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BILATERAL INEQUALITIES FOR MEANS

MIRA-CRISTIANA ANISIU∗ and VALERIU ANISIU †

Abstract. Let (M1,M2,M3) be three means in two variables chosen from H,
G, L, I, A, Q, S, C so that

M1(a, b) < M2(a, b) < M3(a, b), 0 < a < b.

We consider the problem of finding α, β ∈ R for which

αM1(a, b) + (1− α)M3(a, b) < M2(a, b) < βM1(a, b) + (1− β)M3(a, b).

We solve the problem for the triplets (G,L,A), (G,A,Q), (G,A,C), (G,Q,C),
(A,Q,C), (A,S,C), (A,Q, S) and (L,A,C). The Symbolic Algebra Program
Maple is used to determine the range where some parameters can vary, or to
find the minimal polynomial for an algebraic number.
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1. INTRODUCTION

We remind the definitions of the classical means, namely, for 0 < a < b

• the arithmetic, geometric and harmonic ones

A = a+b
2 , G =

√
ab, H = 2ab

a+b ,

as well as

• the Hölder and the anti-harmonic mean Q =
(
a2+b2

2

)1/2
, C = a2+b2

a+b ;

• the Pólya & Szegő logarithmic mean, the exponential (or identric), and
the weighted geometric mean

L = b−a
ln b−ln a , I = 1

e

(
bb

aa

)1/(b−a)
, S =

(
aabb

)1/(a+b)
.

References on means and inequalities between them can be found in [5].
At first, the following inequalities between means were established

(1) H < G < L < I < A < Q < S < C,
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†“Babeş-Bolyai” University, Faculty of Mathematics and Computer Science, 1
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followed by relations between some means and the arithmetic means of two
others ([7], [3])

(2) L < G+A
2 , G+Q

2 < A < G+C
2 < Q < A+C

2 < S.

A more difficult problem is to obtain results of the type (2) for weighted
arithmetic means and to determine the maximal interval for the parameter for
which the inequalities hold.

We mention here an inequality proved by Alzer and Qiu for the means G, I
and A.

Theorem 1. [1] The double inequality

(3) αA(a, b) + (1− α)G(a, b) < I(a, b) < βA(a, b) + (1− β)G(a, b)

holds true for all positive real numbers a 6= b, if and only if α ≤ 2/3 and
β ≥ 2/e.

Results of this type continued to appear, recent ones are given in [9] for
(H,L,A) and (H, I,A), and in [4] for (G,L,C).

Let M1, M2, M3 be three means out of the eight listed in (1) so that

(4) M1(a, b) < M2(a, b) < M3(a, b).

We consider the problem of finding α, β ∈ R for which

(5) αM1(a, b) + (1− α)M3(a, b) < M2(a, b)

and

(6) M2(a, b) < βM1(a, b) + (1− β)M3(a, b).

The inequalities (5) and (6) are equivalent to

(7) α > M3(a,b)−M2(a,b)
M3(a,b)−M1(a,b) ,

respectively

(8) β < M3(a,b)−M2(a,b)
M3(a,b)−M1(a,b) .

Basically, denoting by t = b/a, t > 1, the problem reduces to find inf f and
sup f , where

(9) f(t) = M3(1,t)−M2(1,t)
M3(1,t)−M1(1,t) .

The function f is obviously bounded, 0 ≤ f(t) ≤ 1. If sup f is attained at
some t ∈ (1,∞), then α ∈ (sup f,∞); otherwise α ∈ [sup f,∞). Similarly,
β ∈ (−∞, inf f) if inf f is attained in (1,∞), and β ∈ (−∞, inf f ] otherwise.
Symbolic Algebra Programs can be of great help to determine the range where
the parameters can vary. Maple was used in [3] to find the interval for α in
Theorem 9 below. We also use it to simplify the polynomials in the proof of
Theorem 5 and to obtain the optimal value β0 of β.

Starting from the means listed in (1), we can formulate
(

8
3

)
= 56 bilateral

inequalities of the type (3). We shall choose seven of them, for which one of
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(5) and (6) was already proved in [3], and we shall find the possible values
of the parameter for the remaining one. Then, for L < A < C we find the
optimal intervals for α and β in order that both inequalities (5) and (6) hold.
To this aim Maple is again very useful.

2. BILATERAL INEQUALITIES

We consider means in two variables, but we prefer to use a simpler (and
shorter) notation.

Let us denote for 0 < a < b, t = b/a, t > 1. It it obvious, due to the
homogeneity, that, if M(a, b) is any mean from (1), it suffices to prove the
inequalities for M(1, t). We shall write from now on M(t) instead of M(1, t).

Theorem 2. The double inequality

αG(t) + (1− α)A(t) < L(t) < βG(t) + (1− β)A(t), ∀t > 1,

holds if and only if α ≥ 1 and β ≤ 2/3.

Proof. We denote, for t > 1,

(10) f1(t) = A(t)−L(t)
A(t)−G(t) = (t+1) ln t−2(t−1)

(t+1−2
√
t) ln t

.

Let us suppose that the first inequality in the theorem holds. From
limt→∞ f1(t) = 1 it follows obviously that α ≥ 1. Conversely, if α ≥ 1 it
suffices to have

A(t)−L(t)
A(t)−G(t) < 1,

which is true because L(t) > G(t). We evaluate f1(t) − 2/3, where 2/3 =
limt→1 f1(t) and show that it is positive. The denominator is obviously posi-
tive; we substitute u =

√
t in the numerator and obtain

f(u) = (u2 + 4u+ 1) lnu− 3u2 + 3.

We have f(1) = f ′(1) = f ′′(1) = 0 and f ′′′(u) = 2(u − 1)2/u3 > 0 for u > 1,
hence f1(t) > 2/3 for t > 1. It follows that L(t) < βG(t)+(1−β)A(t), ∀t > 1
if and only if β ≤ 2/3. �

Theorem 3. The double inequality

αG(t) + (1− α)Q(t) < A(t) < βG(t) + (1− β)Q(t), ∀t > 1,

holds if and only if α ≥ 1/2 and β ≤ 1−
√

2/2.

Proof. Let us consider for t > 1, the function

(11) f2(t) = Q(t)−A(t)
Q(t)−G(t) = 1−

√
t2+1+

√
2t√

2(
√
t+1)2

.

We have f2(t) < 1/2, since
√
t2 + 1 +

√
2t >

√
2/2 (

√
t + 1)2 ⇔

√
t2 + 1 >√

2/2 (t+ 1) ⇔ (t− 1)2 > 0. Since limt→1 f2(t) = 1/2, it follows that αG(t) +
(1− α)Q(t) < A(t), ∀t > 1 if and only if α ≥ 1/2.

Let us suppose that A(t) < βG(t) + (1 − β)Q(t), ∀t > 1. Since
limt→∞ f2(t) = 1 −

√
2/2, it follows that β ≤ 1 −

√
2/2. Conversely, if
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β ≤ 1 −
√

2/2, it suffices to prove that f2(t) > 1 −
√

2/2. This is equiva-
lent with √

t2+1+
√

2t

(
√
t+1)

2 < 1,

i. e.
√
t2 + 1 +

√
2t <

(√
t+ 1

)2
and this is true because

√
t2 + 1 +

√
2t <

t+ 1 +
√

2t <
(√
t+ 1

)2
. �

Theorem 4. The double inequality

αG(t) + (1− α)C(t) < A(t) < βG(t) + (1− β)C(t), ∀t > 1,

holds if and only if α ≥ 2/3 and β ≤ 1/2.

Proof. For t > 1 we define

(12) f3(t) = C(t)−A(t)
C(t)−G(t) = (t−1)2

2(t2+1−
√
t(t+1))

.

Since limt→1 f3(t) = 2/3, from αG(t) + (1 − α)C(t) < A(t), ∀t > 1 it follows
that α ≥ 2/3. If α ≥ 2/3, it is true that f3(t) < α, because f3(t) < 2/3 is
equivalent with √

t
t+
√
t+1

< 1
3 ,

or (
√
t− 1)2 > 0.

Similarly, it follows that f3(t) > 1/2, since

f3(t)− 1
2 =

√
t(
√
t−1)2

2(t2+1−
√
t(t+1))

=
√
t

2(t+
√
t+1)

> 0.

The infimum of f3 on (1,∞) is precisely 1/2, because limt→∞ f3(t) = 1/2 �

Theorem 5. The double inequality

αG(t) + (1− α)C(t) < Q(t) < βG(t) + (1− β)C(t), ∀t > 1,

holds if and only if α ≥ 1 −
√

2/2 and β < β0, where β0 u 0.3471574308... is
the unique positive root of the polynomial

9x4 − 26x3 + 22x2 − 2x− 1.

Proof. We have to find, for t > 1, the extreme values of

(13) f4(t) = C(t)−Q(t)
C(t)−G(t) = 2t2−

√
2
√
t2+1−

√
2t
√
t2+1+2

2(t2−t
3
2−
√
t+1)

.

Denoting by u =
√
t, we compute the derivative of

h(u) = f4(u2)

and we obtain

h′(u) =
(u+1)

(√
2(u4+1)(−u4−4u2−1)+u6+2u5+3u4+3u2+2u+1

)
√

2(u4+1)(u−1)3(u2+u+1)2
.

So, the roots of the derivative satisfy the algebraic equation

2(u4 + 1)
(
u4 + 4u2 + 1

)2
=
(
u6 + 2u5 + 3u4 + 3u2 + 2u+ 1

)2
.
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After the simplification of a quartic polynomial whose roots are not in the
interval (1,∞), we obtain the equation

(14) u8 − 8u5 − 10u4 − 8u3 + 1 = 0,

which has a unique root u0 in the interval (1,∞). This can be easily proved
by using the Sturm sequence. Then u0 will be the unique root of h′ in (1,∞).

Now h′(2) > 0, h′(3) < 0, so 2 < u0 < 3 and h is strictly increasing in the
interval (1, u0) and strictly decreasing in the interval (u0,∞). We also have
limu→1 h(u) = 1/3, limu→∞ h(u) = 1 −

√
2/2 and therefore inf f4 = inf h =

1−
√

2/2, sup f4 = suph = h(u0) = β0.
Since h(u0) is an algebraic number, we can easily find its minimal polyno-

mial by performing the following commands in Maple:
>theta:=RootOf(u^8-8*u^5-10*u^4-8*u^3+1, u):

> M:= g(theta):

> sqrfree(evala(Norm(convert(Z-M,RootOf))),Z)[2][1][1];

9x4 − 26x3 + 22x2 − 2x− 1

Notice that Maple is of course able to express the maximum h(u0) in terms of
radicals by executing the command:

> select(u-> is(u>0),[solve(9*x^4-26*x^3+22*x^2-2*x-1,Explicit)]);

but the resulting expression is cumbersome and we will not print it here. �

Theorem 6. The double inequality

αA(t) + (1− α)C(t) < Q(t) < βA(t) + (1− β)C(t), ∀t > 1,

holds if and only if α ≥ 2−
√

2 and β ≤ 1/2.

Proof. Let us consider, for t > 1

(15) f5(t) = C(t)−Q(t)
C(t)−A(t) =

2(t2+1)−(t+1)
√

2(t2+1)

(t−1)2
.

From limt→∞ f5(t) = 2−
√

2 it follows that αA(t)+(1−α)C(t) < Q(t), ∀t >
1 implies α ≥ 2−

√
2. Now if α ≥ 2−

√
2 we have to prove that f5(t) < 2−

√
2,

which can be written as
√

2(t2 + 1) (t+ 1) > −
√

2t2 +
(
4 + 2

√
2
)
t −
√

2. If

−
√

2t2 +
(
4 + 2

√
2
)
t−
√

2 ≤ 0, the inequality holds. Otherwise, squaring both

sides it reduces to 4
(
3 + 2

√
2
)
t (t− 1)2 > 0.

We obtain also

f5(t)− 1
2 =

3(t2+1)+2t−2(t+1)
√

2(t2+1)

2(t−1)2
> 0,

because (3(t2 + 1) + 2t)2 − 8(t + 1)2(t2 + 1) > 0 ⇔ (t − 1)4 > 0. We have
limt→1 f5(t) = 1/2, hence this is the infimum of f5 on (1,∞) and the second
part of the theorem is also true. �

Lemma 7. [3] For t > 1, the following inequality holds

(16) t
t

t+1 > t− ln t.
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Proof. The inequality (16) is equivalent to

t
t+1 ln t > ln(t− ln t).

We consider the function

k(t) = ln(t− ln t)− t−1
t ln t, t > 1,

with

k′(t) = (ln t−1) ln t
t2(t−ln t)

.

It has limt→1 k(t) = 0, limt→∞ k(t) = 0 and a minimum at t0 = e. It follows
that k(t) < 0 on (1,∞), hence ((t− 1)/t) ln t > ln(t− ln t). It follows that

t
t+1 ln t > t−1

t ln t > ln(t− ln t).

�

Theorem 8. The double inequality

αA(t) + (1− α)C(t) < S(t) < βA(t) + (1− β)C(t), ∀t > 1,

holds if and only if α ≥ 1/2 and β ≤ 0.

Proof. We define

(17) f6(t) = C(t)−S(t)
C(t)−A(t) = 2 t2+1−(t+1)t

t
t+1

(t−1)2
.

We have

f6(t)− 1
2 = 3(t2+1)+2t−4(t+1)t

t
t+1

2(t−1)2
= 2(t+1)

(t−1)2
· g(t),

where

g(t) = 3(t2+1)+2t
4(t+1) − t

t
t+1 .

Then

g′(t) = − g1(t)

4(t+1)2
,

where

(18) g1(t) = 4t
t

t+1 (t+ 1 + ln t) + 1− 3t2 − 6t.

Using the fact that S > Q, i. e. tt/(t+1) >
√

(t2 + 1)/2, we obtain that

g1(t) >
√

2(t2 + 1)g2(t), where

g2(t) = 2(t+ 1 + ln t)− (3t2 + 6t− 1)/
√

2(t2 + 1).

The derivative of g2 is

g′2(t) =
(t+1)

(√
2(t2+1)

)3
−(3t4+7t2+6t)

t(t2+1)
√

2(t2+1)
.
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In order to establish its sign we consider the polynomial

P (t) = (t+ 1)2
(√

2(t2 + 1)
)6
−
(
3t4 + 7t2 + 6t

)2
= t6 (t− 1)2 ( 8

t6
+ 32

t5
+ 52

t4
+ 36

t3
+ 19

t2
+ 14

t − 1
)
.

The expression from the last parenthesis is obviously decreasing for t ≥ 1
and it is positive for t = 10. It follows that it is positive on (1, 10), hence on
this interval P is also positive. Therefore g′2(t) > 0, g2(t) > g2(1) = 0, so g1 is
positive too for 1 < t < 10.

Let us consider now that t ≥ 10. Using (16) in (18) we obtain that g1(t) >
g3(t), where

g3(t) = t2 − 2t+ 2− (2 ln t+ 1)2 .

For

g4(t) =
√
t2 − 2t+ 2− 2 ln t− 1,

the sign of g′4 is given by t2− t−2
√
t2 − 2t+ 2; but (t2− t)2−4(t2−2t+2) =

(t− 10)4 + 38(t− 10)3 + 537(t− 10)2 + 3348(t− 10) + 7772 > 0 for t ≥ 10. It
follows that g3(t) ≥ g3(10) = 3.45... > 0, hence g1 is positive for t ≥ 10 too.

In conclusion, g1(t) > 0 on (1,∞), therefore g′(t) < 0 on (1,∞). The
function g being decreasing, g(t) < g(1) = 0 for t > 1 and f6(t) < 1/2 for
t > 1.

The second part of the theorem follows from limt→∞ f6(t) = 0 and f6(t) > 0,
∀t > 1. �

Theorem 9. The double inequality

αA(t) + (1− α)S(t) < Q(t) < βA(t) + (1− β)S(t), ∀t > 1

holds if and only if α ≥ 2−
√

2 and β ≤ 0.

Proof. We shall prove that the first inequality holds for α = 2−
√

2 (hence
a fortiori for α ≥ 2−

√
2).

Let us denote
(19)

H(t, α) = Q(t)−αA(t)− (1−α)S(t) = 1
2

√
2 + 2 t2− 1

2α (1 + t)− (1− α) t
t

1+t .

and

h1(t) = (
√

2 + 1)H(t, 2−
√

2),

where H is given in (19). We have to prove that h1(t) > 0 for t > 1. It follows
that

h1(t) =
(
√

2+1)
√

2(t2+1)

2 −
√

2(t+1)
2 − t

t
t+1 .

We put in the inequality (1 + x)q < 1 + qx, which holds for x > 0, 0 < q < 1,
x = t− 1 and q = t/(t+ 1). It follows that

t
t

t+1 < t2+1
t+1 ,
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and

h1(t) > (1+
√

2)
2(t+1)

(
(t+ 1)

√
2 + 2t2 −

√
2(t2 + 2(

√
2− 1)t+ 1)

)
.

Let us denote the positive expressions

h2(t) = (t+ 1)
√

2 + 2t2, h3(t) =
√

2(t2 + 2(
√

2− 1)t+ 1);

it follows easily that h2
2(t)− h2

3(t) = 4t(t− 1)2, therefore h1(t) > 0.
The second part of the theorem is obvious, since

f7(t) = S(t)−Q(t)
S(t)−A(t)

satisfies f7(t) > 0, ∀t > 1 and limt→1 f7(t) = 0. �

Theorem 10. The double inequality

αL(t) + (1− α)C(t) < A(t) < βL(t) + (1− β)C(t), ∀t > 1,

holds if and only if α ≥ 3/4 and β ≤ 1/2.

Proof. We have to find the extreme values of

f8(t) = C(t)−A(t)
C(t)−L(t)

for t > 1, where f8 is given by

f8(t) = 1
2 ·

(t−1)2 ln t
ln t+t2 ln t−t2+1

.

We obtain

f ′8(t) = − (t−1)h3(t)
2t(ln t+t2 ln t−t2+1)2

,

where

h4(t) = t3 − 2
(
t2 ln t

)2
+ 2 t2 ln t− t2 − 2 t ln t− 2 t (ln t)2 − t+ 1.

Now, h4(1) = h′4(1) = h′′4(1) = h′′′4 (1) = 0 and

h
(4)
4 (t) = 8(t−1) ln t

t3
> 0 for t > 1.

Therefore h4 > 0 in (1,∞) and f ′8 < 0 in (1,∞). The function f8 being strictly
decreasing on (1,∞), inf f8 = limt→∞ f8(t) = 1/2 and sup f8 = limt→1 f8(t) =
3/4. �

3. FINAL REMARKS

From the eight means considered in this paper, two enter the class of Gini
means [6] defined for a, b > 0, u, v ∈ R,

Gu,v(a, b) =


(
au+bu

av+bv

) 1
u−v

, u 6= v

exp
(
au log a+bu log b

au+bu

)
, u = v
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namely S = G1,1, C = G2,1; two belong to the class of Stolarsky means [8]
defined for a, b > 0, a 6= b, u, v ∈ R,

Er,s(a, b) =



(
s
r
ar−br
as−bs

) 1
r−s

, rs(r − s) 6= 0

exp
(
−1

r + ar log a−br log b
ar−br

)
, r = s 6= 0(

1
s

as−bs
log a−log b

)1
s
, r = 0, s 6= 0

√
ab, r = s 6= 0,

namely L = E1,0, I = E1,1. The other four are in both classes, namely
H = G−1,0 = E−2,−1, G = G0,0 = E0,0, A = G1,0 = E2,1 and Q = G2,0 = E4,2.
As it was shown in [2], the families of Gini means Gu,v and Stolarsky means
Er,s have in common only the power means. So even if general results will be
proved for these two classes of means, not all the inequalities from this paper
will be consequences; for example, in the last theorem L is a Stolarsky mean,
while C is a Gini one.
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