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Abstract. In this paper, we discuss the Schur convexity, Schur geometrical con-
vexity and Schur harmonic convexity of the weighted arithmetic integral mean
and Chebyshev functional. Several sufficient conditions, and necessary and suf-
ficient conditions are established.
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1. INTRODUCTION

Throughout this paper, we use Rn to denote the n-dimensional Euclidean
space (n ≥ 2) and Rn+ = {(x1, x2, · · · , xn) : xi > 0, i = 1, 2, · · · , n}. In
particular, we use R to denote R1.

For the sake of convenience, we use the following notation system.
For x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) ∈ Rn+ and α ∈ R+, we denote

by

x± y = (x1 ± y1, x2 ± y2, · · · , xn ± yn),

xy = (x1y1, x2y2, · · · , xnyn),

αx = (αx1, αx2, · · · , αxn),

xα = (xα1 , x
α
2 , · · · , xαn),

log x = (log x1, log x2, · · · , log xn)

and
1
x =

(
1
x1
, 1
x2
, · · · , 1

xn

)
.
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Definition 1. A real-valued function F on E ⊆ Rn is said to be Schur
convex if

(1) F (x1, x2, · · · , xn) ≤ F (y1, y2, · · · , yn)

for each pair of n-tuples x = (x1, · · · , xn), y = (y1, · · · , yn) ∈ E, such that
x ≺ y, i.e.

k∑
i=1

x[i] ≤
k∑
i=1

y[i], k = 1, 2, · · · , n− 1

and
n∑
i=1

x[i] =
n∑
i=1

y[i],

where x[i] denotes the ith largest component of x. F is called Schur concave if
−F is Schur convex.

Definition 2. A real-valued function F on E ⊆ Rn+ is said to be Schur
geometrically convex if (1) holds for each pair of n-tuples x = (x1, x2, · · · , xn),
y = (y1, y2, · · · , yn) ∈ E, such that log x ≺ log y. F is called Schur geometri-
cally concave if 1

F is Schur geometrically convex.

Definition 3. A real-valued function F on E ⊆ Rn+ is said to be Schur
harmonic convex if (1) holds for each pair of n-tuples x = (x1, x2, · · · , xn),
y = (y1, y2, · · · , yn) ∈ E, such that 1

x ≺
1
y . F is called Schur harmonic

concave on E if inequality (1) is reversed.

The Schur convexity was introduced by I. Schur [1] in 1923 and it has many
important applications in analytic inequalities [2-7], extended mean values [8-
11] and other related fields. Recently, the Schur geometrical and harmonic
convexities were investigated in [4, 5, 12, 13, 14].

Lemma 4. (see [2]). Let E ⊆ Rn be a symmetric convex set with nonempty
interior intE and f : E → R be a continuous symmetric function. If f is
differentiable on intE, then f is Schur convex on E if and only if

(2) (x1 − x2)
(
∂f
∂x1
− ∂f

∂x2

)
≥ 0

for all x = (x1, · · · , xn) ∈ intE. f is Schur concave on E if and only if
inequality (2) is reversed. Here E is a symmetric set means that x ∈ E implies
Px ∈ E for any n× n permutation matrix P .

Lemma 5. (see [13]). Let E ⊆ Rn+ be a symmetric geometrically convex
set with nonempty interior intE and f : E → R+ be a continuous symmetric
function. If f is differentiable on intE, then f is Schur geometrically convex
on E if and only if

(log x1 − log x2)
(
x1

∂f
∂x1
− x2

∂f
∂x2

)
≥ 0
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for all x = (x1, x2, · · · , xn) ∈ intE. Here E is a geometrically convex set

means that x
1
2 y

1
2 ∈ E whenever x, y ∈ E.

Lemma 6. (see [14]). Let E ⊆ Rn+ be a symmetric harmonic convex set with
nonempty interior intE and f : E → R+ be a continuous symmetric function.
If f is differentiable on intE, then f is Schur harmonic convex on E if and
only if

(x1 − x2)
(
x2

1
∂f
∂x1
− x2

2
∂f
∂x1

)
≥ 0

for all x = (x1, x2, · · · , xn) ∈ intE. Here E is a harmonic convex set means

that 2xy
x+y ∈ E whenever x, y ∈ E.

Definition 7. Let f be a continuous function on I ⊆ R and p be a positive
continuous weight on I. Then the well-known weighted arithmetic integral
mean Fp(x, y) is defined by

(3) Fp(x, y) =

 1∫ y
x p(t)dt

∫ y

x
p(t)f(t)dt, x, y ∈ I, x 6= y,

f(x), x = y.

If p(t) = 1, then (3) reduces to the arithmetic integral mean

(4) F (x, y) =

 1
y−x

∫ y

x
f(t)dt, x, y ∈ I, x 6= y,

f(x), x = y.

Recently, the weighted arithmetic integral mean Fp(x, y) has been the sub-
ject of intensive research [8, 15]. In particular, the following Theorems 8-10
can be found in the literature [16-18].

Theorem 8. Let f be a continuous function on I, let p be a positive con-
tinuous weight on I. Then the weighted arithmetic integral mean Fp(x, y) is
Schur convex (concave) on I2 if and only if the inequality

1∫ y
x p(t)dt

∫ y

x
p(t)f(t)dt ≤ p(x)f(x)+p(y)f(y)

p(x)+p(y)(5)

holds (reverses) for all x, y ∈ I.

Theorem 9. Let f be a continuous function on I. Then the arithmetic
integral mean F (x, y) defined as in (4) is Schur convex (concave) on I2 if and
only if f is convex (concave) on I.

Theorem 10. Let f be a second order differentiable function on I with
3f ′(x) +xf ′′(x) ≥ 0(≤ 0). Then the arithmetic integral mean F (x, y) is Schur
geometrically convex (concave) on I2.

Definition 11. The weighted Chebyshev functional T (f, g, p) is defined by

T (f, g, p) = T (f, g, p;x, y)(6)

=
∫ y
x p(t)f(t)g(t)dt∫ y

x p(t)dt
−

∫ y
x p(t)f(t)dt∫ y

x p(t)dt
·
∫ y
x p(t)g(t)dt∫ y

x p(t)dt
,
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where p(t) is a positive Lebesgue measurable function on [x, y] such that 0 <∫ y
x p(t)dt < +∞, f , g : [x, y] → R are two Lebesgue measurable functions on

[x, y] and the integrals in (6) are assumed to exist.
If p(t) = 1, then (6) becomes the Chebyshev functional

(7) T (f, g) = T (f, g;x, y) =

∫ y

x
f(t)g(t)dt

y−x −

∫ y

x
f(t)dt

y−x ·

∫ y

x
g(t)dt

y−x .

The weighted Chebyshev functional has a long history and an extensive
repertoire of applications in many fields in including numerical quadrature,
transform theory, probability and statistical problems, and special functions
[19-24]. C̆uljak [25] proved that

Theorem 12. If f and g are monotonic in the same sense (in the opposite
sense) on I, then the Chebyshev functional T (f, g) is Schur convex (concave)
on I2.

Theorem 13. Let p be a positive continuous weight on I. Then the weighted
Chebyshev functional T (f, g, p) is Schur convex (concave) on I2 if and only if
the inequality

T (f, g, p;x, y) ≤ p(x)
(
f(x)−fp(x,y)

)(
g(x)−gp(x,y)

)
+p(y)

(
f(y)−fp(x,y)

)(
g(y)−gp(x,y)

)
p(x)+p(y)

holds (reverses) for all x, y ∈ I. Here,

P (x, y) =

∫ y

x
p(t)dt,

fp = fp(x, y) = 1
P (x,y)

∫ y

x
p(t)f(t)dt,

gp = gp(x, y) = 1
P (x,y)

∫ y

x
p(t)g(t)dt.(8)

Our main purpose of this paper is to discuss the Schur convexity, Schur ge-
ometrical convexity and Schur harmonic convexity of the weighted arithmetic
integral mean and Chebyshev functional.

2. SCHUR CONVEXITY OF THE WEIGHTED ARITHMETIC INTEGRAL MEAN

Theorem 14. Let f be a continuous function on I and p be a positive
continuous weight on I. Then the weighted arithmetic integral mean Fp(x, y)
defined by (3) on I2 is (1) Schur geometrically convex if and only if

fp(x, y) ≤ xp(x)f(x)+yp(y)f(y)
xp(x)+yp(y)(9)

for all x, y ∈ I; (2) Schur harmonic convex if and only if

fp(x, y) ≤ x2p(x)f(x)+y2p(y)f(y)
x2p(x)+y2p(y)

(10)

for all x, y ∈ I.
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Proof. From (3) and (8) one has

∂Fp(x,y)
∂x =

−p(x)f(x)P (x,y)+p(x)
∫ y
x p(t)f(t)dt

P 2(x,y)
,

∂Fp(x,y)
∂y =

−p(y)f(y)P (x,y)+p(y)
∫ y
x p(t)f(t)dt

P 2(x,y)
.

(1) Simple computations lead to

(log y − log x)
(
y
∂Fp(x,y)

∂y − x∂Fp(x,y)
∂x

)
=

= log y−log x
P (x,y)

[
xp(x)f(x) + yp(y)f(y)− xp(x)fp(x, y)− yp(y)fp(x, y)

]
.

We clearly see that log y−log x
P (x,y) ≥ 0, then by Lemma 5 we know that Fp(x, y)

is Schur geometrically convex if and only if

xp(x)f(x) + yp(y)f(y)− xp(x)fp(x, y)− yp(y)fp(x, y) ≥ 0

for all x, y ∈ I. That is to say for all x, y ∈ I,

fp(x, y) ≤ xp(x)f(x)+yp(y)f(y)
xp(x)+yp(y) .

(2) Direct computations yield

(y − x)
(
y2 ∂Fp(x,y)

∂y − x2 ∂Fp(x,y)
∂x

)
=

= y−x
P (x,y) [x2p(x)f(x) + y2p(y)f(y)− x2p(x)fp(x, y)− y2p(y)fp(x, y)].

Since y−x
P (x,y) ≥ 0, by Lemma 6 we know that Fp(x, y) is Schur harmonic

convex if and only if for all x, y ∈ I it holds

x2p(x)f(x) + y2p(y)f(y)− x2p(x)fp(x, y)− y2p(y)fp(x, y) ≥ 0,

i.e.
fp(x, y) ≤ x2p(x)f(x)+y2p(y)f(y)

x2p(x)+y2p(y)

for all x, y ∈ I. �

Let

(11) f = f(x, y) = 1
y−x

∫ y

x
f(t)dt, g = g(x, y) = 1

y−x

∫ y

x
g(t)dt,

and take p(t) = 1. Then Theorem 14 leads to the following Corollary 15.

Corollary 15. Let f be a continuous function on I, then the arithmetic
integral mean F (x, y) on I2 is

(1) Schur geometrically convex if and only if

(12) f(x, y) ≤ xf(x)+yf(y)
x+y

for all x, y ∈ I;
(2) Schur harmonic convex if and only if

(13) f(x, y) ≤ x2f(x)+y2f(y)
x2+y2

for all x, y ∈ I.
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Theorem 16. Let p be a positive continuous weight on I, f be a differen-

tiable function on I with f ′(y) ≥ p(y)
P (x,y) ·

f(y)−f(x)
y−x for any x, y ∈ I, Fp(x, y)

be the weighted arithmetic integral mean. Then the following statements are
true.

(1) If f and p have the same monotonicity on I, then Fp(x, y) is Schur
convex on I2;

(2) If f(t) and tp(t) have the same monotonicity on I, then Fp(x, y) is Schur
geometrically convex on I2;

(3) If f(t) and t2p(t) have the same monotonicity on I, then Fp(x, y) is
Schur harmonic convex on I2.

Proof. For any x, y ∈ I, let

G(x, y) = 2

∫ y

x
p(t)f(t)dt− [f(x) + f(y)]

∫ y

x
p(t)dt.

Then

(14) G(x, x) = 0,

(15) ∂G(x,y)
∂y = p(y)[f(y)− f(x)]− f ′(y)

∫ y

x
p(t)dt.

If

(16) f ′(y) ≥ p(y)
P (x,y) ·

f(y)−f(x)
y−x ,

then equation (15) and inequality (16) lead to the conclusion that

(17) ∂G(x,y)
∂y ≤ 0.

Equation (14) and inequality (17) imply

(18) G(x, y) ≤ 0.

Inequality (18) leads to

(19) fp(x, y) ≤ f(x)+f(y)
2 .

(1) If f and p have the same monotonicity on I, then

(f(y)− f(x))[p(y)− p(x)] ≥ 0

for any x, y ∈ I. It follows that

(20) f(x)+f(y)
2 ≤ p(x)f(x)+p(y)f(y)

p(x)+p(y) .

From inequalities (19) and (20) together with Theorem 8 we clearly see that
Fp(x, y) is Schur convex on I2.

(2) If f(t) and tp(t) have the same monotonicity on I, then

(f(y)− f(x))[yp(y)− xp(x)] ≥ 0

for any x, y ∈ I. So, we have

(21) f(x)+f(y)
2 ≤ xp(x)f(x)+yp(y)f(y)

xp(x)+yp(y) .
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From inequalities (19) and (21) together with Theorem 14(1) we known that
Fp(x, y) is Schur geometrically convex on I2.

(3) If f(t) and t2p(t) have the same monotonicity on I, then

(f(y)− f(x))[y2p(y)− x2p(x)] ≥ 0

for any x, y ∈ I. Hence, we get

(22) f(x)+f(y)
2 ≤ x2p(x)f(x)+y2p(y)f(y)

x2p(x)+y2p(y)

for any x, y ∈ I.
It follows from inequalities (19) and (22) together with Theorem 14(2) that

Fp(x, y) is Schur harmonic convex on I2. �

Theorem 17. Let f be a continuous, increasing (decreasing) and convex
(concave) function on I. Then the arithmetic integral mean F (x, y) is Schur
geometrically and harmonic convex (concave) on I2.

Proof. If f is convex on I, then by the well known Hermite-Hadamard
inequality we have

f(x, y) = 1
y−x

∫ y

x
f(t)dt ≤ f(x)+f(y)

2 .(23)

If f is increasing on I, then

(f(y)− f(x))(y − x) ≥ 0

for any x, y ∈ I. Therefore,

(24) f(x)+f(y)
2 ≤ xf(x)+yf(y)

x+y .

From inequalities (23) and (24) together with Corollary 15(1) we clearly see
that F (x, y) is Schur geometrically convex on I2.

If f is increasing on I, then

(f(y)− f(x))(y2 − x2) ≥ 0

for any x, y ∈ I. Hence,

(25) f(x)+f(y)
2 ≤ x2f(x)+y2f(y)

x2+y2
.

From inequalities (23) and (25) together with Corollary 15(2) we known
that F (x, y) is Schur harmonic convex on I2. �

3. SCHUR CONVEXITY OF THE WEIGHTED CHEBYSHEV FUNCTIONAL

It is not difficult to verify that the weighted Chebyshev functional T (f, g, p)
satisfy the identity:

(26) T (f, g, p;x, y) = 1∫ y
x p(t)dt

∫ y

x
p(t)(f(t)− fp(x, y))(g(t)− gp(x, y))dt.

For fixed x and y with x 6= y, let

(27) Gp(t) = (f(t)− fp(x, y))(g(t)− gp(x, y))
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for all t ∈ [x, y]. Then (26) can be rewritten as

(28) T (f, g, p, x, y) = 1∫ y
x p(t)dt

∫ y

x
p(t)Gp(t)dt.

Equation (28) shows that the weighted Chebyshev functional T (f, g, p) can
be expressed by the weighted arithmetic integral mean of Gp(t).

If p(t) = 1, then (27) and (28) can be rewritten as

(29) G(t) = (f(t)− f(x, y))(g(t)− g(x, y)),

(30) T (f, g) = T (f, g;x, y) = 1
y−x

∫ y

x
G(t)dt,

respectively. From (27), (28) and Theorem 14, we have

Theorem 18. Let p be a positive continuous weight on I. Then the weighted
Chebyshev functional T (f, g, p) defined as in (6) is

(1) Schur geometrically convex on I2 if and only if the inequality

T (f, g, p;x, y) ≤ xp(x)(f(x)−fp(x,y))(g(x)−gp(x,y))+yp(y)(f(y)−fp(x,y))(g(y)−gp(x,y))
xp(x)+yp(y)

holds for all x, y ∈ I;
(2) Schur harmonic convex on I2 if and only if the inequality

T (f, g, p;x, y) ≤ x2p(x)(f(x)−fp(x,y))(g(x)−gp(x,y))+y2p(y)(f(y)−fp(x,y))(g(y)−gp(x,y))
x2p(x)+y2p(y)

holds for all x, y ∈ I.

From Theorems 13 and 18, we get the following Corollary 19.

Corollary 19. The Chebyshev functional T (f, g) defined as in (7) is
(1) Schur convex on I2 if and only if

T (f, g;x, y) ≤ (f(x)−f(x,y))(g(x)−g(x,y))+(f(y)−f(x,y))(g(y)−g(x,y))
2

for all x, y ∈ I;
(2) Schur geometrically convex on I2 if and only if

T (f, g;x, y) ≤ x(f(x)−f(x,y))(g(x)−g(x,y))+y(f(y)−f(x,y))(g(y)−g(x,y))
x+y

for all x, y ∈ I;
(3) Schur harmonic convex on I2 if and only if

T (f, g;x, y) ≤ x2(f(x)−f(x,y))(g(x)−g(x,y))+y2(f(y)−f(x,y))(g(y)−g(x,y))
x2+y2

for all x, y ∈ I.

From (28) and Theorem 16, we have the following Theorem 20.
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Theorem 20. Let p be a positive continuous weight on I, Gp(t) = (f(t)−
fp(x, y))(g(t)− gp(x, y)) be a differentiable function on I with G′p(y) ≥ p(y)

P (x,y) ·
G(y)−G(x)

y−x for any x, y ∈ I. Then the following statements are true.

(1) If Gp(t) and p(t) have the same monotonicity on I, then T (f, g, p) is
Schur convex on I2.

(2) If Gp(t) and tp(t) have the same monotonicity on I, then T (f, g, p) is
Schur geometrically convex on I2.

(3) If Gp(t) and t2p(t) have the same monotonicity on I, then T (f, g, p) is
Schur harmonic convex on I2.

Theorem 21. Let G(t) = (f(t) − f(x, y))(g(t) − g(x, y)) be a continuous
function on [x, y] ⊆ I for any x, y ∈ I. Then the following statements are
true.

(1) T (f, g) is Schur convex (concave) on I2 if and only if G(t) is convex
(concave) on I.

(2) If G(t) is increasing (decreasing) and convex (concave) on I, then
T (f, g) is Schur geometrically and harmonic convex (concave) on I2.

Proof. Theorem 21(1) follows from (30) and Theorem 9, and Theorem 21(2)
follows form (30) and Theorem 17. �
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