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Rev. Anal. Numér. Théor. Approx., vol. 42 (2013) no. 1, pp. 21–36

ictp.acad.ro/jnaat

APPROXIMATION BY COMPLEX STANCU BETA OPERATORS
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Abstract. In this paper, the exact order of simultaneous approximation and Vo-
ronovskaja kind results with quantitative estimate for the complex Stancu Beta
operator of second kind attached to analytic functions of exponential growth in
semidisks of the right half-plane are obtained. In this way, we show the over-
convergence phenomenon for this operator, namely the extensions of approxi-
mation properties with upper and exact quantitative estimates, from the real
subinterval (0, r], to semidisks of the right half-plane of the form SDr(0, r] =
{z ∈ C : |z| ≤ r, 0 < Re(z) ≤ r} and to subsets of semidisks of the form
SDr[a, r] = {z ∈ C : |z| ≤ r, a ≤ Re(z) ≤ r}, with r ≥ 1 and 0 < a < r.
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1. INTRODUCTION

If f : G → C is an analytic function in the open set G ⊂ C, with D1 ⊂ G
(where D1 = {z ∈ C : |z| < 1}), then S. N. Bernstein proved that the complex
Bernstein polynomials converges uniformly to f in D1 (see e.g., Lorentz [13],
p. 88). Exact quantitative estimates and quantitative Voronovskaja-type re-
sults for these polynomials (see Gal [5]), together with similar results for com-
plex Bernstein-Stancu polynomials (see also the papers Gal [6]-[7]), complex
Kantorovich-Stancu polynomials (see also the paper Gal [8]), complex Favard-
Szász-Mirakjan operators, Butzer’s linear combinations of complex Bernstein
polynomials, complex Baskakov operators and complex Balázs-Szabados op-
erators were obtained by the first author in several recent papers collected by
the recent book Gal [10].

The approximation properties of certain complex Durrmeyer-type operators
were studied in Gal [4, 9], Agarwal and Gupta [3] and Mahmudov [14, 15].
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Furthermore, the approximation properties of the complex Beta operators of
fist kind was studied in Gal-Gupta [11].

The aim of the present article is to obtain approximation results for the
complex Stancu Beta operator of second kind, firstly introduced in the case
of real variable in D. D. Stancu [17]. Then, Abel [1], Abel-Gupta [2] and
Gupta-Abel-Ivan [12] obtained various estimates of the rate of convergence in
the real variable case.

The complex Stancu Beta operators of second kind will be defined for all
n ∈ N and z ∈ C satisfying 0 < Re(z), by

(1.1) Kn(f, z) = 1
B(nz,n+1)

∫ ∞
0

tnz−1

(1+t)nz+n+1 f(t)dt,

where B(α, β) is the Euler’s Beta function, defined by

B(α, β) =

∫ ∞
0

tα−1

(1+t)α+β
dt, α, β ∈ C, Re(α), Re(β) > 0

and f is supposed to be locally integrable and of polynomial growth on (0,+∞)
as t → ∞. This last hypothesis on f assures the existence of Kn(f ; z) for
sufficiently large n, that is there exists n0 depending on f such that Kn(f ; z)
exists for all n ≥ n0 and z ∈ C with Re(z) > 0.

Note that because of the well-known formulas B(α, β) = Γ(α)·Γ(β)
Γ(α+β) and Γ(α+

1) = αΓ(α), Re(α) > 0, Re(β) > 0, where Γ denotes the Euler’s Gamma
function, for all z ∈ N with Re(z) > 0 and sufficiently large n we can easily
deduce the form

(1.2) Kn(f, z) = nz(nz+1)...(nz+n)
n! ·

∫ ∞
0

tnz−1

(1+t)nz+n+1 f(t)dt, Re(z) > 0.

The results in the present paper will show the overconvergence phenome-
non for this complex Stancu Beta integral operator of second kind, that is
the extensions of approximation properties with upper and exact quantitative
estimates, from the real interval (0, r] to semidisks of the right half-plane of
the form

SDr(0, r] = {z ∈ C : |z| ≤ r, 0 < Re(z) ≤ r}

and to subsets of semidisks of the form

SDr[a, r] = {z ∈ C : |z| ≤ r, a ≤ Re(z) ≤ r},

with r ≥ 1 and 0 < a < r.
It is worth noting that due to the special form of the complex Stancu Beta

operators of second kind, the methods of proof are different from those used
in the cases of the other complex operators studied by the papers mentioned
in References.
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2. AUXILIARY RESULT

In the sequel, we shall need the following auxiliary results.

Lemma 2.1. For all ep = tp, p ∈ N ∪ {0}, n ∈ N, z ∈ C with 0 < Re(z), we
have Kn(e0, z) = 1, Kn(e1)(z) = e1(z) and

Kn(ep+1, z) = nz+p
n−p Kn(ep, z), for all n > p.

Here ek(z) = zk.

Proof. By the relationship (1.1) of the Stancu Beta operators of second kind,
it is obvious that Kn(e0, z) = 1 and Kn(e1)(z) = e1(z) (see [1], Proposition
2). Next

Kn(ep+1, z) = 1
B(nz,n+1)B(nz + p+ 1, n− p)

= Kn(ep, z) · B(nz+p+1,n−p)
B(nz+p,n−p+1) = Kn(ep, z) · nz+pn−p .

Since B(α, β) is only defined for Re(α) > 0 and Re(β) > 0, it follows that
the above recurrence is valid only for n − p > 0. This completes the proof of
Lemma 2.1. �

3. MAIN RESULTS

The first main result one refers to upper estimate.

Theorem 3.1. Let DR = {z ∈ C : |z| < R} be with 1 < R < ∞ and
suppose that f : [R,∞)

⋃
DR → C is continuous in [R,∞)

⋃
DR, analytic

in DR i.e. f(z) =
∑∞

k=0 ckz
k, for all z ∈ DR, and f(t) is of polynomial

growth on (0,+∞) as t → ∞. In addition, suppose that there exist M > 0

and A ∈
(

1
2R ,

1
2

)
such that |ck| ≤ M · Akk! , for al k = 0, 1, 2, ..., (which implies

|f(z)| ≤MeA|z| for all z ∈ DR).
Let 1 ≤ r < 1

2A . There exists n0 ∈ N (depending only on f) such that
Kn(f, z) is analytic in SDr(0, r] for all n ≥ n0 and

|Kn(f, z)− f(z)| ≤ C
n , for all n ≥ n1 and z ∈ SDr[a, r],

for any a ∈ (0, r). Here C > 0 is independent of n and z but depends on f , r
and a, and n1 depends on f , r and a.

Proof. In the definition of Kn(f, z) in (1.1), for z = x+ iy with x > 0, note

that it follows tnz−1 = e(nz−1)ln(t) = e(nx−1)ln(t) · einyln(t) and |tnz−1| = tnx−1,
which implies

|Kn(f, z)| ≤ 1
|B(nz,n+1)|

∫ +∞

0

∣∣∣ tnz−1

(1+t)nz+n+1

∣∣∣ · |f(t)|dt

= 1
|B(nz,n+1)|

∫ +∞

0

tnx−1

(1+t)nx+n+1 · |f(t)|dt.
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But it is well-known that because f(t) is of polynomial growth as t → +∞,
the last integral exists finite for sufficiently large n.

Therefore, there exists n0 depending only on f , such that Kn(f, z) is well-
defined for sufficiently large n and for z with Re(z) > 0.

It remains to prove that Kn(f, z) is in fact analytic for Re(z) > 0 and n
sufficiently large. For this purpose, from a standard result in the theory of
improper integrals depending on a parameter, it suffices to prove that for any
δ > 0, the improper integral∫ ∞

0

[
tnz−1

(1+t)nz+n+1

]′
z
· f(t)dt

is uniformly convergent for Re(z) ≥ δ > 0 and n sufficiently large.
But by simple calculation we obtain[

tnz−1

(1+t)nz+n+1

]′
z

=
[

e(nz−1)ln(t)

e(nz+n+1)ln(1+t)

]′
z

= n[ln(t)− ln(1 + t)] · tnz−1

(1+t)nz+n+1 ,

and since ln(1 + t) ≤ 1 + t for all t ≥ 0, it easily follows that it remains to

prove that the integral
∫∞

0
tnz−1

(1+t)nz+n+1 · ln(t)f(t)dt is uniformly convergent for

Re(z) ≥ δ > 0 and n sufficiently large.
By ln(t) < t for all t ≥ 1 and by

∫ ∞
0

tnz−1

(1+t)nz+n+1 · ln(t)f(t)dt =

∫ 1

0

tnz−1

(1+t)nz+n+1 · ln(t)f(t)dt

+

∫ ∞
1

tnz−1

(1+t)nz+n+1 · ln(t)f(t)dt,

clearly that it remains to prove the uniform convergence, for all Re(z) ≥ δ > 0

and n sufficiently large, for the integral
∫ 1

0
tnz−1

(1+t)nz+n+1 · ln(t)f(t)dt. But this

follows immediately from the estimate∣∣∣ tnz−1

(1+t)nz+n+1

∣∣∣ · |ln(t)| · |f(t)| ≤ Ctnδ−1|ln(t)|,

(see e.g. [16], p. 19, Exercise 1.51), where |f(t)| ≤ C for all t ∈ [0, 1].
In what follows we deal with the approximation property. For this purpose,

firstly let us define Sn(z) =
∑n

k=0 ckz
k if |z| ≤ r and Sn(t) = f(t) if t ∈

(r,+∞), where 1 ≤ r < 1
2A . Evidently that for each n ∈ N, Sn is piecewise

continuous on [0,+∞) (more exactly, has a discontinuity point of first kind at
x = r), but locally integrable on [0,+∞) and of polynomial growth as t→∞.

Clearly, f(z) − Sn(z) =
∑∞

k=n+1 ckz
k if |z| ≤ r and f(t) − Sn(t) = 0 if

t ∈ (r,∞). Also, it is immediate that Kn(Sn)(z) is well-defined for all n ∈ N.
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Therefore, for sufficiently large n and for z ∈ SDr(0, r] we have

|Kn(f, z)− f(z)| ≤
≤ |Kn(f, z)−Kn(Sn, z)|+ |Kn(Sn, z)− Sn(z)|+ |Sn(z)− f(z)|

≤ |Kn(f − Sn, z)|+
n∑
k=0

|ck| · |Kn(ek, z)− ek(z)|+ |Sn(z)− f(z)|,

where ek(z) = zk.
Firstly we will obtain an estimate for |Sn(z) − f(z)|. Let 1 ≤ r < 1

2A <
r1 < R. By the hypothesis, we can make such of choice for r1.

Denoting Mr1(f) = max{|f(z)| : |z| ≤ r1} and ρ = r
r1

, by 0 < ρ = r
r1
<

2Ar < 1 and by the Cauchy’s estimate (see e.g. [18], p. 184, Lemma 10.5) we

get |ck| = |f (k)(0)|
k! ≤ 1

k! ·
Mr1(f)

k!

rk1
=

Mr1 (f)

rk1
, which implies

|Sn(z)− f(z)| ≤
∞∑

k=n+1

|ck| · |z|k ≤
∞∑

k=n+1

Mr1 (f)

rk1
· |z|k ≤

∞∑
k=n+1

Mr1(f) r
k

rk1

= Mr1(f)ρn+1
∞∑
k=0

ρk =
Mr1 (f)

1−ρ · ρ
n+1,

for all |z| ≤ r and n ∈ N.
By using now Lemma 2.1 and taking into account the inequalities

1
n−p ≤

2(p+1)
n+p , 1

n−p ≤
p+1
n , n ≥ p+ 1,

for all z ∈ SDr(0, r] and n ≥ p+ 1 we get

|Kn(ep+1, z)− ep+1(z)| =

=
∣∣∣nz+pn−p Kn(ep, z)− nz+p

n−p ep(z) + nz+p
n−p ep(z)− ep+1(z)

∣∣∣
≤ |nz+p|n−p |Kn(ep, z)− ep(z)|+ |ep(z)| ·

∣∣∣nz+pn−p − z
∣∣∣

≤ |nz + p| · 2(p+1)
n+p · |Kn(ep, z)− ep(z)|+ rp · |p(1+z)|

n−p

≤ nr+p
n+p · 2(p+ 1)|Kn(ep, z)− ep(z)|+ rp·2pr·(p+1)

n

≤ 2r(p+ 1)
[
|Kn(ep, z)− ep(z)|+ prp

n

]
,

for all p = 0, 1, ..., n− 1.
Therefore, denoting Ep,n(z) = |Kn(ep, z)− ep(z)|, we have obtained

Ep+1,n(z) ≤ r(2p+ 2)
[
Ep,n(z) + p · rpn

]
,

for all p = 0, 1, ..., n− 1.
Since E0,n(z) = E1,n(z) = 0, for p = 1 in the above inequality we get

E2,n(z) ≤ r(2 · 1 + 2)
[
E1,n(z) + r

n

]
≤ 1·r2

n · (2 · 1 + 2).
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In what follows we will use the obvious inequality p ≤ 2(p − 1) + 2, valid for
all p ≥ 1.

For p = 2 in the above recurrence inequality it follows

E3,n(z) ≤ r(2 · 2 + 2)
[
E2,n(z) + 2 · r2n

]
≤ r3

n [(2 · 2 + 2)(2 · 1 + 2) + 2 · (2 · 2 + 2)]

≤ r3

n [(2 · 2 + 2)(2 · 1 + 2) + (2 · 1 + 2)(2 · 2 + 2)]

≤ 2r3

n (2 · 2 + 2)(2 · 1 + 2).

For p = 3 in the above recurrence inequality we get

E4,n(z) ≤ r(2 · 3 + 2)
[
E3,n(z) + 3 · r3n

]
≤ r(2 · 3 + 2) ·

[
2r3

n (2 · 1 + 2)(2 · 2 + 2) + (2 · 2 + 2) · r3n
]

≤ 3r4

n (2 · 3 + 2)(2 · 2 + 2)(2 · 1 + 2).

By mathematical induction we easily obtain

Ep,n(z) ≤ (p−1)·rp
n

p−1∏
i=1

2(i+ 1) = (p−1)·2p−1rp

n · p! ≤ p·p!(2r)p
2n ,

for all n ≥ p+ 1 and z ∈ SDr(0, r].
Therefore, we obtain

n∑
k=0

|ck| · |Kn(ek, z)− ek(z)| ≤ M
2n

n∑
k=0

k(2Ar)k ≤ M
2n

∞∑
k=0

k(2Ar)k,

where the hypothesis on f obviously implies that
∑∞

k=0 k · (2Ar)k <∞.
Now, let us estimate |Kn(f − Sn, z)|. By the definition of Sn and by (1.2),

we easily get

Kn(f − Sn, z) = nz(nz+1)...(nz+n)
n! ·

∫ r

0

tnz−1

(1+t)nz+n+1 (f(t)− Sn(t))dt,

for all z ∈ SDr[a, r], z = x+ iy, and n ∈ N. Passing to the absolute value, it
follows

|Kn(f − Sn, z)| ≤ nr(nr+1)...(nr+n)
n! ·

∫ r

0

∣∣∣ tnz−1

(1+t)nz+n+1

∣∣∣ · |f(t)− Sn(t)|dt

≤ ‖f − Sn‖C[0,r] ·
nr(nr+1)...(nr+n)

n! ·
∫ r

0

tnx−1

(1+t)nx+n+1 dt

≤ Cr,r1,f · ρn+1 · nr(nr+1)...(nr+n)
n! ·

∫ r

0

tnx−1

(1+t)nx+n+1 dt.
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Now, let us estimate the integral
∫ r

0
tnx−1

(1+t)nx+n+1 dt. For sufficiently large n

(such that na− 1 ≥ 1) we have∫ r

0

tnx−1

(1+t)nx+n+1 dt =

∫ 1

0

tnx−1

(1+t)nx+n+1 dt+

∫ r

1

tnx−1

(1+t)nx+n+1 dt

≤
∫ 1

0

tnx−1

(1+t)nx−1 dt+

∫ r

1

tnx+n+1

(1+t)nx+n+1 dt

≤
(

1
2

)nx−1
+ (r − 1)

(
r
r+1

)nx+n+1

≤ r
(

r
r+1

)nx−1
≤ r

(
r
r+1

)na−1
,

which immediately implies the estimate for n ≥ n0 (with n0 depending only
on f and a) and z ∈ SDr[a, r]

|Kn(f − Sn, z)| ≤ Cr,r1,f · ρn+1 · nr(nr+1)...(nr+n)
n! · r

(
r
r+1

)na−1
.

Collecting all the above estimates, for sufficiently large n and z ∈ Sr[a, r], we
get

|Kn(f, z)− f(z)| ≤ Cr,r1,fρn+1 + M
n

∞∑
k=0

k(2Ar)k

+ Cr,r1,f · ρn+1 · nr(nr+1)...(nr+n)
n! · r

(
r
r+1

)na−1
.(3.1)

In (3.1) we need to choose n ≥ 2/a.
Now, denote

an = 1
n2 · nr(nr+1)...(nr+n)

n! = r
n ·

(nr+1)...(nr+n)
n! .

We can write

ρn+1 · nr(nr+1)...(nr+n)
n! ·

(
r
r+1

)na−1
= (n · ρn+1) · an ·

[
n
(

r
r+1

)na−1
]
.

Note that because 0 < ρ < 1 and 0 < r/(r+1) < 1, clearly that for sufficiently

large n we have n · ρn+1 ≤ c1
n and n

(
r
r+1

)na−1 ≤ c2
n , where c1 > 0 and c2 > 0

are independent of n and z. On the other hand, by simple calculation we get

an+1

an
= n

(n+1)2
·
(

1 + r
nr+1

)(
1 + r

nr+2

)
...
(

1 + r
nr+n

)
< n

(n+1)2

(
1 + r

nr+1

)n
< n

(n+1)2

(
1 + r

nr+1

)(nr+1)/r
≤ 3n

(n+1)2
≤ 1,

for all n ∈ N. We used here the inequality e < 3. Therefore, the sequence
(an)n is nonincreasing, which implies that it is bounded.

In conclusion, for sufficiently large n we have

ρn+1 · nr(nr+1)...(nr+n)
n! ·

(
r
r+1

)na−1
≤ c3

n2 ,
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which coupled with (3.1) immediately implies the order of approximation
O(1/n) in the statement of Theorem 3.1. �

The following Voronovskaja-type result with a quantitative estimate holds.

Theorem 3.2. Let DR = {z ∈ C : |z| < R} be with 1 < R < ∞ and
suppose that f : [R,∞)

⋃
DR → C is continuous in [R,∞)

⋃
DR, analytic

in DR i.e. f(z) =
∑∞

k=0 ckz
k, for all z ∈ DR, and f(t) is of polynomial

growth on (0,+∞) as t → ∞. In addition, suppose that there exist M > 0

and A ∈
(

1
2R ,

1
2

)
such that |ck| ≤ M · Akk! , for al k = 0, 1, 2, ..., (which implies

|f(z)| ≤MeA|z| for all z ∈ DR).
Let 1 ≤ r < 1

2A . There exists n1 ∈ N (depending on f , r and a) such that
for all n ≥ n1, z ∈ SDr[a, r] and a ∈ (0, r) we have∣∣∣Kn(f, z)− f(z)− z(1+z)f ′′(z)

2(n−1)

∣∣∣ ≤ C
n2 ,

where C > 0 is independent of n and z but depends on f , r and a.

Proof. Keeping the notations in the proof of Theorem 3.1, we can write∣∣∣Kn(f, z)− f(z)− z(1+z)f ′′(z)
2(n−1)

∣∣∣ =

=
∣∣∣(Kn(f − Sn, z)− (f(z)− Sn(z))− z(1+z)[f(z)−Sn(z)]′′

2(n−1)

)
+
(
Kn(Sn, z)− Sn(z)− z(1+z)S′′n(z)

2(n−1)

)∣∣∣
≤
∣∣∣Kn(f − Sn, z)− (f(z)− Sn(z))− z(1+z)[f(z)−Sn(z)]′′

2(n−1)

∣∣∣
We get

A ≤ |Kn(f − Sn, z)|+ |f(z)− Sn(z)|+
∣∣∣ z(1+z)[f(z)−Sn(z)]′′

2(n−1)

∣∣∣
≤ |Kn(f − Sn, z)|+ |f(z)− Sn(z)|+ r(1+r)|f ′′(z)−S′′n(z)|

2(n−1)

:= A1 +A2 +A3.

From the proof of Theorem 3.1, for all z ∈ SDr[a, r] with a ∈ (0, r) and for
sufficiently large n, we have

A1 ≤ C1
n2 and A2 ≤ C2ρ

n+1,

where C1 > 0, C2 > 0 are independent of n and z but may depend on f , r
and a and 0 < ρ < 1.

In order to estimate A3, let 0 < a1 < a < r, 1 ≤ r < r1 <
1

2A and denote
by Γ = Γa1,r1 = S1

⋃
L1 the closed curve composed by the segment in C

S1 =

{
z = x+ iy ∈ C : x = a1 and −

√
r2

1 − a2
1 ≤ y ≤

√
r2

1 − a2
1

}
,
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and by the arc

L1 = {z ∈ C : |z| = r1,Re(z) ≥ a1}.

Clearly that Γ together with its interior is exactly SDr1 [a1, r1] and that
from r < r1 we have SDr[a, r] ⊂ SDr1 [a1, r1], the inclusion being strictly.

By the Cauchy’s integral formula for derivatives, we have for all
z ∈ SDr[a, b] and n ∈ N sufficiently large

f ′′(z)− S′′n(z) = 2!
2πi

∫
Γ

f(u)−Sn(u)
(u−z)3 du,

which by the estimate of ||f−Sn(·)||SDr1 [a1,r1] in the proof of Theorem 3.1 and
by the inequality |u− z| ≥ d = min{r1 − r, a− a1} valid for all z ∈ SDr[a, r]
and u ∈ Γ, implies

||f ′′(z)− S′′n(·)||SDr[a,r] ≤ 2!
2π .

l(Γ)
d3
||f − Sn(·)||SDr1 [a1,r1]

≤ Mr1 (f)
1−ρ · ρ

n+1 · Cr1 (f)2!l(Γ)

2πd3
,

with ρ = r
r1

.

Note that here, by simple geometrical reasonings, for the length l(Γ) of Γ,
we get

l(Γ) = l(S1) + l(L1) = 2
√
r2

1 − a2
1 + 2r1 · arccos(a1/r1),

where arccos(α) is considered expressed in radians.
Therefore, collecting all the above estimates we easily get A ≤ C

n2 for suf-
ficiently large n, with C > 0 independent of n and z (but depending on f , r
and a).

In the last part of the prof, we will obtain an estimate of the order O(1/n2)

for B =
∣∣∣Kn(Sn, z)− Sn(z)− z(1+z)S′′n(z)

2(n−1)

∣∣∣ too, which will implies the estimate

in the statement.
Denoting πk,n(z) = Kn(ek)(z) and

Ek,n(z) = πk,n(z)− ek(z)− zk−1(1+z)k(k−1)
2(n−1) ,

firstly it is clear that E0,n(z) = E1,n(z) = 0. Then, we can write

∣∣∣Kn(Sn, z)− Sn(z)− z(1+z)S′′n(z)
2(n−1)

∣∣∣ ≤ n∑
k=2

|ck| · |Ek,n(z)|,

so it remains to estimate Ek,n(z) for 2 ≤ k ≤ n, by using the recurrence in
Lemma 2.1.
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In this sense, simple calculation based on Lemma 2.1 too, leads us to the
formula

Ek,n(z) = nz+k−1
n−k+1 · πk−1,n(z)− zk − zk−1(1+z)k(k−1)

2(n−1)

= nz+k−1
n−k+1

[
Ek−1,n(z) + zk−1 + zk−2(1+z)(k−1)(k−2)

2(n−1)

]
− zk − zk−1(1+z)k(k−1)

2(n−1)

= nz+k−1
n−k+1 Ek−1,n(z) + (k−1)(k−2)zk−2(1+z)[(1+z)k+(z−1)]

2(n−1)(n−k+1) .

Taking into account the inequalities valid for all 2 ≤ k ≤ n and r ≥ 1

1
n−k+1 ≤

2k
n+k−1 ≤

2k
n+k ,

nr+k−1
n+k−1 ≤ r,

2(n− 1)(n+ k) ≥ n2, k(1 + r) + (r − 1) ≤ (k + 1)(1 + r),

this immediately implies, for all 2 ≤ k ≤ n and |z| ≤ r with a ≤ Re(z) ≤ r

|Ek,n(z)| ≤
∣∣∣nz+k−1
n−k+1

∣∣∣ · |Ek−1,n(z)|+
∣∣∣ (k−1)(k−2)zk−2(1+z)[(1+z)k+(z−1)]

2(n−1)(n−k+1)

∣∣∣
≤ nr+k−1

n−k+1 · |Ek−1,n(z)|+ (k−1)(k−2)rk−2(1+r)[(1+r)k+(r−1)]
2(n−1)(n−k+1)

≤ 2k(nr+k−1)
n+k−1 · |Ek−1,n(z)|

+ 2k(k−1)(k−2)rk−2(1+r)[(1+r)k+(r−1)]
2(n−1)(n+k)

≤ 2kr · |Ek−1,n(z)|+ 2k(k−1)(k−2)rk−2(1+r)[(1+r)k+(r−1)]
2(n−1)(n+k)

≤ 2rk|Ek−1,n(z)|+ rk−2(1+r)2k(k−1)(k−2)
n2 · [k(1 + r) + (r − 1)]

≤ 2rk|Ek−1,n(z)|+ rk−1(1+r)2k(k−1)(k−2)(k+1)
n2 .

Denoting A(k, r) = 2(1 + r)2(k + 1)k(k − 1)(k − 2), we have obtained

|Ek,n(z)| ≤ 2rk|Ek−1,n(z)|+ rk−1

n2 ·A(k, r).

Obviously E0,n(z) = E1,n(z) = E2,n = 0. Take in the last inequality,
k = 3, 4, ..., n.

For k = 3 we obtain |E3,n(z)| ≤ r2

n2 ·A(3, r).
For k = 4 it follows

|E4,n(z)| ≤ r(2 · 4) · |E3,n(z)|+ r3

n2A(4, r) ≤ r3

n2 · (2 · 4) [A(3, r) +A(4, r)] .

For k = 5 we analogously get

|E5,n(z)| ≤ r(2 · 5) · |E4,n(z)|+ r4

n2A(5, r)

≤ r(2 · 5)
[
(2 · 4) r

3

n2 [A(3, r) +A(4, r)]
]

+ r4

n2A(5, r)

≤ r4

n2 · (2 · 4)(2 · 5)[A(3, r) +A(4, r) +A(5, r)].
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Reasoning by mathematical induction, finally we easily obtain

|Ek,n(z)| ≤ rk−1

n2 · (2 · 4)(2 · 5)...(2 · k) ·
k∑
j=3

A(j, r) = rk−1

n2 · 2k−1

22
· k!

3! ·
k∑
j=3

A(j, r)

= (2r)k−1

24n2 · k! · 2(1 + r)2
k∑
j=3

(j − 2)(j − 1)j(j + 1)

≤ k!(2r)k−1

12n2 · (1 + r)2(k − 2)2(k − 1)k(k + 1).

We conclude that

B :=
∣∣∣Kn(Sn, z)− Sn(z)− z(1+z)S′′n(z)

2(n−1)

∣∣∣ ≤ n∑
k=2

|ck| · |Ek,n|

≤ MA(1+r)2

12n2 ·
n∑
k=2

(k − 2)2(k − 1)k(k + 1)(2rA)k−1

≤ MA(1+r)2

12n2 ·
∞∑
k=2

(k − 2)2(k − 1)k(k + 1)(2rA)k−1,

where since 2Ar < 1 by hypothesis, we get that
∞∑
k=2

(k − 2)2(k − 1)k(k + 1)(2rA)k−1 < +∞.

Indeed, the fact that the last series is convergent follows form the uniform
convergence of the series

∑∞
k=0 z

k and its derivative of order 5, for |z| < 1.
This finishes the proof of the theorem. �

In what follows, we obtain the exact order in approximation by the complex
Stancu Beta operators of second kind and by their derivatives. In this sense,
we present the following three results.

Theorem 3.3. Let DR = {z ∈ C : |z| < R} be with 1 < R < ∞ and
suppose that f : [R,∞)

⋃
DR → C is continuous in [R,∞)

⋃
DR, analytic

in DR i.e. f(z) =
∑∞

k=0 ckz
k, for all z ∈ DR, and f(t) is of polynomial

growth on (0,+∞) as t → ∞. In addition, suppose that there exist M > 0

and A ∈
(

1
2R ,

1
2

)
such that |ck| ≤ M · Akk! , for al k = 0, 1, 2, ..., (which implies

|f(z)| ≤MeA|z| for all z ∈ DR).
Let 1 ≤ r < 1

2A . If f is not a polynomial of degree ≤ 1, then there exists
n1 ∈ N (depending on f , r and a) such that for all n ≥ n1, z ∈ SDr[a, r] and
a ∈ (0, r) we have

||Kn(f, ·)− f ||SDr[a,r] ≥
Cr,a(f)

n ,

where Cr,a(f) depends only on f , a and r. Here ‖·‖SDr[a,r] denotes the uniform
norm on SDr[a, r].
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Proof. For all |z| ≤ r and n > n0 (with n0 depending only on f), we have

Kn(f, z)− f(z) = 1
(n−1)

[
z(1+z)f ′′(z)

2

+ 1
(n−1)

{
(n− 1)2

(
Kn(f, z)− f(z)− z(1+z)f ′′(z)

2(n−1)

)}]
.

Also, we have

||F +G||SDr[a,r] ≥
∣∣||F ||SDr[a,r] − ||G||SDr[a,r]∣∣ ≥ ||F ||SDr[a,r] − ||G||SDr[a,r].

It follows

||Kn(f, ·)− f ||SDr[a,r] ≥ 1
(n−1)

[∥∥∥ e1(1+e1)
2 f ′′

∥∥∥
SDr[a,r]

− 1
(n−1)

{
(n−1)2

∣∣∣∣∣∣Kn(f, ·)−f− e1(1+e1)
2(n−1) f

′′
∣∣∣∣∣∣
SDr[a,r]

}]
.

Taking into account that by hypothesis f is not a polynomial of degree ≤ 1 in

DR, we get
∣∣∣∣∣∣ e1(1+e1)

2 f ′′
∣∣∣∣∣∣
SDr[a,r]

> 0.

Indeed, supposing the contrary it follows that z(1+z)
2 f ′′(z) = 0 for all z ∈

DR, which implies that f ′′(z) = 0, for all z ∈ DR\{0,−1}. Because f is
analytic, by the uniqueness of analytic functions we get f ′′(z) = 0, for all z ∈
DR, that is f is a polynomial of degree ≤ 1, which contradicts the hypothesis.

Now by Theorem 3.2, for sufficiently large n we have

(n− 1)2
∣∣∣∣∣∣Kn(f, ·)− f − e1(1+e1)

2(n−1) f
′′
∣∣∣∣∣∣
SDr[a,r]

≤ C(n−1)2

n2 ≤Mr(f).

Therefore there exists an index n1 > n0 depending only on f , a and r, such
that for any n ≥ n1, we have∥∥∥ e1(1+e1)

2 f ′′
∥∥∥
SDr[a,r]

− 1
(n−1)

{
(n− 1)2

∣∣∣∣∣∣Kn(f, ·)− f − e1(1+e1)
2(n−1) f

′′
∣∣∣∣∣∣
SDr[a,r]

}
≥ 1

4‖e1(1 + e1)f ′′‖SDr[a,r],

which immediately implies

||Kn(f, ·)− f ||SDr[a,r] ≥ 1
4n ||e1(1 + e1)f ′′||SDr[a,r], ∀n ≥ n1.

This completes the proof. �

As a consequence of Theorem 3.1 and Theorem 3.3, we immediately get the
following:

Corollary 3.4. Under the hypothesis in the statement of Theorem 3.3, if
f is not a polynomial of degree ≤ 1, then there exists n1 ∈ N, such that for all
n ≥ n1, z ∈ SDr[a, r] and a ∈ (0, r), we have

||Kn(f, ·)− f ||SDr[a,r] ∼ 1
n ,

where the constants in the equivalence depend only on f , a and r.
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Our last result is in simultaneous approximation and can be stated as fol-
lows.

Theorem 3.5. Let DR = {z ∈ C : |z| < R} be with 1 < R < ∞ and
suppose that f : [R,∞)

⋃
DR → C is continuous in [R,∞)

⋃
DR, analytic

in DR i.e. f(z) =
∑∞

k=0 ckz
k, for all z ∈ DR, and f(t) is of polynomial

growth on (0,+∞) as t → ∞. In addition, suppose that there exist M > 0

and A ∈
(

1
2R ,

1
2

)
such that |ck| ≤ M · Akk! , for al k = 0, 1, 2, ..., (which implies

|f(z)| ≤MeA|z| for all z ∈ DR).
Let 1 ≤ r < r1 <

1
2A , 0 < a1 < a < r and p ∈ N. If f is not a polynomial

of degree ≤ max{1, p− 1}, then there exists n1 ∈ N (depending on f , r and a)
such that for all n ≥ n1 and z ∈ SDr[a, r] we have

||K(p)
n (f, ·)− f (p)||SDr[a,r] ∼ 1

n ,

where the constants in the equivalence depend only on f, r, r1, a, a1 and p.

Proof. Denote by Γ = Γa1,r1 = S1
⋃
L1 the closed curve composed by the

segment in C

S1 =

{
z = x+ iy ∈ C : x = a1 and −

√
r2

1 − a2
1 ≤ y ≤

√
r2

1 − a2
1

}
,

and by the arc

L1 = {z ∈ C : |z| = r1,Re(z) ≥ a1}.
Clearly that Γ together with its interior is exactly SDr1 [a1, r1] and that

from r < r1 we have SDr[a, r] ⊂ SDr1 [a1, r1], the inclusion being strictly.
By the Cauchy’s integral formula for derivatives, we have for all

z ∈ SDr[a, b] and n ∈ N sufficiently large

f (p)(z)−K(p)
n (f, z) = p!

2πi

∫
Γ

f(u)−Kn(f,u)
(u−z)p+1 du,

which by the estimate in Theorem 3.1 and by the inequality |u − z| ≥ d =
min{r1 − r, a− a1} valid for all z ∈ SDr[a, r] and u ∈ Γ, implies

||f (p)(z)−K(p)
n (f, ·)||SDr[a,r] ≤

p!

2π
.
l(Γ)

dp+1
||f −Kn(f, ·)||SDr1 [a1,r1]

≤ C

n
· Cr1(f)p!l(Γ)

2πdp+1
.

Note that here, by simple geometrical reasonings, for the length l(Γ) of Γ, we
get

l(Γ) = l(S1) + l(L1) = 2
√
r2

1 − a2
1 + 2r1 · arccos(a1/r1),

where arccos(α) is considered expressed in radians.

It remains to prove the lower estimation for ||K(p)
n (f, ·)− f (p)||SDr[a,r].
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By the proof of Theorem 3.3, for all u ∈ Γ and n ≥ n1, we have

Kn(f, z)− f(z) = 1
(n−1)

[
z(1+z)(z)

2 f ′′

+ 1
(n−1)

{
(n− 1)2

(
Kn(f, z)− f(z)− z(1+z)(z)

2(n−1) f ′′
)}]

.

Substituting it in the above Cauchy’s integral formula, we get

K(p)
n (f, z)− f (p)(z) = 1

n−1

[(
z(1+z)

2 f ′′(z)
)(p)

+ 1
n−1 ·

p!
2πi

∫
Γ

(n−1)2
(
Kn(f,u)−f(u)−u(1+u)

2(n−1) f
′′(u)

)
(u−z)p+1 du

]
.

Thus ∣∣∣∣∣∣K(p)
n (f, ·)− f (p)

∣∣∣∣∣∣
SDr[a,r]

≥ 1
(n−1)

[∥∥∥∥( e1(1+e1)
2 f ′′

)(p)
∥∥∥∥
SDr[a,r]

− 1
(n−1)

∣∣∣∣∣∣
∣∣∣∣∣∣ p!2πi

∫
Γ

(n−1)2
(
Kn(f,u)−f(u)−u(1+u)

2(n−1) f
′′(u)

)
(u−·)p+1 du

∣∣∣∣∣∣
∣∣∣∣∣∣
SDr[a,r]

]
.

Applying Theorem 3.2 too, it follows∣∣∣∣∣∣
∣∣∣∣∣∣ p!2πi

∫
Γ

(n−1)2
(
Kn(f,u)−f(u)−u(1+u)

2(n−1) f
′′(u)

)
(u−·)p+1 du

∣∣∣∣∣∣
∣∣∣∣∣∣
SDr[a,r]

≤

≤ p!
2π

l(Γ)n2

dp+1

∣∣∣∣∣∣Kn(f, ·)− f − e1(1+e1)
2(n−1) f

′′
∣∣∣∣∣∣
SDr1 [a1,r1]

≤ Mr1 (f)l(Γ)p!

2πdp+1 .

But by the hypothesis on f , we necessarily have

||[e1(1 + e1)f ′′/2](p)||SDr[a,r] > 0.

Indeed, supposing the contrary we get that e1(1 + e1)f ′′ is a polynomial
of degree ≤ p − 1 in SDr[a, r], which by the uniqueness of analytic functions
implies that

z(1 + z)f ′′(z) = Qp−1(z), for all z ∈ DR,

where Qp−1(z) is a polynomial of degree ≤ p− 1.
Now, if p = 1 and p = 2, then the analyticity of f in DR easily implies that

f necessarily is a polynomial of degree ≤ 1 = max{1, p − 1}. If p > 2, then
the analyticity of f in DR easily implies that f necessarily is a polynomial
of degree ≤ p − 1 = max{1, p − 1}. Therefore, in all the cases we get a
contradiction with the hypothesis.

In conclusion, ||[e1(1 + e1)f ′′/2](p)||SDr[a,r] > 0 and furthermore, reasoning

exactly as in the proof of Theorem 3.3, but for ‖K(p)
n (f, ·)−f (p)‖SDr[a,r] instead

of ‖Kn(f, ·)− f‖SDr[a,r], we immediately get the desired conclusion. �
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Remark 3.6. Comparing the error estimate in Theorem 3.1 with that in
the real case, one sees that the overconvergence phenomenon holds (that is,
the approximation from the real line is maintained in the complex plane for
subclasses of analytic functions of exponential growth), with the same order
of approximation O

(
1
n

)
. Also, note that moreover, with respect to real ap-

proximation where these kind of results are missing, in the case of complex
approximation the exact order O

(
1
n

)
is obtained including the case of si-

multaneous approximation and a quantitative estimate in the Voronovskaja’s
theorem of order O

(
1
n2

)
is proved. �
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