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SHARP INEQUALITIES FOR THE NEUMAN-SÁNDOR MEAN IN

TERMS OF ARITHMETIC AND CONTRA-HARMONIC MEANS‡

YU-MING CHU∗, MIAO-KUN WANG∗ and BAO-YU LIU†

Abstract. In this paper, we find the greatest values α and λ, and the least
values β and µ such that the double inequalities

Cα(a, b)A1−α(a, b) < M(a, b) < Cβ(a, b)A1−β(a, b)

and

[C(a, b)/6 + 5A(a, b)/6]λ
[
C1/6(a, b)A5/6(a, b)

]1−λ
< M(a, b) <

< [C(a, b)/6 + 5A(a, b)/6]µ
[
C1/6(a, b)A5/6(a, b)

]1−µ
hold for all a, b > 0 with a 6= b, where M(a, b), A(a, b) and C(a, b) denote the
Neuman-Sándor, arithmetic, and contra-harmonic means of a and b, respectively.
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1. INTRODUCTION

For a, b > 0 with a 6= b the Neuman-Sándor mean M(a, b) [1] is defined by

M(a, b) = a−b
2arcsinh[(a−b)/(a+b)] ,

where arcsinh(x) = log(x+
√

1 + x2) is the inverse hyperbolic sine function.
Recently, the Neuman-Sándor mean has been the subject of intensive re-

search. In particular, many remarkable inequalities for the Neuman-Sándor
mean M(a, b) can be found in the literature [1]–[4].

Let A(a, b) = (a+b)/2 and C(a, b) = (a2 +b2)/(a+b) be the arithmetic and
contra-harmonic means of a and b, respectively. Then from [1], [2] we clearly
see that the double inequality

A(a, b) < M(a, b) < C(a, b)
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holds for all a, b > 0 with a 6= b.
In [4], Neuman proved that the double inequality

(1.1) αC(a, b) + (1− α)A(a, b) < M(a, b) < βC(a, b) + (1− β)A(a, b)

holds for all a, b > 0 with a 6= b if and only if α ≤
(
1− log(

√
2 + 1)

)
/ log(

√
2+

1) = 0.1345 · · · and β ≥ 1/6, and the inequality

(1.2) Cλ(a, b)A1−λ(a, b) < M(a, b) < Cµ(a, b)A1−µ(a, b)

holds true for all a, b > 0 with a 6= b if µ ≥ log
(
(
√

2 + 2)/3
)
/ log 2 = 0.1865 · · ·

and λ ≤ 1/6.
The main purpose of this paper is to give some refinements and improve-

ments for inequalities (1.1) and (1.2). Our main results are the following
Theorems 1.1 and 1.2.

Theorem 1.1. The double inequality

Cα(a, b)A1−α(a, b) < M(a, b) < Cβ(a, b)A1−β(a, b)

holds for all a, b > 0 with a 6= b if and only if α ≤ 1/6 and β ≥ − log(log(1 +√
2))/ log 2 = 0.1821 · · · .

Theorem 1.2. The double inequality

[C(a, b)/6 + 5A(a, b)/6]λ
[
C1/6(a, b)A5/6(a, b)

]1−λ
< M(a, b)

< [C(a, b)/6 + 5A(a, b)/6]µ
[
C1/6(a, b)A5/6(a, b)

]1−µ

holds for all a, b > 0 with a 6= b if and only if λ ≤ −[6 log(log(1 +
√

2)) +
log 2]/[6 log(7/6)− log 2] = 0.27828 · · · and µ ≥ 8/25.

2. LEMMAS

In order to prove our main results we need three lemmas, which we present
in this section.

Lemma 2.1. (See [5, Theorem 1.25]). For −∞ < a < b < ∞, let f, g :
[a, b]→ R be continuous on [a, b], and be differentiable on (a, b), let g′(x) 6= 0
on (a, b). If f ′(x)/g′(x) is increasing (decreasing) on (a, b), then so are

f(x)−f(a)
g(x)−g(a) and f(x)−f(b)

g(x)−g(b) .

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is
also strict.

Lemma 2.2. (See [6, Lemma 1.1]). Suppose that the power series f(x) =
∞∑
n=0

anx
n and g(x) =

∞∑
n=0

bnx
n have the radius of convergence r > 0 and bn > 0

for all n ∈ {0, 1, 2, · · · }. Let h(x) = f(x)/g(x), then the following statements
are true:
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(1) If the sequence {an/bn}∞n=0 is (strictly) increasing (decreasing), then
h(x) is also (strictly) increasing (decreasing) on (0, r);

(2) If the sequence {an/bn} is (strictly) increasing (decreasing) for 0 <
n ≤ n0 and (strictly) decreasing (increasing) for n > n0, then there exists
x0 ∈ (0, r) such that h(x) is (strictly) increasing (decreasing) on (0, x0) and
(strictly) decreasing (increasing) on (x0, r).

Lemma 2.3. The function

(2.1) h(t) = 90t+52t cosh(2t)−66 sinh(2t)+2t cosh(4t)−3 sinh(4t)
15t−20t cosh(2t)+5t cosh(4t)

is strictly decreasing on (0, log(1 +
√

2)), where sinh(t) = (et − e−t)/2 and
cosh(t) = (et+e−t)/2 are the hyperbolic sine and cosine functions, respectively.

Proof. Let

(2.2) h1(t) = 90t+ 52t cosh(2t)− 66 sinh(2t) + 2t cosh(4t)− 3 sinh(4t),

(2.3) h2(t) = 15t− 20t cosh(2t) + 5t cosh(4t).

Then making use of power series formulas we have

h1(t) =90t+ 52t
∞∑
n=0

(2t)2n

(2n)! − 66
∞∑
n=0

(2t)2n+1

(2n+1)!(2.4)

+ 2t

∞∑
n=0

(4t)2n

(2n)! − 3

∞∑
n=0

(4t)2n+1

(2n+1)!

=52t
∞∑
n=2

(2t)2n

(2n)! − 66
∞∑
n=2

(2t)2n+1

(2n+1)! + 2t
∞∑
n=2

(4t)2n

(2n)!

− 3

∞∑
n=2

(4t)2n+1

(2n+1)!

=
∞∑
n=0

[16+13n+(2n−1)22n+2]22n+7

(2n+5)! t2n+5

and

h2(t) =15t− 20t
∞∑
n=0

(2t)2n

(2n)! + 5t
∞∑
n=0

(4t)2n

(2n)!(2.5)

=− 20t

∞∑
n=2

(2t)2n

(2n)! + 5t
∞∑
n=2

(4t)2n

(2n)! =
∞∑
n=0

5(22n+2−1)22n+6

(2n+4)! t2n+5.

It follows from (2.1)-(2.5) that

(2.6) h(t) =

∞∑
n=0

ant2n

∞∑
n=0

bnt2n
,
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where

(2.7) an = [16+13n+(2n−1)22n+2]22n+7

(2n+5)! , bn = 5(22n+2−1)22n+6

(2n+4)! .

Equation (2.7) leads to

(2.8) an+1

bn+1
− an

bn
= − 6cn

5(2n+5)(2n+7)(22n+2−1)(22n+4−1)
,

where

(2.9) cn = (30n2 + 135n+ 110− 4n+3)4n+1 + 11.

From (2.9) we get

(2.10) c0 = 195, c1 = 315, c2 = −33525

and

cn < (30n2 + 135n+ 110− 64n3)4n+1 + 11(2.11)

=
[
10n2(3− n) + 15n(9− n2) + 5(22− n3)− 34n3

]
4n+1 + 11

< −34n3 · 4n+1 + 11 < 0

for n ≥ 3.
Equations (2.8) and (2.10) together with inequality (2.11) lead to the con-

clusion that the sequence {an/bn} is strictly decreasing for 0 ≤ n ≤ 2 and
strictly increasing for n ≥ 3. Then from Lemma 2.2(2) and (2.6) we clearly
see that there exists t0 ∈ (0,∞) such that h(t) is strictly decreasing on (0, t0)
and strictly increasing on (t0,∞).

Let t∗ = log(1 +
√

2). Then simple computations lead to

(2.12) sinh(2t∗) = 2
√

2, cosh(2t∗) = 3, sinh(4t∗) = 12
√

2, cosh(4t∗) = 17.

Differentiating (2.1) yields

h′(t) =90−80 cosh(2t)+104t sinh(2t)−10 cosh(4t)+8t sinh(4t)
h2(t)(2.13)

− 15−20 cosh(2t)−40t sin(2t)+5 cosh(4t)+20t sinh(4t)

h2(t)2
h1(t).

From (2.2) and (2.3) together with (2.12) and (2.13) we get

(2.14) h′(t∗) = −102
√

2t∗2+93t∗+21
√

2
5t∗2

= −0.10035 · · · < 0.

From the piecewise monotonicity of h(t) and inequality (2.14) we clearly see
that t0 > t∗ = log(1 +

√
2), and the proof of Lemma 2.3 is completed. �

3. PROOFS OF THEOREMS 1.1 AND 1.2

3.1. Proof of Theorem 1.1 Since M(a, b), C(a, b) and A(a, b) are sym-
metric and homogeneous of degree 1. Without loss of generality, we assume
that a > b. Let x = (a − b)/(a + b) and t = arcsinh(x). Then x ∈ (0, 1),
t ∈ (0, log(1 +

√
2)) and

(3.1) log [M(a,b)]−log [A(a,b)]
log [C(a,b)]−log [A(a,b)] = log[x/arcsinh(x)]

log(1+x2)
= log[sinh(t)/t]

2 log[cosh(t)] .
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Let f1(t) = log[sinh(t)/t], f2(t) = log[cosh(t)] and

(3.2) f(t) = log[sinh(t)/t]
log[cosh(t)] .

Then f1(0+) = f2(0) = 0, f(t) = f1(t)/f2(t) and

f1
′(t)

f2
′(t)

= t cosh2(t)−sinh(t) cosh(t)

t sinh2(t)
= t[cosh(2t)+1]−sinh(2t)

t[cosh(2t)−1](3.3)

=
t

( ∞∑
n=0

22nt2n/(2n)!+1

)
−
∞∑
n=0

22n+1t2n+1/(2n+1)!

t
∞∑
n=1

22nt2n/(2n)!

=

∞∑
n=1

22nt2n+1/(2n)!−
∞∑
n=1

22n+1t2n+1/(2n+1)!

t
∞∑
n=1

22nt2n/(2n)!
=

∞∑
n=0

Ant2n

∞∑
n=0

Bnt2n
,

where An = 22n+2(2n+ 1)/(2n+ 3)! and Bn = 22n+2/(2n+ 2)!.
Note the An/Bn = 1 − 2/(2n + 3) is strictly increasing for all n ≥ 0.

Then from Lemma 2.2(1) and (3.3) we know that f1
′(t)/f2

′(t) is strictly
increasing on (0,∞). Hence, f(t) is strictly increasing on (0, log(1 +

√
2))

follows from Lemma 2.1 and the monotonicity of f1
′(t)/f2

′(t) together with
f(0+) = f2(0) = 0. Moreover,

(3.4) lim
t→0

f(t) = lim
t→0

f1
′(t)

f2
′(t)

= A0
B0

= 1
3 ,

(3.5) lim
t→log(1+

√
2)
f(t) = −2 log(log(1+

√
2))

log 2 .

Therefore, Theorem 1.1 follows easily from (3.1), (3.2), (3.4) and (3.5) to-
gether with the monotonicity of f(t). �

3.2. Proof of Theorem 1.2 Since M(a, b), C(a, b) and A(a, b) are sym-
metric and homogeneous of degree 1. Without loss of generality, we assume
that a > b. Let x = (a − b)/(a + b) and t = arcsinh(x). Then x ∈ (0, 1),
t ∈ (0, log(1 +

√
2)) and

logM(a,b)−log [C1/6(a,b)A5/6(a,b)]
log [C(a,b)/6+5A(a,b)/6]−log [C1/6(a,b)A5/6(a,b)]

=(3.6)

= log[x/arcsinh(x)]−log(1+x2)1/6

log(1+x2/6)−log(1+x2)1/6

= log[sinh(t)/t]−[log cosh(t)]/3

log[1+sinh2(t)/6]−[log cosh(t)]/3
.

Let g1(t) = log[sinh(t)/t] − [log cosh(t)]/3, g2(t) = log[1 + sinh2(t)/6] −
[log cosh(t)]/3 and

(3.7) g(t) = log[sinh(t)/t]−[log cosh(t)]/3

log[1+sinh2(t)/6]−[log cosh(t)]/3
.

Then g1(0+) = g2(0) = 0, g(t) = g1(t)/g2(t) and

g1′(t)
g2′(t)

= [6+sinh2(t)][3t cosh2(t)−3 cosh(t) sinh(t)−t sinh2(t)]

t sinh(t)[6 sinh(t) cosh2(t)−sinh(t)(6+sinh2(t))]
.
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Elementary computations lead to

[6 + sinh2(t)][3t cosh2(t)− 3 cosh(t) sinh(t)− t sinh2(t)] =

= 45
4 t+ 13

2 t cosh(2t)− 33
4 sinh(2t) + t

4 cosh(4t)− 3
8 sinh(4t),

t sinh(t)[6 sinh(t) cosh2(t)− sinh(t)(6 + sinh2(t))] =

= 15
8 t−

5
2 t cosh(2t) + 5

8 t cosh(4t)

and

(3.8) g1′(t)
g2′(t)

= h(t),

where h(t) is defined as in Lemma 2.3.
It follows from Lemmas 2.1 and 2.3 and (3.8) together with g1(0+) = g2(0) =

0 that g(t) is strictly decreasing on (0, log(1 +
√

2)). Moreover,

(3.9) lim
t→0

g(t) = 8
25 ,

(3.10) lim
t→log(1+

√
2)
g(t) = −6 log(log(1+

√
2))+log 2

6 log(7/6)−log 2 .

Therefore, Theorem 1.2 follows easily from (3.6), (3.7), (3.9) and (3.10)
together with the monotonicity of g(t). �
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