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ABOUT BOUNDS FOR THE ELLIPTIC INTEGRAL
OF THE FIRST KIND

PAL A. KUPAN* and ROBERT SZASZ*

Abstract. We deduce an inequality using elementary methods which makes it
possible to prove a conjecture regarding the upper bound of the elliptic integral
of the first kind, furthermore we also improve the lower bound.
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1. INTRODUCTION

Legendre’s complete elliptic integral of the first kind is defined for r € (0, 1)
by

w/2
Kir) = /0 WEEETL

This integral is a special case of Gauss’s hypergeometric function

[e.e]

2Fi(a,bc;m) =y Pl o g e (<1,1),
n=0
where (a,n) = [[}Z5(a + k). We have
() o 9 .
0 K0 =FaRGE =543 () )
n=1

In [I] the authors posed the problem to determine the best values a* and *
such that

N 3/44+a*r N 3/44-B*r
(2) g(a“ W) < K(r) < g<a“t <7”>> , e (0,1).

T s

This problem is equivalent to the following: determine the best values a* and
B* such that
* 1 2’C s
a* < |:G(T') - %] Jr<pB*, re(0,1), where G(r) = 7102%[;“}52)/]/2,).
The first part of this problem had been solved by the authors in [I] showing
that o = 0. Concerning the second part they conjectured that the mapping
G : (0,1) — R is strictly increasing and convex. Since lim, ~ G(r) = 1,
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this conjecture would imply * = 1/4. The result 8* = 1/4 has been proved
recently in [4]. The basic tool used in their proof is Theorem 1.25 from [2]. It
seems very difficult to prove the conjecture regarding the monotonicity of G.
In the following we will show that a different elementary approach leads to a
result, which improves the upper bound conjectured in [1J.

In order to prove our results, we need certain lemmas, which will be exposed
in the next section.

2. PRELIMINARIES

2
LEMMA 1. [fan = <%2(Z;)1)> y bn = m, Cp = P E— Ty —
s

o ne Ny, = “—:, n € N*, then the sequence (xn)

bn c
ing, the sequence (yn)

limy, o0 Yy = 1.

nene U8 strictly increas-

neN* is strictly decreasing for n > 2 and limy,_, o T, =

Proof. Since

Tnt1 _ (An+5)(2n+1)? _ 16n3+36n2+24n+5

zn  (4n+1)(2n+2)2 T 16n3+36n2+24n+4 >1

it follows that z,+1 > z,, n € N*. On the other hand, we have a, =

2 2
13..(2n—1 2:4:6-...-(2 o
( 2.4.”9(7;”) )) < (43-5-.,..(7254?1))) . This implies a, < Tlﬂ and finally we get

Ty < Z(%Zﬂ)) < &, n € N*. Consequently, (2,),en+ is convergent. Wallis
product formula implies that lim,,_, o x, = 1. Thus we have

1> 2p1 > @y > 21 = 2% =0.981....
An analogous calculation implies the assertion regarding (yn)n Nt O

LEMMA 2. For all real numbers r € (0,1), we have
o0
(3) K(T)<§{1+ir2+iz4ﬁ }
n=2
Proof. We use the notations and the results of Lemma 1

() =14 Y an? =14 Y (Apeny’on,
n=1 n=1

and let

oo o

hr) =14ar’ +Y by =144 + 2% 1
n=2 n=2

We introduce the notations 2K(r) = 1+ u(r) and h(r) = 1 + v(r). Lemma 1

implies a,, < by, n € N*, n > 2, and consequently u(r) < v(r) for all r € (0,1).

Thus, inequality holds. O
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LEMMA 3. For all real numbers r € (0,1), we have

(4) g{1+;2ﬁ%}</c(r).
n=1 ™

Proof. We use the notations and the results of Lemmal in our proof again.
We recall that

2 _1+Zanr —l—i—Z( 272Ln)1 )2T2n,

and let .

2n

k(r)=1+1 > n:%il
Lemma 1 implies ¢, < an, n € N*, n > 2, and consequently k(r) < 2K(r) for
all » € (0,1). Thus, inequality holds. O
LEMMA 4. (Bernoulli’s inequality) If « > 1 and a > —1, then

(5) (1+a)*>1+4 aa.
If b€ [0,1] and o € (1,2), then
(6) (140)* > 1+ ab+ 2o-ly? 4 ala-l@2);3

Proof. We prove the second inequality. Let ¢ : [0,1] — R be the function
defined by g(b) = (1 4+ b)* — 1 — ab — @12 _ ale"DO2)43 W paye
g(b) = a(l+6)°7" —a—ala—1)p— LD g/(h) = a(a - 1)[(1 +
b)*2 -1 — (a —2)b] and ¢”"(b) = ala — 1)(a — 2)[(1 + b)*~3 — 1]. Thus
g"(0) = 0 implies that ¢”(b) > 0, b € (0,1). An analogous argumentation
shows that ¢’ and ¢ are strictly increasing on (0,1) and so g(0) = 0 implies
inequality @ O

LEMMA 5. Let w : (0,1) — R be the function defined by arth() =1+
Sl g = 14 w(r). If w(r)+w(r)o(r) = 307 6,r?", then 5 <ine
N, n>1.

Proof. Indeed 61 = %, 0y =

60, and if n > 3, then

_ 14
on =557 t gz T 7 E : 2I<:+1)(4 n—k)+1)
k=1

- 2n+1 + gt Tr(4n+3 Z <2k:+1 T Im= k)+1>

n—2 n—1

_ 1 1 4 1 2
— 2n+1 tg—a T 7 (4n+3) ( 2k+1 + 4k+1>
=1

o
T
\-}
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3(n—2)
<o teoa Tt (4n+3) 5

<§+ot s <3

O

LEMMA 6. [4] Let (an)n>1 and (by)n>1 be two sequences of real numbers,
and let the power series

Zanzc and v( anx

be convergent for |x| < 1. If b, > 0, n = 1,2,3,..., and if the sequence

n>1

(“—" is strictly increasing (resp. decreasing), then the function
2:(0,1) = R is strictly increasing (resp. decreasing).

3. THE MAIN RESULT

Recall that

o
o) = b A3 gl
n=2
and
oo
w(r) =200 =3 L2
THEOREM 7. Ifr € (0,1), then the following inequality holds:
3.1,
(7) 14+ou(r) < (1+w(r)4™4
Proof. We begin with the remark that is equivalent to
w(r)—v(r) 1—r?
(8) <1+1+U(T)> > 1+w(r), re (0,1).

The inequality from Lemma 4 implies that

4
r 12 w(r)—v(r
<1+g+>v(rg>) > 14+ A M0 g (o)1),

Thus, in order to prove , we have to show that

9) % > w(r), r € (0,1).
We have w(r) — v(r) > 152, r € (0,1). Thus

3(1—r2)(1+v(7)) >w(r), r€(0,1)

implies @D This inequality is equivalent to
2
W > w(r) +w(r)v(r), re€ (0,1).
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According to Lemma 5, we have

3(1 r2 Z ip2n > ch,,ﬂn = w(r) + w(r)v(r),
n=1

and the proof is completed. O
Theorem 1 and Lemma 2 imply the following result.

COROLLARY 8. If r € (0,1), then

THEOREM 9. Ifr € (0,1), then
3,

= ar ' Z—i_m
(10) %Z e < “2”) -

=1

Proof. We introduce the notations p1 = 2 —1 and z(r) = 2 3°°° ’"24" =
n+——

% Yoy nle Using this notation, will be equivalent to

™

200
(11) (1 + z(r)) T4+150>1+w(r).

We shall prove this inequality in three steps. First assume that r € [0, 5}

_ _ 200
In this case we use the second inequality of Lemma 4 putting o = =75 150 and

b= z(r), and we obtain

(12)  (+2()" 2 T+ a(r) + 25 (2(n)” + A2 e ()
On the other hand we have a(a_lg(z_a) < >, a(az U > 022, (z(r))? < %, r e

(0, %) Thus, inequality implies
(14 2(r)* > 1+ az(r) + 0.22(2(r)? — {0205, € [0, 1],
and consequently, in order to prove we have to show that
1+ az(r) +0.22(z(r))? 1000 (r), re€|o, %]

This inequality is equivalent to

(o] 2 o
1 2n 6 1 2 1
(13) 0'22<? Z nim) > ﬁ + Z <2n+1 - W(niu1)>r n’ S [Oa 5]'
n=1

n=1

Let us denote the coefficient of 72" in 0. 22(1 > nle) by dy, n > 2.

In order to prove 1nequahty ., we will show that

(14) dort > 1000 + < 7(14_“1))7“ + ( 7“2_?“1))7‘4, r € [0, %],
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and
1
The inequality holds, because
dort = 02234 > [h b b+ (L - — 20
16 25000 ' 450-25 5 (4+W)(&+150)

r 1.6 _ 200 4
Z 1000 T Borara T (5 (4+7r)(7"4+150)>r

T6 o
= 1000 + ( (l—l—ul))r + ( 7r(2+p,1))’r47 re [O? %]

It is sufficient to prove for r = % We have

n—1
_ 022 1 _ 044 1 1
dn = 73 (n—k+p1)(k+p1) — 72 n+2um Z k+pr
k=1
Ifr= %, inequality 1' is equivalent to
2:62500(n+ ) 1=
7’"‘ 0.88 "7 1 %
(16) tn T 468767 (n+u1) + T2 n+2u1 Z k+p1 > 17 neN , T > 3.
k=1

We prove now that the sequence (t,),>3 is strictly increasing.

tn+1 —tn
262500 (75 n+g n+ = 1
-1 (2 - o) e mh (O - S )
k=1
3 3 A
_ @ . n+3 . 262500 ZW 7r24
™ (nt+—1)(n+-1) 46876 (n+3)(n+-1)
1 0.88 ”+% 2-62500 23 =
= — 7= >0, n>3.
n+ <7r2 n+%—1 46876 n+; )
Consequently, inequality (16]) holds, and the proof of inequality (10| is done
for r € [0, 1].
In the second step we will prove that inequality 1} holds if r € [%, %
3
1200

Let r = %+20(§€W’ k = 0,154000. The functions 14 z(r) and (1+w(r))
are strictly increasing on [5, 100] Thus, if the inequalities

4
"k

(17) 1+ 2(rg—1) > (1 +w(rg)) 47200, k = T,154000
hold, then the inequality-chains

w

3, Tk 3,1t
142(r) > 14+ 2(rp—1) > (1—|—w(rk))4+200 > (1—|—w(r))4+200, rE [re_1,7k],

imply |D for r € [é, 100] The inequalities (|17) can be verified easily using a
computer program.



7 About bounds for the elliptic integral of the first kind 155

The third case is r € [19070, 1). In this case we will prove the following in-
equality, which is stronger than :

151

1 = r2n arth(r) 200 97 1
%Z g : ;1€ 1550 1)
" +x
151

We define the function m : [190707 1) = R by m(r) =1+ 2(r) — (1 + w(r)) 200,
We have

m/(r) = w’(r)(i},((;)) — %[1) L ﬁ)
(14w(r)) 200
According to Lemma 6 the function fu—/, :(0,1) — R is strictly decreasing, and
- Z(r) _ 2
lim,. W) = w Thus

Z/(T‘) 151 1 151 1 97
W) > a0 2 w5 7€ Lo D)
(1+w(100))200 (1+w(r)) 200

and it follows that the mapping m is strictly increasing. Consequently, the

inequality m(45) > 0 implies m(r) > 0, r € {55, 1) and the proof is complete.

O

REMARK 10. In order to prove the inequalities we used the estimations
P

1 ,r2n T2p+2
0<z(r) -7 ntm < wprm D) A—r2)
n=1
§ : n r2pt2
0< w 2n+1r (2p+3)(1—r2)>

and applied numerical methods using the Matlab program.

4. FINAL COMMENTS

Theorem 2 and Corollary 1 imply the inequalities
3

,_‘_ﬁ 00 —0—17’2
7 [ arth(r) 47200 <z 1+l r2n 4
2 r 2 T Z 4
n+
n=1 0

L[S

7 [ arth(r)
_1></C(r)<2< - ) )

for r € (0,1). Since

9
1 2n B 1 2
%(14—; E éj)g+2M[2F1(17N17M1+1,T)_1]

it follows that the first inequality implies

3/4
h
F(2) < g bR g 10— 1) 7€ (0,2
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which was conjectured in [3]. The second inequality has been established for
the first time in [3]. The third inequality implies a conjecture from [I]. The
authors of [4] proved that the following inequalities hold

3 3 4

4+a*r Z+f8 r
g<art£(r)> <K(r) < g(artl;(”) , 7€ (0,1),

with the best possible constants o = 0 and f* = 1/4. Our results are im-
provements of these inequalities.
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