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GLOBAL CONVERGENCE OF THE ARMIJO EPSILON STEEPEST

DESCENT ALGORITHM
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Abstract. In this article, we study the unconstrained minimization problem

(P ) min {f(x) : x ∈ Rn} .
where f : Rn → R is a continuously differentiable function. We introduce a new
algorithm which accelerates the convergence of the steepest descent method. We
further establish the global convergence of this algorithm in the case of Armijo
inexact line search.

MSC 2000. 90C30; 65K05; 49M37.

Keywords. Unconstrained optimization, global convergence, steepest descent
algorithm, ε-algorithm, Armijo inexact line search.

1. INTRODUCTION

Consider the following unconstrained minimization problem:

(1) min {f(x) : x ∈ Rn}

where f : Rn → R is a continuously differentiable function. Numerical meth-
ods for problem (1) are iterative. An initial point x1 should be given, and at
the k-th iteration a new iterate point xk+1 is to be computed by using the
information at the current iterate point xk and those at the previous points.
It is hoped that the sequence {xk}k∈N generated will converge to the solution
of (1).

Most numerical methods for unconstrained optimization can be classified
into two groups, namely line search algorithms and trust region algorithms.
A line search algorithm chooses or computes a search direction dk at the k-th
iteration, and it sets the next iterate point by

xk+1 = xk + αkdk
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where dk is a descent direction of f(x) at xk and αk is a step size. The search
direction dk is generally required to satisfy

∇f (xk)
t dk < 0,

which guarantees that dk is a descent direction of f(x) at xk ([5], [28]). In line
search methods, if the search direction dk is given at the k-th iteration, then
the next task is to find a step size αk along the search direction. The ideal
line search rule is the exact one that satisfies

f(xk + αkdk) = min
α>0

f(xk + αdk).

In fact, the exact step size is difficult or even impossible to obtain in practical
computation. Thus many researchers constructed some inexact line search
rules, such as Armijo rule, Goldstein rule and Wolfe rule ([4], [26], [34]). In
this article, we use the Armijo’s line search ([4]), which may be summarized
as follows:

Armijo’s line search ([4])
Armijo’s Rule is driven by two parameters, 0 < c < 1 and β > 1, which

respectively manage the acceptable step length from being too large or too
small. (Typical values are c = 0.2, β = 2). Suppose that ∇f (xk)

t dk < 0.
Define the functions ϕ(α) and ϕ̂(α) as follows:

ϕ(α) = f(xk + αdk), α ≥ 0

ϕ̂(α) = ϕ(0) + αcϕ′(0) = f(xk) + αc∇f (xk)
t dk, α ≥ 0, 0 < c < 1.

A step length α is considered to be acceptable, provided that

ϕ (α) ≤ ϕ̂(α).

However, in order to prevent α from being too small, Armijo Rule also requires
that the following inequality holds

ϕ (βα) > ϕ̂(βα),

which yields an acceptable range for α.
Frequently, Armijo Rule is adopted in the following manner. A fixed step

length parameter α is chosen. If ϕ (α) ≤ ϕ̂(α), then either α is itself selected
as the step size, or α is sequentially-doubled (assuming β = 2) to find the
largest integer t ≥ 0 for which

ϕ
(
2tα
)
≤ ϕ̂(2tα)

On the other hand, if ϕ (α) > ϕ̂(α), then α is sequentially halved to find the
smallest integer t ≥ 1 for which

ϕ
(
α
2t

)
≤ ϕ̂( α2t ).

The steepest descent method is one of the simplest and the most fundamen-
tal minimization methods for unconstrained optimization. Since it uses the
negative gradient as its descent direction, it is also called the gradient method.
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For many problems, the steepest descent method is very slow. Although
the method usually works well in the early steps, as a stationary point is ap-
proached, it descends very slowly with zigzagging phenomena. There are some
ways to overcome these difficulties of zigzagging by deflecting the gradient.
Rather then moving along d = −∇f(x), we can move along d = −D∇f(x) ([8],
[9], [10], [12], [13], [14], [15], [17], [21], [22], [23], [24], [25], [31], [32], [33]) or
along d = −∇f(x) + g ([18], [19], [20], [21], [27], [29], [30]), where D is an
appropriate matrix, and g is an appropriate vector.

In [16] Benzine and Djeghaba provided another solution to this problem by
accelerating the convergence of the gradient method.

They achieved this goal by designing a new algorithm, named the epsilon
steepest descent algorithm, in which the Wynn epsilon algorithm ([1], [6], [35],
[36]) and exact line searches played a prominent role.

In this work we accelerate the convergence of the gradient method by using
the Florent Cordellier epsilon algorithm ([11]).

We study the global convergence of the new algorithm, named the Armijo
epsilon steepest descent algorithm, by using Armijo inexact line searches ([4])

2. THE EPSILON ALGORITHM

The Epsilon Algorithm is due to P. Wynn ([35], [36]).
Given a sequence {xk}k∈N , xk ∈ Rn. The coordinates of xk will be noted as
follows:

xk = (x1
k, x

2
k, ..., x

i
k, ..., x

n
k) ∈ Rn

For i ∈ {1, 2, ..., n} , the Epsilon Algorithm calculates quantities with two

indices εk,ij (j, k = 0, 1, ...) as follows:

εk,i−1 = 0 εk,i0 = xik k = 0, 1, ...(2)

εk,ij+1 = εk+1,i
j−1 + 1

εk+1,i
j −εk,ij

j, k = 0, 1, ...

For i ∈ {1, 2, ..., n} , these numbers can be placed in an array as follows:
This array is called the ε-array. In this array the lower index denotes a

column while the upper index denotes a diagonal.
For i ∈ {1, 2, ..., n} , the Epsilon algorithm relates the numbers located at

the four vertices of a rhombus:

εk,ij
εk+1,i
j−1 εk,ij+1

εk+1,i
j

To calculate the quantities εk,ij+1, we need to know the numbers εk+1,i
j−1 ,

εk+1,i
j and εk,ij .
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ε0,i
−1 = 0

ε0,i
0 = xi0

ε1,i
−1 = 0 ε0,i

1

ε1,i
0 = xi1 ε0,i

2

ε2,i
−1 = 0 ε1,i

1 ε0,i
3

ε2,i
0 = xi2 ε1,i

2 ε0,i
4

ε3,i
−1 = 0 ε2,i

1 ε1,i
3 ε0,i

5

ε3,i
0 = xi3 ε2,i

2 ε1,i
4 ε0,i

6

ε4,i
−1 = 0 ε3,i

1 ε2,i
3 ε1,i

5 ε0,i
7

ε4,i
0 = xi4 ε3,i

2 ε2,i
4 ε1,i

6 −
ε5,i
−1 = 0 ε4,i

1 ε3,i
3 ε2,i

5 ε1,i
7

ε5,i
0 = xi5 ε4,i

2 ε3,i
4 ε2,i

6 −
ε6,i
−1 = 0 ε5,i

1 ε4,i
3 ε3,i

5 ε2,i
7

ε6,i
0 = xi6 ε5,i

2 ε4,i
4 ε3,i

6 −
ε7,i
−1 = 0 ε6,i

1 ε5,i
3 ε4,i

5 ε3,i
7

Table 1. Epsilon Algorithm

3. THE ARMIJO EPSILON STEEPEST DESCENT ALGORITHM

To construct our algorithm, we use the column εk,i2 (i = 1, 2, ..., n). Given
a sequence

{
xik
}
k∈N (i = 1, 2, ..., n), F. Cordellier ([11]) proposed another

formula to calculate the epsilon algorithm of order 2. The quantities εk,i2 can
be calculated as follows

(3) εk,i2 = xik+1 +

[
1

xik+2−x
i
k+1

− 1
xik+1−x

i
k

]−1

, (i = 1, 2, ..., n)

To calculate εk,i2 , we use the elements xik, x
i
k+1 and xik+2 (i = 1, 2, ..., n).

Numerical calculations ([11]) showed that the epsilon algorithm of order 2
with the Cordellier formula (3) is more stable than Wynn epsilon algorithm
(2).

We are now in measure to introduce our new algorithm: the Armijo epsilon
steepest descent algorithm.

The Armijo epsilon steepest descent algorithm
Initialization step: Choose an initial point x0 ∈ Rn an initial point. The
coordinates of x0 will be noted as follows:

x0 = (x1
0, x

2
0, ..., x

i
0, ..., x

n
0 ) ∈ Rn

Let k = 0 and go to Main step.

Main Step: Starting with the vector xk,

xk = (x1
k, x

2
k, ..., x

i
k, ..., x

n
k).
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If ‖∇f(xk)‖ = 0, stop. Otherwise, let should be rk = xk and compute the
vectors sk and tk by using twice the steepest descent algorithm, with Armijo
inexact line search

sk = rk − λk∇f(rk),

and

tk = sk − βk∇f(sk),

λk and βk are positive scalars obtained by the Armijo inexact line search.

If

sik − rik 6= 0, tik − sik 6= 0 and 1
tik−s

i
k

− 1
sik−r

i
k

6= 0, i = 1, ...n

Let

εk,i2 = sik +
[

1
tik−s

i
k

− 1
sik−r

i
k

]−1
, i = 1, ....n,

and

εk2 =
(
εk,12 , ..., εk,i2 , ...εk,n2

)
.

If f
(
εk2
)
< f(tk), let xk = εk2. Replace k by k + 1 and go to main step.

If f
(
εk2
)
≥ f(tk) or if

si0k − r
i0
k = 0 or ti0k − s

i0
k = 0 or 1

t
i0
k −s

i0
k

− 1

s
i0
k −r

i0
k

= 0, i0 ∈ {1, ..., n} .

Let xk = tk. Replace k by k + 1 and go to Main step.

Remark 1. According to the Algorithm, the vectors sk and tk are obtained
by using twice the steepest descent method, with Armijo inexact line search.
Then we have

f(sk) < f(rk) = f(xk)

and

f(tk) < f(sk)

Now, by considering the Algorithm, if the calculation of εk2 is possible, two
cases are possible:
a) f

(
εk2
)
< f (tk) . Then we have

f (xk+1) = f
(
εk2

)
< f (xk)

b) f
(
εk2
)
≥ f (tk) or if the calculation of εk2 is not possible. In this case and

according to the algorithm we have

f (xk+1) = f(tk) < f (xk)

In conclusion the Armijo epsilon steepest descent Algorithm guarantees

(4) f (xk+1) < f (xk) , k = 0, 1, 2, ...

�
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4. GLOBAL CONVERGENCE

OF THE ARMIJO EPSILON STEEPEST DESCENT ALGORITHM

The foregoing preparatory results enable us to establish the following the-
orem

Theorem 2. For the unconstrained minimization problem (1), we let x0be
a starting point of the Armijo epsilon steepest descent Algorithm, and assume
that the following assumptions hold

a) The function f is continuously differentiable in a neighborhood L of the
level set δ(x0) = {x ∈ Rn : f(x) ≤ f(x0)} .

b) The gradient of f is Lipschitzian in L, i.e. there exists K > 0, such
that

‖∇f(x)−∇f(y)‖ ≤ K ‖x− y‖ , ∀(x, y) ∈ L × L
Then, the sequence {xk}k∈Ngenerated by the Armijo epsilon steepest descent

algorithm must satisfy one of the properties: ∇f(xk0) = 0 for some k0 ∈ N,
or ‖∇f(xk)‖ −→

k→∞
0.

Proof. Suppose that an infinite sequence {xk}k∈N is generated by the Armijo
epsilon steepest descent Algorithm. In the main step of the Algorithm, the
vectors sk and tk are obtained by using twice the steepest descent method,
with Armijo inexact line search. The vectors sk and tk are the successors of
xk, and used to calculate xk+1 (see the main step of the algorithm). Note that

sk = xk − λk∇f(xk),

λk = α
2t (α > 0 is a constant defined in the Armijo inexact line search) verifying

the following Armijo criterion

(5) ϕ
(
α
2t

)
≤ ϕ̂

(
α
2t

)
with

(6) ϕ( α2t ) = f
(
xk − α

2t∇f (xk)
)
,

and

(7) ϕ̂
(
α
2t

)
= f(xk)− α

2t c∇f (xk)
t∇f (xk) ,

c ∈ ]0, 1[ , α > 0, t ∈ N, such that the inequality (5) is satisfied. Taking into
account the relations (5), (6) and (7), we obtain

f (sk) = f
[
xk − α

2t∇f (xk)
]

(8)

≤ f(xk)− c α2t ‖∇f (xk)‖2 .
(8) implies

(9) f (sk)− f(xk) ≤ −c α2t ‖∇f (xk)‖2 .
On the other hand, by using the mean value theorem, we have

(10) f (sk)− f(xk) = (sk − xk)T ∇f (x̃) ; x̃ = λsk + (1− λ)xk, λ ∈]0, 1[.
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In as much as

(11) sk = xk − αk∇f (xk) , αk = α
2t ,

then

f (sk)− f(xk) = −αk∇f (xk)
t .∇f (x̃)(12)

= −αk∇f (xk)
t [∇f (xk)−∇f (xk) +∇f (x̃)]

= −αk ‖∇f (xk)‖2 + αk∇f (xk)
t [∇f (xk)−∇f (x̃)] .

x̃ = λsk + (1 − λ)xk, λ ∈]0, 1[. Noting that the sequence {f(xk)}k∈N , is
decreasing, then

xk ∈ δ(x0), k = 0, 1, ...

Now, by using the Cauchy Schwarz inequality and the fact that the gradient
of f is Lipschitzian of constant K, we have

f (sk)− f(xk) ≤ −αk ‖∇f (xk)‖2 + αk ‖∇f (xk)‖ ‖∇f (xk)−∇f (x̃)‖(13)

≤ −αk ‖∇f (xk)‖2 + αk ‖∇f (xk)‖K ‖xk − x̃‖
Noting that x̃ = λsk + (1− λ)xk, λ ∈]0, 1[, then

(14) ‖xk − x̃‖ = ‖(1− λ)(xk − xs)‖ ≤ |(1− λ)| ‖(xk − xs)‖ < ‖(xk − xs)‖ .
(13) and (14) imply

f (sk)− f(xk) ≤ −αk ‖∇f (xk)‖2 + αk ‖∇f (xk)‖K ‖xs − xk‖
Remark that xs − xk = xk − αk∇f (xk)− xk = −αk∇f (xk) , αk = α

2t , then

(15) f (sk)− f(xk) ≤ −αk ‖∇f (xk)‖2 + αk ‖∇f (xk)‖Kαk ‖∇f (xk)‖ .
Hence, we obtain

(16) f (sk)− f(xk) ≤ − α
2t ‖∇f (xk)‖2

[
1−K α

2t

]
.

Now choose t > 0, the smallest integer such that the following relation is true

(17) 2t ≥ Kα
1−c

(17) implies

(18) 1−K α
2t ≥ c.

Hence

(19) 1−K α
2t−1 < c.

(18) implies

(20) − α
2t ‖∇f (xk)‖2

[
1−K α

2t

]
≤ − α

2t c ‖∇f (xk)‖2 , c ∈]0, 1[,

and (19) gives
−K α

2t−1 < c− 1⇒ K α
2t−1 > 1− c.

Hence

(21) − α
2t c < −

c(1−c)
2K .
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Note that the choice of t > 0 satisfying (17) implies that the inequality (9)
holds true. Therefore and taking into account the relations (16), (18), (19),
(20), (21), we obtain

(22) f (sk)− f(xk) ≤ − c(1−c)
2K ‖∇f (xk)‖2 .

Denote by G = − c(1−c)
2K . It is clear that G < 0 and (22) gives

(23) f (sk)− f(xk) ≤ G ‖∇f (xk)‖2 .

Consider now tk the successor of sk, tk = sk − βk∇f(sk). By doing the same
with tk, we obtain

(24) f (tk)− f(sk) ≤ G ‖∇f (sk)‖2 .

We will prove now that

lim
k→∞

‖∇f (xk)‖ = 0.

To this end, consider

f (xk+1)− f(xk) = f
(
εk2

)
− f (tk) + f (tk)− f(sk) + f(sk)− f(xk)

Note that

f
(
εk2

)
− f (tk) < 0 (see (4)).

then

f (xk+1)− f(xk) < f (tk)− f(sk) + f(sk)− f(xk)

The relations (23) and (24) imply

(25) f (xk+1)− f(xk) < G
(
‖∇f (xk)‖2 + ‖∇f (sk)‖2

)
.

Noting that {f(xk)}k∈N is a monotone decreasing sequence and so has a limit
(otherwise inf f(x) = −∞). Hence, the relation (25) implies

(26) ‖∇f (xk)‖2 + ‖∇f (sk)‖2 < 1
G [f (xk+1)− f(xk)] .

Taking lim as k →∞, we get

(27) lim
k→∞

(
‖∇f (xk)‖2 + ‖∇f (sk)‖2

)
≤ 0

On the other hand we have

(28) lim
k→∞

(
‖∇f (xk)‖2 + ‖∇f (sk)‖2

)
≤ lim

k→∞

(
‖∇f (xk)‖2 + ‖∇f (sk)‖2

)
and

(29) 0 ≤ lim
k→∞

(
‖∇f (xk)‖2 + ‖∇f (sk)‖2

)
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The inequalities (27), (28) and (29) imply

0 ≤ lim
k→∞

(
‖∇f (xk)‖2 + ‖∇f (sk)‖2

)
(30)

≤ lim
k→∞

(
‖∇f (xk)‖2 + ‖∇f (sk)‖2

)
≤ 0

which implies

lim
k→∞

(
‖∇f (xk)‖2+‖∇f (sk)‖2

)
= lim

k→∞

(
‖∇f (xk)‖2+‖∇f (sk)‖2

)
= lim

k→∞

(
‖∇f (xk)‖2 + ‖∇f (sk)‖2

)
= 0

Notice that we have

(32) 0 ≤ ‖∇f (xk)‖2 ≤ ‖∇f (xk)‖2 + ‖∇f (sk)‖2

and

(33) 0 ≤ ‖∇f (sk)‖2 ≤ ‖∇f (xk)‖2 + ‖∇f (sk)‖2

Finally, the inequalities (31), (32) and (33) imply

lim
k→∞

‖∇f (xk)‖ = lim
k→∞

‖∇f (sk)‖ = 0.

�

5. NUMERICAL RESULTS AND COMPARISONS

In this section we report some numerical results obtained with an implemen-
tation of the Armijo Epsilon Steepest Descent algorithm. For our numerical
tests, we used test functions and Fortran programs from ([2],[7]). Consid-
ering the same criteria as in ([3]), the code is written in Fortran and com-
piled with f90 on a Workstation Intel Pentium 4 with 2 GHz. We selected a
number of 52 unconstrained optimization test functions in generalized or ex-
tended form [34] (some from CUTE library [7]). For each test function we have
taken twenty (20) numerical experiments with the number of variables increas-
ing as n = 2, 10, 30, 50, 70, 100, 300, 500, 700, 900, 1000, 2000, 3000, 4000, 5000,
6000, 7000, 8000, 9000, 10000. The algorithm implements the Armijo line search
conditions ([1]), and the same stopping criterion ‖∇f (xk)‖ < 10−6. In all the
algorithms we considered in this numerical study the maximum number of
iterations is limited to 100000.

The comparisons of algorithms are given in the following context. Let
fALG1
i and fALG2

i be the optimal value found by ALG1 and ALG2, for prob-
lem i = 1, ..., 962, respectively. We say that, in the particular problem i, the
performance of ALG1 was better than the performance of ALG2 if:∣∣fALG1

i − fALG2
i

∣∣ < 10−3

and the number of iterations, or the number of function-gradient evalua-
tions, or the CPU time of ALG1 was less than the number of iterations, or
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the number of function-gradient evaluations, or the CPU time corresponding
to ALG2, respectively.

In the set of numerical experiments we compare Armijo Epsilon Steepest
Descent algorithm versus Steepest descent algorithm. Figure 1 shows the
Dolan and Moré CPU performance profile of Armijo Epsilon Steepest Descent
algorithm versus Steepest descent algorithm.

In a performance profile plot, the top curve corresponds to the method that
solved the most problems in a time that was within a factor τ of the best time.
The percentage of the test problems for which a method is the fastest is given
on the left axis of the plot. The right side of the plot gives the percentage of the
test problems that were successfully solved by these algorithms, respectively.
Mainly, the right side is a measure of the robustness of an algorithm. When
comparing Armijo Epsilon Steepest Descent algorithm with Steepest descent
algorithm subject to CPU time metric we see that Armijo Epsilon Steepest
Descent algorithm is top performer. The Armijo Epsilon Steepest Descent
algorithm is more successful than the Epsilon Steepest Descent algorithm.

0 2 4 6 8 10 12 14 16
0.2
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0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Epsilon steepest descent algorithm

Steepest descent algorithm

Fig. 1. The Dolan and Moré CPU performance profile of Armijo Epsilon Steepest Descent
algorithm versus Steepest descent algorithm.
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d’état soutenue à l’université de Lille I, 1981.
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