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SHARP INEQUALITIES FOR THE NEUMAN-SANDOR MEAN IN
TERMS OF ARITHMETIC AND CONTRA-HARMONIC MEANS!

YU-MING CHU*, MIAO-KUN WANG* and BAO-YU LIU'

Abstract. In this paper, we find the greatest values o and A, and the least
values B and p such that the double inequalities

C*(a,b)A'*(a,b) < M(a,b) < C°(a,b)A* " (a,b)
and

[Ca,)/6 -+ 5A(a, b)/6]* [C/(a,5) A% (a, )] < M(a,b) <

< [Ca,)/6 + 5A(a, b)/6]" [/ (a,5) A% (a, )] o

hold for all a,b > 0 with a # b, where M (a,b), A(a,b) and C(a,b) denote the
Neuman-Sandor, arithmetic, and contra-harmonic means of a and b, respectively.
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1. INTRODUCTION

For a,b > 0 with a # b the Neuman-Sandor mean M (a,b) [I] is defined by

M(a” b) = 2arcsinh[(aa77bb)/(a+b)}’

where arcsinh(z) = log(x + v/1 + 22) is the inverse hyperbolic sine function.
Recently, the Neuman-Sandor mean has been the subject of intensive re-
search. In particular, many remarkable inequalities for the Neuman-Sandor
mean M (a,b) can be found in the literature [I]—[4].
Let A(a,b) = (a+b)/2 and C(a,b) = (a®+b?)/(a+b) be the arithmetic and
contra-harmonic means of a and b, respectively. Then from [I], [2] we clearly
see that the double inequality

A(a,b) < M(a,b) < C(a,b)
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holds for all a,b > 0 with a # b.
In [4], Neuman proved that the double inequality

(1.1) aC(a,b) + (1 — a)A(a,b) < M(a,b) < BC(a,b) + (1 — B)A(a,b)

holds for all a,b > 0 with a # b if and only if & < (1 —log(v2 + 1)) /log(v/2+
1) =0.1345--- and 8 > 1/6, and the inequality

(1.2) C*a,b)AYa,b) < M(a,b) < C*(a,b)A* " (a,b)
holds true for all a,b > 0 with a # bif u > log ((v2 +2)/3) /log2 = 0.1865 - - -
and A < 1/6.

The main purpose of this paper is to give some refinements and improve-
ments for inequalities (1.1) and (1.2). Our main results are the following
Theorems 1.1 and 1.2.

THEOREM 1.1. The double inequality
C%(a,b)AY"%(a,b) < M(a,b) < CP(a,b)AYP(a,b)

holds for all a,b > 0 with a # b if and only if « < 1/6 and B > — log(log(1 +
V2))/log2 =0.1821---.

THEOREM 1.2. The double inequality
1-X
[C(a,b)/6 + 5A(a, b) /6] [01/6(@ b) A5/5(q, b)} < M(a,b)

1—

< [C(a,b)/6 + 5A(a, b) /6] [01/6(a, b) A>/8(a, b)] g

holds for all a,b > 0 with a # b if and only if X < —[6log(log(1 + v/2)) +
log2]/[61og(7/6) —log 2] = 0.27828 - -- and pu > 8/25.

2. LEMMAS

In order to prove our main results we need three lemmas, which we present
in this section.

LEMMA 2.1. (See [5l, Theorem 1.25]). For —oo < a < b < oo, let f,g :
[a,b] = R be continuous on [a,b], and be differentiable on (a,b), let ¢'(x) # 0
n (a,b). If f'(x)/g' (x) is increasing (decreasing) on (a,b), then so are
z)—f(a z)—f(b
tt) vt 48
If f'(x)/d (x) is strictly monotone, then the monotonicity in the conclusion is
also strict.

LEMMA 2.2. (See [0, Lemma 1.1]). Suppose that the power series f(x) =
o o0
> apx™ and g(x) = Y bya™ have the radius of convergence r > 0 and b, > 0

n=0

n=0
foralln €{0,1,2,---}. Let h(z) = f(x)/g(x), then the following statements
are true:
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(1) If the sequence {an/bn}e is (strictly) increasing (decreasing), then
h(z) is also (strictly) increasing (decreasing) on (0,r);

(2) If the sequence {an/by,} is (strictly) increasing (decreasing) for 0 <
n < ng and (strictly) decreasing (increasing) for n > ng, then there exists
xo € (0,7) such that h(x) is (strictly) increasing (decreasing) on (0,x¢) and
(strictly) decreasing (increasing) on (zg,r).

LEmMA 2.3. The function

90t+52¢ cosh(2t) —66 sinh(2t)+2¢ cosh(4t) —3 sinh(4t)
(21) h(t) 15¢t—20¢t cosh(2t)+5t cosh(4t)

is strictly decreasing on (0,log(1 + v/2)), where sinh(t) = (¢! —e™")/2 and
cosh(t) = (et +e7t)/2 are the hyperbolic sine and cosine functions, respectively.

Proof. Let
(2.2)  hi(t) = 90t + 52t cosh(2t) — 66 sinh(2t) + 2t cosh(4t) — 3sinh(4t),
(2.3) ha(t) = 15t — 20t cosh(2t) + 5t cosh(4t).

Then making use of power series formulas we have

(Qt (Qt 2n+1
(2.4) ha(t) =90t + 52t - 662 T
n=0
0 2n+1
(4t)="
-3 @n ¥
n=0
52t 2t)2n 66 e 2t)2n+1 e (4t)2n
- Z 2n) Z (2n+1)! (2n)!
n=2
(4t 2n+1
- 32 2n+1)!
[o.¢]
B [16+13n+(2n—1)227+2]22n+7 o 1 5
_Z (2n+5)! ¢
n=0
and
2t)
(25)  ha(t) _15t—20t2 ((;n, +5tz 2n),
2t 2n 5 22n+2 1 22n+6 2 5
== 20tZ i 5tZ e

It follows from (2. )—(2.5) that

(2.6) h(t) = 520
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where

A
Equation (2.7) leads to

(2.8) el R e

where

(2.9) cn = (30n% 4 1350 + 110 — 4" F3)4m ! 4 11,
From (2.9) we get

(2.10) co =195, c¢; =315, ¢y =—33525

and

(2.11)  ¢n < (30n2 + 1350 + 110 — 64n3)4" L + 11
= [10n*(3 — n) 4+ 15n(9 — n?) + 5(22 — n®) — 34n®] 4" 4+ 11
< =34n® 4" 411 <0

for n > 3.

Equations (2.8) and (2.10) together with inequality (2.11) lead to the con-
clusion that the sequence {a,/b,} is strictly decreasing for 0 < n < 2 and
strictly increasing for n > 3. Then from Lemma 2.2(2) and (2.6) we clearly
see that there exists ¢y € (0,00) such that h(t) is strictly decreasing on (0, o)
and strictly increasing on (tg, 00).

Let t* = log(1 + v/2). Then simple computations lead to
(2.12) sinh(2t*) = 2v/2, cosh(2t*) = 3, sinh(4t*) = 12v/2, cosh(4t*) = 17.

Differentiating (2.1) yields

__90—80 cosh(2t)+104¢ sinh(2t)—10 cosh(4t)+8¢ sinh (4t)
(213) h/(t) — COS. S hz(t) COS. S
_ 15—20cosh(2t)—40¢ sin(2t)4-5 cosh(4t)+20t sinh(4t)
h2(t)2 h‘l (t)
From (2.2) and (2.3) together with (2.12) and (2.13) we get
* _ *2 *
(2.14) B (t*) = TONRABERAVE — 10035+ < 0,
From the piecewise monotonicity of h(t) and inequality (2.14) we clearly see
that tp > t* = log(1 + v/2), and the proof of Lemma 2.3 is completed. O

3. PROOFS OF THEOREMS 1.1 AND 1.2

3.1. Proof of Theorem 1.1 Since M(a,b), C(a,b) and A(a,b) are sym-
metric and homogeneous of degree 1. Without loss of generality, we assume
that @ > b. Let z = (a — b)/(a +b) and ¢t = arcsinh(z). Then z € (0,1),
t € (0,log(1 ++/2)) and

(3 1) log [M (a,b)]—log [A(a,b)] __ log[z/arcsinh(z)] _ log[sinh(t)/t]
) log [C(a,b)]—log [A(a,b)] log(1+x2) 2log[cosh(¢)]
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Let f1(t) = log[sinh(t)/t], f2(t) = log[cosh(t)] and

__ log[sinh(¥)/t]
(3.2) f(t) = ToaromaT

Then f1(07) = f2(0) = 0, £(t) = f1(t)/ f2(t) and

(3 3) f1'(t) _ tcosh?(t)—sinh(t) cosh(t) _ t[cosh(2t)+1]—sinh(2t)
’ ') tsinh?(t) - t[cosh(2t)—1]

o0 o0
t( > 22”t2n/(2n)!+1) — 3 22nH1g2ntl /(94 1))
_ n=0 n=0

¢S 22n42n /(2n)!

n=1
o0 o0 o0
>oo22ng2ntl j(on)l— S 22nHlg2ntl /(9p4 1)) > Ant?n
__n=1 n=1 __ n=0
prm— %) - o0 )
t > 22n¢2n /(2n)! >° Bpt2n
n=1 n=0

where A, = 22""2(2n +1)/(2n + 3)! and B,, = 22""2/(2n + 2)!.

Note the A, /B, = 1 —2/(2n + 3) is strictly increasing for all n > 0.
Then from Lemma 2.2(1) and (3.3) we know that fi'(t)/f2'(t) is strictly
increasing on (0,00). Hence, f(t) is strictly increasing on (0,log(1 4+ v/2))
follows from Lemma 2.1 and the monotonicity of fi'(t)/fo'(t) together with
f(0%) = f2(0) = 0. Moreover,

: — i LW Ay 1
@4) 0= e =% =
3.5 lim  f(t) = — 2losloslv2)
( ) t—log(1++/3) f( ) log 2

Therefore, Theorem 1.1 follows easily from (3.1), (3.2), (3.4) and (3.5) to-
gether with the monotonicity of f(¢). O

3.2. Proof of Theorem 1.2 Since M(a,b), C(a,b) and A(a,b) are sym-
metric and homogeneous of degree 1. Without loss of generality, we assume
that @ > b. Let « = (a — b)/(a + b) and ¢t = arcsinh(z). Then z € (0,1),
t € (0,log(1 ++/2)) and

log M (a,b)—log [C*/(a,b) A5/5(a,b)] _

log [C(a,b)/6+5A(a,b) /6]—log [C1/6(a,b) A5/ (a,b)| —
o log[aﬁ/aurcsinh(av)]7log(1+:1:2)1/6
T log(1+x2/6)—log(1+22)1/6
__ __log[sinh(t)/t]—[log cosh(¢)]/3

log[1+sinh?(t)/6]—[log cosh(t)] /3"

Let g1(t) = log[sinh(t)/t] — [logcosh(t)]/3, go(t) = log[l + sinh?(t)/6] —
[log cosh(t)]/3 and

_ loglsinh(t) /t]—[log cosh(t)]/3

(37) g(t) " log[14-sinh?(t)/6]—[log cosh(t)]/3 "
Then g1(0%) = g2(0) = 0, g(t) = g1(t)/g2(t) and

[64sinh?(¢)][3 cosh?(t)—3 cosh(t) sinh(t) —t sinh?(t)]
tsinh(t)[6 sinh(t) cosh?(t)—sinh(t)(64sinh?(t))]

(3.6)

g1'(
g

2/ (

1) _
) =
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Elementary computations lead to
[6 + sinh?(¢)][3t cosh?(t) — 3 cosh(t) sinh(t) — tsinh?(t)] =
=24+ Bt cosh(2t) — 2 sinh(2t) + £ cosh(4t) — 2 sinh(4t),

tsinh(t)[6 sinh(t) cosh?(t) — sinh(¢)(6 4 sinh?(t))] =
= 12¢ — St cosh(2t) + 2t cosh(4t)
and

) _
(3.8) o = h(),
where h(t) is defined as in Lemma 2.3.
It follows from Lemmas 2.1 and 2.3 and (3.8) together with g, (07) = g2(0) =

0 that g(t) is strictly decreasing on (0,log(1 + +/2)). Moreover,

1 8
(39) lim g(t) = 35,
(3.10) lim  g(t) = —Slogloa(ltv)+log2

t—log(1++/2) 61og(7/6)—log2
Therefore, Theorem 1.2 follows easily from (3.6), (3.7), (3.9) and (3.10)

together with the monotonicity of g(t). O
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