conjectured in [1].
In order to prove our results, we need certain lemmas, which will be exposed in the next section.

2. PRELIMINARIES

LEMMA 1. If $a_{n}=\left(\frac{1 \cdot 3 \cdot \ldots \cdot(2 n-1)}{2 \cdot 4 \cdot \ldots \cdot(2 n)}\right)^{2}, b_{n}=\frac{4}{\pi(4 n+1)}, c_{n}=\frac{1}{\pi\left(n+\frac{4}{\pi}-1\right)}, x_{n}=$ $\frac{a_{n}}{b_{n}}, n \in \mathbb{N}^{*}, y_{n}=\frac{a_{n}}{c_{n}}, n \in \mathbb{N}^{*}$, then the sequence $\left(x_{n}\right)_{n \in \mathbb{N}^{*}}$ is strictly increasing, the sequence $\left(y_{n}\right)_{n \in \mathbb{N}^{*}}$ is strictly decreasing for $n \geq 2$ and $\lim _{n \rightarrow \infty} x_{n}=$ $\lim _{n \rightarrow \infty} y_{n}=1$.

Proof. Since

$$
\frac{x_{n+1}}{x_{n}}=\frac{(4 n+5)(2 n+1)^{2}}{(4 n+1)(2 n+2)^{2}}=\frac{16 n^{3}+36 n^{2}+24 n+5}{16 n^{3}+36 n^{2}+24 n+4}>1
$$

it follows that $x_{n+1}>x_{n}, n \in \mathbb{N}^{*}$. On the other hand, we have $a_{n}=$ $\left(\frac{1 \cdot 3 \cdot \ldots \cdot(2 n-1)}{2 \cdot 4 \cdot \ldots \cdot(2 n)}\right)^{2}<\left(\frac{2 \cdot 4 \cdot 6 \cdot \ldots \cdot(2 n)}{3 \cdot 5 \cdot \ldots \cdot(2 n+1)}\right)^{2}$. This implies $a_{n}<\frac{1}{2 n+1}$ and finally we get $x_{n}<\frac{\pi(4 n+1)}{4(2 n+1)}<\frac{\pi}{2}, n \in \mathbb{N}^{*}$. Consequently, $\left(x_{n}\right)_{n \in \mathbb{N}^{*}}$ is convergent. Wallis product formula implies that $\lim _{n \rightarrow \infty} x_{n}=1$. Thus we have

$$
1>x_{n+1}>x_{n} \geq x_{1}=\frac{5 \pi}{16}=0.981 \ldots
$$

An analogous calculation implies the assertion regarding $\left(y_{n}\right)_{n \in \mathbb{N}^{*}}$.
Lemma 2. For all real numbers $r \in(0,1)$, we have

$$
\begin{equation*}
\mathcal{K}(r)<\frac{\pi}{2}\left\{1+\frac{1}{4} r^{2}+\frac{4}{\pi} \sum_{n=2}^{\infty} \frac{r^{2 n}}{4 n+1}\right\} . \tag{3}
\end{equation*}
$$

Proof. We use the notations and the results of Lemma 1

$$
\frac{2}{\pi} \mathcal{K}(r)=1+\sum_{n=1}^{\infty} a_{n} r^{2 n}=1+\sum_{n=1}^{\infty}\left(\frac{1 \cdot 3 \cdot \ldots \cdot(2 n-1)}{2 \cdot 4 \cdot \ldots \cdot(2 n)}\right)^{2} r^{2 n}
$$

and let

$$
h(r)=1+a_{1} r^{2}+\sum_{n=2}^{\infty} b_{n} r^{2 n}=1+\frac{1}{4} r^{2}+\frac{4}{\pi} \sum_{n=2}^{\infty} \frac{r^{2 n}}{4 n+1} .
$$

We introduce the notations $\frac{2}{\pi} \mathcal{K}(r)=1+u(r)$ and $h(r)=1+v(r)$. Lemma 1 implies $a_{n}<b_{n}, n \in \mathbb{N}^{*}, n \geq 2$, and consequently $u(r)<v(r)$ for all $r \in(0,1)$. Thus, inequality (3) holds.

Lemma 3. For all real numbers $r \in(0,1)$, we have

$$
\begin{equation*}
\frac{\pi}{2}\left\{1+\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{r^{2 n}}{n+\frac{4}{\pi}-1}\right\}<\mathcal{K}(r) \tag{4}
\end{equation*}
$$

Proof. We use the notations and the results of Lemma1 in our proof again. We recall that

$$
\frac{2}{\pi} \mathcal{K}(r)=1+\sum_{n=1}^{\infty} a_{n} r^{2 n}=1+\sum_{n=1}^{\infty}\left(\frac{1 \cdot 3 \cdot \ldots \cdot(2 n-1)}{2 \cdot 4 \cdot \ldots \cdot(2 n)}\right)^{2} r^{2 n}
$$

and let

$$
k(r)=1+\frac{1}{\pi} \sum_{n=2}^{\infty} \frac{r^{2 n}}{n+\frac{4}{\pi}-1}
$$

Lemma 1 implies $c_{n}<a_{n}, n \in \mathbb{N}^{*}, n \geq 2$, and consequently $k(r)<\frac{2}{\pi} \mathcal{K}(r)$ for all $r \in(0,1)$. Thus, inequality (4) holds.

Lemma 4. (Bernoulli's inequality) If $\alpha \geq 1$ and $a>-1$, then

$$
\begin{equation*}
(1+a)^{\alpha} \geq 1+a \alpha \tag{5}
\end{equation*}
$$

If $b \in[0,1]$ and $\alpha \in(1,2)$, then

$$
\begin{equation*}
(1+b)^{\alpha} \geq 1+\alpha b+\frac{\alpha(\alpha-1)}{2} b^{2}+\frac{\alpha(\alpha-1)(\alpha-2)}{6} b^{3} \tag{6}
\end{equation*}
$$

Proof. We prove the second inequality. Let $g:[0,1] \rightarrow \mathbb{R}$ be the function defined by $g(b)=(1+b)^{\alpha}-1-\alpha b-\frac{\alpha(\alpha-1)}{2} b^{2}-\frac{\alpha(\alpha-1)(\alpha-2)}{6} b^{3}$. We have $g^{\prime}(b)=\alpha(1+b)^{\alpha-1}-\alpha-\alpha(\alpha-1) b-\frac{\alpha(\alpha-1)(\alpha-2)}{2} b^{2}, g^{\prime \prime}(b)=\alpha(\alpha-1)[(1+$ $\left.b)^{\alpha-2}-1-(\alpha-2) b\right]$ and $g^{\prime \prime \prime}(b)=\alpha(\alpha-1)(\alpha-2)\left[(1+b)^{\alpha-3}-1\right]$. Thus $g^{\prime \prime}(0)=0$ implies that $g^{\prime \prime}(b)>0, b \in(0,1)$. An analogous argumentation shows that g^{\prime} and g are strictly increasing on $(0,1)$ and so $g(0)=0$ implies inequality (6).

Lemma 5. Let $w:(0,1) \rightarrow \mathbb{R}$ be the function defined by $\frac{\operatorname{arth}(r)}{r}=1+$ $\sum_{n=1}^{\infty} \frac{1}{2 n+1} r^{2 n}=1+w(r)$. If $w(r)+w(r) v(r)=\sum_{n=1}^{\infty} \delta_{n} r^{2 n}$, then $\delta_{n} \leq \frac{1}{3}, n \in$ $\mathbb{N}, n \geq 1$.

Proof. Indeed $\delta_{1}=\frac{1}{3}, \delta_{2}=\frac{17}{60}$, and if $n \geq 3$, then

$$
\begin{aligned}
\delta_{n} & =\frac{1}{2 n+1}+\frac{1}{8 n-4}+\frac{4}{\pi} \sum_{k=1}^{n-2} \frac{1}{(2 k+1)(4(n-k)+1)} \\
& =\frac{1}{2 n+1}+\frac{1}{8 n-4}+\frac{4}{\pi(4 n+3)} \sum_{k=1}^{n-2}\left(\frac{1}{2 k+1}+\frac{2}{4(n-k)+1}\right) \\
& =\frac{1}{2 n+1}+\frac{1}{8 n-4}+\frac{4}{\pi(4 n+3)}\left(\sum_{k=1}^{n-2} \frac{1}{2 k+1}+\sum_{k=2}^{n-1} \frac{2}{4 k+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& <\frac{1}{2 n+1}+\frac{1}{8 n-4}+\frac{4}{\pi(4 n+3)} \frac{3(n-2)}{5} \\
& \leq \frac{1}{5}+\frac{1}{20}+\frac{4}{25 \pi}<\frac{1}{3}
\end{aligned}
$$

Lemma 6. [4] Let $\left(a_{n}\right)_{n \geq 1}$ and $\left(b_{n}\right)_{n \geq 1}$ be two sequences of real numbers, and let the power series

$$
u(x)=\sum_{n=1}^{\infty} a_{n} x^{n} \quad \text { and } \quad v(x)=\sum_{n=1}^{\infty} b_{n} x^{n}
$$

be convergent for $|x|<1$. If $b_{n}>0, \quad n=1,2,3, \ldots$, and if the sequence $\left(\frac{a_{n}}{b_{n}}\right)_{n \geq 1}$ is strictly increasing (resp. decreasing), then the function $\frac{u}{v}:(0, \overline{1}) \rightarrow \mathbb{R}$ is strictly increasing (resp. decreasing).

3. THE MAIN RESULT

Recall that

$$
v(r)=\frac{1}{4} r^{2}+\frac{4}{\pi} \sum_{n=2}^{\infty} \frac{1}{4 n+1} r^{2 n}
$$

and

$$
w(r)=\frac{\operatorname{arth}(r)}{r}-1=\sum_{n=1}^{\infty} \frac{1}{2 n+1} r^{2 n}
$$

THEOREM 7. If $r \in(0,1)$, then the following inequality holds:

$$
\begin{equation*}
1+v(r)<(1+w(r))^{\frac{3}{4}+\frac{1}{4} r^{2}} \tag{7}
\end{equation*}
$$

Proof. We begin with the remark that (7) is equivalent to

$$
\begin{equation*}
\left(1+\frac{w(r)-v(r)}{1+v(r)}\right)^{\frac{4}{1-r^{2}}}>1+w(r), \quad r \in(0,1) \tag{8}
\end{equation*}
$$

The inequality (5) from Lemma 4 implies that

$$
\left(1+\frac{w(r)-v(r)}{1+v(r)}\right)^{\frac{4}{1-r^{2}}}>1+\frac{4}{1-r^{2}} \frac{w(r)-v(r)}{1+v(r)}, \quad r \in(0,1)
$$

Thus, in order to prove (8), we have to show that

$$
\begin{equation*}
\frac{4(w(r)-v(r))}{\left(1-r^{2}\right)(1+v(r))}>w(r), r \in(0,1) \tag{9}
\end{equation*}
$$

We have $w(r)-v(r)>\frac{1}{12} r^{2}, r \in(0,1)$. Thus

$$
\frac{r^{2}}{3\left(1-r^{2}\right)(1+v(r))}>w(r), r \in(0,1)
$$

implies (9). This inequality is equivalent to

$$
\frac{r^{2}}{3\left(1-r^{2}\right)}>w(r)+w(r) v(r), r \in(0,1)
$$

According to Lemma 5, we have

$$
\frac{r^{2}}{3\left(1-r^{2}\right)}=\sum_{n=1}^{\infty} \frac{1}{3} r^{2 n}>\sum_{n=1}^{\infty} c_{n} r^{2 n}=w(r)+w(r) v(r)
$$

and the proof is completed.
Theorem 1 and Lemma 2 imply the following result.
Corollary 8. If $r \in(0,1)$, then

$$
\mathcal{K}(r)<\frac{\pi}{2}\left(\frac{\operatorname{arth}(r)}{r}\right)^{\frac{3}{4}+\frac{1}{4} r^{2}}
$$

Theorem 9. If $r \in(0,1)$, then

$$
\begin{equation*}
1+\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{r^{2 n}}{n+\frac{4}{\pi}-1}>\left(\frac{\operatorname{arth}(r)}{r}\right)^{\frac{3}{4}+\frac{r^{4}}{200}} \tag{10}
\end{equation*}
$$

Proof. We introduce the notations $\mu_{1}=\frac{4}{\pi}-1$ and $z(r)=\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{r^{2 n}}{n+\frac{4}{\pi}-1}=$ $\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{r^{2 n}}{n+\mu_{1}}$. Using this notation, 10 will be equivalent to

$$
\begin{equation*}
(1+z(r))^{\frac{200}{r^{4}+150}>1+w(r)} \tag{11}
\end{equation*}
$$

We shall prove this inequality in three steps. First assume that $r \in\left[0, \frac{1}{5}\right]$.
In this case we use the second inequality of Lemma 4 putting $\alpha=\frac{200}{r^{4}+150}$ and $b=z(r)$, and we obtain

$$
\begin{equation*}
(1+z(r))^{\alpha} \geq 1+\alpha z(r)+\frac{\alpha(\alpha-1)}{2}(z(r))^{2}+\frac{\alpha(\alpha-1)(\alpha-2)}{6}(z(r))^{3} \tag{12}
\end{equation*}
$$

On the other hand we have $\frac{\alpha(\alpha-1)(2-\alpha)}{6}<\frac{1}{20}, \frac{\alpha(\alpha-1)}{2}>0.22,(z(r))^{3}<\frac{r^{6}}{50}, r \in$ $\left(0, \frac{1}{5}\right)$. Thus, inequality 12 implies

$$
(1+z(r))^{\alpha} \geq 1+\alpha z(r)+0.22(z(r))^{2}-\frac{r^{6}}{1000}, \quad r \in\left[0, \frac{1}{5}\right]
$$

and consequently, in order to prove (11) we have to show that

$$
1+\alpha z(r)+0.22(z(r))^{2}-\frac{r^{6}}{1000} \geq 1+w(r), \quad r \in\left[0, \frac{1}{5}\right]
$$

This inequality is equivalent to

$$
\begin{equation*}
0.22\left(\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{r^{2 n}}{n+\mu_{1}}\right)^{2}>\frac{r^{6}}{1000}+\sum_{n=1}^{\infty}\left(\frac{1}{2 n+1}-\frac{\alpha}{\pi\left(n+\mu_{1}\right)}\right) r^{2 n}, \quad r \in\left[0, \frac{1}{5}\right] \tag{13}
\end{equation*}
$$

Let us denote the coefficient of $r^{2 n}$ in $0.22\left(\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{r^{2 n}}{n+\mu_{1}}\right)^{2}$ by $d_{n}, n \geq 2$.
In order to prove inequality (13), we will show that

$$
\begin{equation*}
d_{2} r^{4} \geq \frac{r^{6}}{1000}+\left(\frac{1}{3}-\frac{\alpha}{\pi\left(1+\mu_{1}\right)}\right) r^{2}+\left(\frac{1}{5}-\frac{\alpha}{\pi\left(2+\mu_{1}\right)}\right) r^{4}, \quad r \in\left[0, \frac{1}{5}\right] \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{n} \geq \frac{1}{2 n+1}-\frac{\alpha}{\pi\left(n+\mu_{1}\right)}, \quad n \geq 3 \tag{15}
\end{equation*}
$$

The inequality (14) holds, because

$$
\begin{aligned}
d_{2} r^{4} & =0.22 \frac{1}{16} r^{4} \geq\left[\frac{1}{25000}+\frac{1}{450 \cdot 25}+\left(\frac{1}{5}-\frac{200}{(4+\pi)\left(\frac{1}{625}+150\right)}\right)\right] r^{4} \\
& \geq \frac{r^{6}}{1000}+\frac{1}{450+3 r^{4}} r^{6}+\left(\frac{1}{5}-\frac{200}{(4+\pi)\left(r^{4}+150\right)}\right) r^{4} \\
& =\frac{r^{6}}{1000}+\left(\frac{1}{3}-\frac{\alpha}{\pi\left(1+\mu_{1}\right)}\right) r^{2}+\left(\frac{1}{5}-\frac{\alpha}{\pi\left(2+\mu_{1}\right)}\right) r^{4}, \quad r \in\left[0, \frac{1}{5}\right] .
\end{aligned}
$$

It is sufficient to prove 15 for $r=\frac{1}{5}$. We have

$$
d_{n}=\frac{0.22}{\pi^{2}} \sum_{k=1}^{n-1} \frac{1}{\left(n-k+\mu_{1}\right)\left(k+\mu_{1}\right)}=\frac{0.44}{\pi^{2}} \frac{1}{n+2 \mu_{1}} \sum_{k=1}^{n-1} \frac{1}{k+\mu_{1}} .
$$

If $r=\frac{1}{5}$, inequality $\sqrt{15}$ is equivalent to

$$
\begin{equation*}
t_{n}=\frac{2 \cdot 62500\left(n+\frac{1}{2}\right)}{46876 \pi\left(n+\mu_{1}\right)}+\frac{0.88}{\pi^{2}} \frac{n+\frac{1}{2}}{n+2 \mu_{1}} \sum_{k=1}^{n-1} \frac{1}{k+\mu_{1}}>1, n \in \mathbb{N}^{*}, n \geq 3 \tag{16}
\end{equation*}
$$

We prove now that the sequence $\left(t_{n}\right)_{n \geq 3}$ is strictly increasing.

$$
\begin{aligned}
& t_{n+1}-t_{n} \\
& >\frac{2 \cdot 62500}{46876 \pi}\left(\frac{n+\frac{3}{2}}{n+\frac{4}{\pi}}-\frac{n+\frac{1}{2}}{n+\frac{4}{\pi}-1}\right)+\frac{0.88}{\pi^{2}} \frac{n+\frac{3}{2}}{n+\frac{8}{\pi}-1}\left(\sum_{k=1}^{n} \frac{1}{k+\mu_{1}}-\sum_{k=1}^{n-1} \frac{1}{k+\mu_{1}}\right) \\
& =\frac{0.88}{\pi^{2}} \frac{n+\frac{3}{2}}{\left(n+\frac{8}{\pi}-1\right)\left(n+\frac{4}{\pi}-1\right)}-\frac{2 \cdot 62500}{46876} \frac{\frac{3}{2 \pi}-\frac{4}{\pi^{2}}}{\left(n+\frac{4}{\pi}\right)\left(n+\frac{4}{\pi}-1\right)} \\
& =\frac{1}{n+\frac{4}{\pi}-1}\left(\frac{0.88}{\pi^{2}} \frac{n+\frac{3}{2}}{n+\frac{8}{\pi}-1}-\frac{2 \cdot 62500}{46876} \frac{\frac{3}{2 \pi}-\frac{4}{\pi^{2}}}{n+\frac{4}{\pi}}\right)>0, n \geq 3 .
\end{aligned}
$$

Consequently, inequality (16) holds, and the proof of inequality 10 is done for $r \in\left[0, \frac{1}{5}\right]$.

In the second step we will prove that inequality 10 holds if $r \in\left[\frac{1}{5}, \frac{97}{100}\right]$.
Let $r_{k}=\frac{1}{5}+\frac{k}{200000}, k=\overline{0,154000}$. The functions $1+z(r)$ and $(1+w(r))^{\frac{3}{4}+\frac{r^{4}}{200}}$ are strictly increasing on $\left[\frac{1}{5}, \frac{97}{100}\right]$. Thus, if the inequalities

$$
\begin{equation*}
1+z\left(r_{k-1}\right) \geq\left(1+w\left(r_{k}\right)\right)^{\frac{3}{4}+\frac{r_{k}^{4}}{200}}, \quad k=\overline{1,154000} \tag{17}
\end{equation*}
$$

hold, then the inequality-chains
$1+z(r) \geq 1+z\left(r_{k-1}\right) \geq\left(1+w\left(r_{k}\right)\right)^{\frac{3}{4}+\frac{r_{k}^{4}}{200}} \geq(1+w(r))^{\frac{3}{4}+\frac{r^{4}}{200}}, \quad r \in\left[r_{k-1}, r_{k}\right]$, imply 10 for $r \in\left[\frac{1}{5}, \frac{97}{100}\right]$. The inequalities 17 can be verified easily using a computer program.

The third case is $r \in\left[\frac{97}{100}, 1\right)$. In this case we will prove the following inequality, which is stronger than (10):

$$
1+\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{r^{2 n}}{n+\frac{4}{\pi}-1}>\left(\frac{\operatorname{arth}(r)}{r}\right)^{\frac{151}{200}}, \quad r \in\left[\frac{97}{100}, 1\right) .
$$

We define the function $m:\left[\frac{97}{100}, 1\right) \rightarrow \mathbb{R}$ by $m(r)=1+z(r)-(1+w(r))^{\frac{151}{200}}$. We have

$$
m^{\prime}(r)=w^{\prime}(r)\left(\frac{z^{\prime}(r)}{w^{\prime}(r)}-\frac{151}{200} \frac{1}{(1+w(r)) \frac{49}{200}}\right) .
$$

According to Lemma 6 the function $\frac{z^{\prime}}{w^{\prime}}:(0,1) \rightarrow \mathbb{R}$ is strictly decreasing, and $\lim _{r} \nearrow_{1} \frac{z^{\prime}(r)}{w^{\prime}(r)}=\frac{2}{\pi}$. Thus

$$
\frac{z^{\prime}(r)}{w^{\prime}(r)}>\frac{2}{\pi}>\frac{151}{200} \frac{1}{\left(1+w\left(\frac{97}{100}\right)\right) \frac{49}{200}} \geq \frac{151}{200} \frac{1}{(1+w(r)) \frac{49}{200}}, r \in\left[\frac{97}{100}, 1\right),
$$

and it follows that the mapping m is strictly increasing. Consequently, the inequality $m\left(\frac{97}{100}\right)>0$ implies $m(r)>0, r \in\left[\frac{97}{100}, 1\right)$ and the proof is complete.

Remark 10. In order to prove the inequalities (17) we used the estimations

$$
\begin{aligned}
& 0<z(r)-\frac{1}{\pi} \sum_{n=1}^{p} \frac{r^{2 n}}{n+\mu_{1}}<\frac{r^{2 p+2}}{\pi\left(p+\mu_{1}+1\right)\left(1-r^{2}\right)}, \\
& 0<w(r)-\sum_{n=1}^{p} \frac{1}{2 n+1} r^{2 n}<\frac{r^{2 p+2}}{(2 p+3)\left(1-r^{2}\right)},
\end{aligned}
$$

and applied numerical methods using the Matlab program.

4. FINAL COMMENTS

Theorem 2 and Corollary 1 imply the inequalities

$$
\frac{\pi}{2}\left(\frac{\operatorname{arth}(r)}{r}\right)^{\frac{3}{4}+\frac{r^{4}}{200}}<\frac{\pi}{2}\left(1+\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{r^{2 n}}{n+\frac{4}{\pi}-1}\right)<\mathcal{K}(r)<\frac{\pi}{2}\left(\frac{\operatorname{arth}(r)}{r}\right)^{\frac{3}{4}+\frac{1}{4} r^{2}},
$$

for $r \in(0,1)$. Since

$$
\frac{\pi}{2}\left(1+\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{r^{2 n}}{n+\frac{4}{\pi}-1}\right)=\frac{\pi}{2}+\frac{1}{2 \mu_{1}}\left[2 F_{1}\left(1, \mu_{1}, \mu_{1}+1, r^{2}\right)-1\right]
$$

it follows that the first inequality implies

$$
\frac{\pi}{2}\left(\frac{\operatorname{arth}(r)}{r}\right)^{3 / 4}<\frac{\pi}{2}+\frac{1}{2 \mu_{1}}\left[2 F_{1}\left(1, \mu_{1}, \mu_{1}+1, r^{2}\right)-1\right], r \in(0,1)
$$

which was conjectured in [3]. The second inequality has been established for the first time in [3]. The third inequality implies a conjecture from [1]. The authors of 4] proved that the following inequalities hold

$$
\frac{\pi}{2}\left(\frac{\operatorname{arth}(r)}{r}\right)^{\frac{3}{4}+\alpha^{*} r}<\mathcal{K}(r)<\frac{\pi}{2}\left(\frac{\operatorname{arth}(r)}{r}\right)^{\frac{3}{4}+\beta^{*} r}, r \in(0,1)
$$

with the best possible constants $\alpha^{*}=0$ and $\beta^{*}=1 / 4$. Our results are improvements of these inequalities.

REFERENCES

[1] H. Alzer and S.-L. Qiu, Monotonicity theorems and inequalities for the complete elliptic integrals, Journal of Comp. Appl. Math., 172 (2004), pp. 289-312.
[2] G.D. Anderson, M.K. Vamanamurthy and M. Vourinen, Inequalities for quasiconformal mappings in spaces, Pacific J. Math., 160 (1993), pp. 1-18.
[3] Sz. András and Á. Baricz, Bounds for complete elliptic integrals of the first kind, Expo. Math., 28 (2010) no. 4, pp. 357-364.
[4] Y.-M. Chu, M.-K. Wang and Y.-F. Qiu, On Alzer and Qiu's conjecture for complete elliptic integral and inverse hyperbolic tangent function, Abstract and Applied Analysis, article ID. 697547, 2011, pp. 1-7.
[5] S. Ponnusamy and M. Vuorinen, Asymptotic expansions and inequalities for hypergeometric functions, Mathematika, 44 (1997) no. 2, pp. 278-301.

Received by the editors: February 6, 2012.

[^0]: ${ }^{*}$ Department of Mathematics, Sapientia University, Sighişoarei st., no. 1C, Tg. Mureş, Romania, e-mail: kupanp@ms.sapientia.ro, szasz_robert2001@yahoo.com.

