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LOCALIZATION RESULTS FOR THE LAGRANGE MAX-PRODUCT

INTERPOLATION OPERATOR BASED ON EQUIDISTANT KNOTS‡
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Abstract. In the class of strictly positive functions strong localization results
are obtained in approximation by the Lagrange max-product interpolation op-
erators based on equidistant nodes. The results allow to approximate locally
bounded strictly positive functions with very good accuracy. Then, it is ob-
served that the results can be extended to bounded functions of variable sign.
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1. INTRODUCTION

Based on the Open Problem 5.5.4, pp. 324-326 in [14], in a series of recent
papers we have introduced and studied the so-called max-product operators
attached to the Bernstein polynomials and to other linear Bernstein-type oper-
ators, like those of Favard-Szász-Mirakjan operators (truncated and nontrun-
cated case), see [1], [3], Meyer-König and Zeller operators, see [4], Baskakov
operators, see [6], [7] and Bleimann-Butzer-Hahn operators, see [5].

For example, in the recent paper [2], starting from the linear Bernstein
operators Bn(f)(x) =

∑n
k=0 bn,k(x)f(k/n), where bn,k(x) =

(
n
k

)
xk(1 − x)n−k,

written in the equivalent form

Bn(f)(x) =

n∑
k=0

bn,k(x)f(k/n)

n∑
k=0

bn,k(x)
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and then replacing the sum operator Σ by the maximum operator
∨

, one
obtains the nonlinear Bernstein operator of max-product kind

B(M)
n (f)(x) =

n∨
k=0

bn,k(x)f
(
k
n

)
n∨

k=0

bn,k(x)

,

where the notation
∨n

k=0 bn,k(x) means max{bn,k(x); k ∈ {0, ..., n}} and simi-
larly for the numerator.

For this max-product operator, nice approximation and shape preserving
properties were found in the class of positive valued functions, in e.g. [2], [12].

In other two recent papers [9] and [10], this idea is applied to the Lagrange
interpolation based on the Chebyshev nodes of second kind plus the endpoints,
and to the Hermite-Fejér interpolation based on the Chebyshev nodes of first
kind respectively, obtaining max-product interpolation operators which, in
general, (for example, in the class of positive Lipschitz functions) approxi-
mates essentially better than the corresponding Lagrange and Hermite-Fejér
interpolation polynomials.

Let I = [a, b], a < b and f : [a, b] → R. The max-product Lagrange
interpolation operator on equidistant knots attached to the function f is given
by (see [11])

L(M)
n (f)(x) =

n∨
k=0

ln,k(x)f (xn,k)

n∨
k=0

ln,k(x)

, x ∈ I, n ∈ N,

where xn,k = a+ (b− a)k/n for all n ∈ N and k ∈ {0, 1, ..., n} and

ln,k(x) = (−1)n−k

(
n∏

i=0

(x− xn,i)

)
· 1
x−xn,k

for all x ∈ I, n ∈ N and k ∈ {0, 1, ..., n}. Note that L
(M)
n (f) is a well defined

function. Indeed, using the fundamental Lagrange polynomials,

pn,k(x) =
(x−xn,0)(x−xn,1)...(x−xn,k−1)(x−xn,k+1)...(x−xn,n)

(xn,k−xn,0)(xn,k−xn,1)...(xn,k−xn,k−1)(xn,k−xn,k+1)...(xn,k−xn,n) ,

we observe that we can rewrite ln,k(x), x ∈ I, in the form

ln,k(x) = cn,k · pn,k(x),

where

cn,k = (xn,k − xn,0)(xn,k − xn,1)...(xn,k − xn,k−1)(xn,k+1 − xn,k)...(xn,n − xn,k).

Then, since for any x ∈ I we have
∑n

i=0 pn,i(x) = 1 it follows the existence of
i(x) ∈ {0, 1, ..., n} such that pn,i(x)(x) > 0 and noting that cn,i(x) > 0 it easily
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results that ln,i(x)(x) > 0 and this implies that
n∨

k=0

ln,k(x) > 0 for all x ∈ I,

which means that indeed L
(M)
n (f) is a well defined function on [a, b].

The max-product operator L
(M)
n (f)(x) is continuous on [a, b] and has the

interpolation properties L
(M)
n (f)(xn,j) = f(xn,j) for all j ∈ {0, 1, ..., }.

Also, according to Corollary 3.2, (i), in [11], for positive valued functions,
i.e. for f : [a, b]→ R+, it satisfies the Jackson-type estimate

|L(M)
n (f)(x)− f(x)| ≤ 2ω1

(
f ; b−a

n

)
[a,b]

, for all x ∈ [a, b], n ∈ N,

where ω1

(
f ; b−a

n

)
[a,b]

denotes the modulus of continuity of f on [a, b]. This

estimate for the Lagrange max-product operator essentially improves for pos-
itive valued functions the order of approximation by the classical Lagrange
interpolation polynomials on equidistant nodes, when as it is well-know, we
can also have a very pronounced divergence phenomenon in [a, b] (see e.g.
Chapter 4 in the book [17], see also [16], [8]).

It is worth noting that saturation and local inverse results for L
(M)
n (f)(x)

were obtained in [13].
The plan of the paper goes as follows. In Section 2 an interesting strong

localization result for the Lagrange max-product operator L
(M)
n is obtained. At

the end of the section and as consequences of this localization result, a local
direct result and an interesting local shape preserving property are proved.
Section 3 contains comparisons with some linear interpolation operators of
rational type.

It is worth noting in Section 2 the strong localization result expressed by
Theorem 2.1, that shows that if the continuous strictly positive functions f
and g coincide on a subinterval [α, β] ⊂ [0, 1], then for sufficiently large values

of n, L
(M)
n (f) and L

(M)
n (g) coincide on subintervals sufficiently close to [α, β].

Clearly, Corollary 2.4 shows that L
(M)
n (f) is very suitable to approximate

continuous functions which are constant on some subintervals. Namely, if f is
a continuous strictly positive function which is constant on some subintervals

[αi, βi], i = 1, ..., p, of [a, b], then for sufficiently large n, L
(M)
n (f) takes the same

constant values on subintervals sufficiently close to each [αi, βi], i = 1, ..., p.

2. LOCALIZATION RESULTS

Let ln,k denote the fundamental Lagrange polynomials attached to the
knots xn,k = k/n, k ∈ {0, 1, ..., n}, n ∈ N.

The main result of this section is the following localization result.

Theorem 2.1. Let f, g : [0, 1]→ [0,∞) be both bounded on [0, 1] with strictly
positive lower bounds and suppose that there exist a, b ∈ [0, 1], 0 < a < b < 1
such that f(x) = g(x) for all x ∈ [a, b]. Then for all c, d ∈ [a, b] satisfying
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a < c < d < b there exists ñ ∈ N which depends only on f, g, a, b, c, d such that

L
(M)
n (f)(x) = L

(M)
n (g)(x) for all x ∈ [c, d] and n ∈ N, n ≥ ñ.

Proof. Let us choose arbitrary x ∈ [c, d] and for each n ∈ N let jx ∈
{0, 1, ..., n} ( jx depends on n too, but there is no need at all to complicate on
the notations) be such that x ∈ [jx/n, (jx + 1)/n]. Then we know that

L(M)
n (f)(x) =

n∨
k=0

ln,k(x)f(
k
n )

n∨
k=0

ln,k(x)
=

∨
k∈Jn(x)

ln,k(x)f(
k
n )∨

k∈Jn(x)

ln,k(x)

where Jn(x) = {k ∈ {0, 1, ..., n} : ln,k(x) > 0} and ln,k, k ∈ {0, 1, ..., n} are
the Lagrange fundamental polynomials attached to the knots xn,k = k/n,
k ∈ {0, 1, ..., n}. Since x ∈ [c, d] ∩ [jx/n, (jx + 1)/n] and since a < c < d < b
it is immediate that for n ≥ n0 where n0 is chosen such that 1/n0 < min{c−
a, d − b}, we obtain a < jx/n < b which gives na < jx < nb for all n ≥ n0

(indeed, if we would suppose that there exists n > n0 which does not satisfy
the previous double inequalities, then we would easily get a contradiction).

It is important to notice here that n0 does not depend on x. From the
inequalities na < jx < b it follows that if n ≥ n0 then for any x ∈ [c, d] there
exists αx ∈ [a, b] such that jx = nαx.

In what follows, it will serve to our purpose to use the sequence (an)n≥1,
an =

√
n. For this sequence there exists n1 ∈ N such that na− an > 0 for all

n ≥ n1.
Our intention is to prove as an intermediate result, that there exists an

absolute constant N0 ∈ N which does not depend of x ∈ [c, d] such that for

any n ≥ N0 and x ∈ [c, d] we have
n∨

k=0

ln,k(x)f( kn) =
∨

k∈In,x

ln,k(x)f( kn) where

In,x = {k ∈ Jn(x) : jx− an ≤ k ≤ jx + an}. In order to obtain this conclusion,
for n ≥ max{n0, n1} let us choose k ∈ Jn(x) \ In,x. We have two cases: i)
k + an < jx and ii) jx + an < k.

Case i) Firstly, note that jx ∈ Jn(x), because sign(ln,j(x)) = (−1)n−j ·
(−1)n−j = 1. Noting that k/n < (jx − an)/n and nx ≥ jx, we get

ln,jx(x)f( jxn )

ln,k(x)f( kn)
=
|x− k/n|
|x− jx/n|

·
f( jxn )

f( kn)
=

x− k/n
x− jx/n

·
f( jxn )

f( kn)

≥ x− (jx − an)/n

1/n
·
f( jxn )

f( kn)
= (nx− jx + an) ·

f( jxn )

f( kn)

≥
√
n ·

f( jxn )

f( kn)
.

Then, denoting the infimum and the supremum of f on [a, b] with mf and Mf

respectively (according to the hypotheses these values are strictly positive),
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we get that

ln,jx(x)f( jxn )

ln,k(x)f( kn)
≥
√
n ·

mf

Mf

Since lim
n→∞

√
n · mf

Mf
=∞, it follows that there exists n2 ∈ N, n2 ≥ max{n0, n1}

such that
ln,jx (x)f(

jx
n )

ln,k(x)f(
k
n )

> 1 for all x ∈ [c, d], n ≥ n2 and k ∈ {0, 1, ..., n},

k < jx − an (as k 6∈ In,x). In addition, it is important to notice that n2 does
not depend on x ∈ [c, d], but of course it depends on f.

Case ii) The proof is identical with the proof of the above Case i) and
therefore we conclude that there exists an absolute constant n3 ∈ N which
depends only on a, b, c, d, f such that

ln,jx(x)f(jx/n)

ln,k(x)f(k/n)
> 1

for all x ∈ [c, d], n ≥ n3 and k ∈ {0, 1, ..., n}, k > jx + an.
Analyzing the results obtained in cases i)-ii), it results that for all x ∈ [c, d],

n ≥ N0,N0 = max{n2, n3} and k ∈ {0, 1, ..., n}, with k < jx−an or k > jx+an,
we have

ln,jx(x)f(jx/n)

ln,k(x)f(k/n)
> 1.

Since from the Case i) we know that jx ∈ Jn(x) and since this easily implies
that actually jx ∈ In,x, we obtain our preliminary result, that is

n∨
k=0

ln,k(x)f
(
k
n

)
=

∨
k∈In,x

ln,k(x)f
(
k
n

)
,

where In,x = {k ∈ Jn(x) : jx − an ≤ k ≤ jx + an}.
Next, let us choose arbitrary x ∈ [c, d] and n ∈ N so that n ≥ N0. If there

exists k ∈ In,x such that k/n /∈ [c, d] then we distinguish two cases. Either
k/n < c or k/n > d. In the first case we observe that

0 < c− k
n ≤ x−

k
n ≤

(jx+1)
n+1 −

k
n ≤

(jx+1)
n − k

n ≤
an+1
n .

Since lim
n→∞

an+1
n = 0, it results that for sufficiently large n we necessarily have

an+1
n < c − a which clearly implies that k/n ∈ [a, c]. In the same manner,

when k/n > d, for sufficiently large n we necessarily have k/n ∈ [d, b].

Summarizing, there exists Ñ1 ∈ N independent of any x ∈ [c, d], such that

n∨
k=0

ln,k(x)f
(
k
n

)
=

∨
k∈In,x

ln,k(x)f
(
k
n

)
, n ≥ Ñ1

and in addition for any x ∈ [c, d], n ≥ Ñ1 and k ∈ In,x, we have k/n ∈ [a, b].

Also, it is easy to check that Ñ1 depends only on a, b, c, d, f. We thus obtain
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that

L(M)
n (f)(x) =

∨
k∈In,x

ln,k(x)f( kn)

n∨
k=0

ln,k(x)

, n ≥ Ñ1, x ∈ [c, d]

and in addition for any x ∈ [c, d], n ≥ Ñ1 and k ∈ In,x, we have k/n ∈ [a, b].
Reasoning for the function g exactly as in the case of the function f , it

follows that there exists Ñ2 ∈ N which depends only on a, b, c, d, g such that

L(M)
n (g)(x) =

∨
k∈In,x

ln,k(x)g( kn)

n∨
k=0

ln,k(x)

, n ≥ Ñ2, x ∈ [c, d]

and in addition for any x ∈ [c, d], n ≥ Ñ2 and k ∈ In,x, we have k/n ∈ [a, b].

Taking ñ = max{Ñ1, Ñ2}, we easily obtain the desired conclusion. �

We can easily extend the above result to arbitrary intervals, as follows.

Theorem 2.2. Let f, g : [a, b] → [0,∞) (a < b) be both bounded on [a, b]
with strictly positive lower bounds and suppose that there exist a′, b′ ∈ [a, b],
a < a′ < b′ < b such that f(x) = g(x) for all x ∈ [a′, b′]. Then for all
c, d ∈ [a′, b′] satisfying a′ < c < d < b′ , there exists ñ ∈ N which depends only

on f, g, a, b, a′, b′c, d , such that L
(M)
n (f)(x) = L

(M)
n (g)(x) for all x ∈ [c, d] and

n ∈ N, n ≥ ñ.

Proof. We obtain the desired conclusion as a direct consequence of the pre-

vious theorem. Indeed, firstly to make a distinction, we denote with L
(M)
n the

Lagrange max-product operator attached to functions defined on the interval
[0, 1]. In addition, in what follows, for all all n ∈ N and k ∈ {0, 1, ..., n} we
denote with l1n,k the fundamental Lagrange polynomials defined on the interval

[0, 1].
Suppose now that for the two functions f, g ∈ C([a, b]) we have f(x) = g(x),

for all x ∈ [a′, b′]. Let us define the function h : [0, 1] → [a, b], h(y) =
a + (b − a)y. It is immediate that for any x ∈ [a, b] there exists an unique
y(x) = h−1(x) ∈ [0, 1] such that f(x) = (f ◦h)(y(x)) and g(x) = (g ◦h)(y(x)).

Then we observe that for any x ∈ [a, b] we have

ln,k(x) = (b− a)n · l1n,k(y(x)), n ∈ N, k ∈ {0, 1, ..., n}.
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The above equalities imply

L(M)
n (f)(x) =

n∨
k=0

ln,k(x)f (xn,k)

n∨
k=0

ln,k(x)

=

(b− a)n ·
n∨

k=0

l1n,k(y(x))(f ◦ h)
(
k
n

)
(b− a)n ·

n∨
k=0

l1n,k(y(x))

= L
(M)
n (f ◦ h)(y(x))

and analogously L
(M)
n (g)(x) = L

(M)
n (g ◦ h)(y(x)), for all x ∈ [a, b].

Then, our result is immediate by applying Theorem 2.1 to L
(M)
n (g◦h)(y(x))

and L
(M)
n (g ◦ h)(y(x)), where recall that f ◦ h, g ◦ h : [0, 1]→ [0,+∞), y(x) =

h−1(x) and h : [0, 1]→ [a, b], h(x) = a+ (b− a)x. �

The next direct approximation result is now an immediate consequence of
the localization result in Theorem 2.2, as follows.

Corollary 2.3. Let f : [a, b] → [0,∞) (a < b) be bounded on [a, b] with
strictly positive lower bound and suppose that there exist a′, b′ ∈ [a, b], a <
a′ < b′ < b and the constant C0 which depends only on a, b, a′, b′, such that

(2.1) |f(x)− f(y)| ≤ C0 |x− y| , for all x ∈ [a′, b′],

that is f |[a′,b′] ∈ Lip[a′, b′]. Then, for any c, d ∈ [a′, b′] satisfying a′ < c < d <
b′, we have∣∣∣L(M)

n (f)(x)− f(x)
∣∣∣ ≤ C

n , for all n ∈ N and x ∈ [c, d],

where the constant C depends only on f and the values a, b, a′, b′, c, d.

Proof. Let us define the function F : [a, b]→ R,

F (x) =

 f(x), if x ∈ [a′, b′],
f(a′), if x ∈ [a, a′],
f(b′), if x ∈ [b′, b].

The hypothesis imply that F is continuous and strictly positive on [a, b] and
according to Corollary 3.2 in [11] it results that∣∣∣L(M)

n (F )(x)− F (x)
∣∣∣ ≤ 2ω1

(
F, b−an

)
[a,b]

, x ∈ [a, b], n ∈ N,

Since by the definition of F we have ω1(F, b−an )[a,b] ≤ ω1(f, b−an )[a,b] and since

by the relation (2.1) it easily follows ω1(f, b−an )[a,b] ≤ C0(b− a)/n, we get∣∣∣L(M)
n (F )(x)− F (x)

∣∣∣ ≤ 2C0(b− a)/n, x ∈ [a, b], n ∈ N.

Now, let us choose arbitrary c, d ∈ [a′, b′] such that a′ < c < d < b′. Then, by
Theorem 2.2 (applicable to f and F ) it results the existence of ñ ∈ N which

depends only on a, b, a′, b′c, d, f, F such that L
(M)
n (F )(x) = L

(M)
n (f)(x) for all
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x ∈ [c, d]. But since actually the function F depends on the function f , it is
clear that in fact ñ depends only on a, b, a′, b′c, d and f .

Therefore, for arbitrary x ∈ [c, d] and n ∈ N with n ≥ ñ we obtain∣∣∣L(M)
n (f)(x)− f(x)

∣∣∣ =
∣∣∣L(M)

n (F )(x)− F (x)
∣∣∣ ≤ 2C0(b− a)/n,

where C0 and ñ depend only on a, b, a′, b′c, d and f .
Now, denoting

C1 = max
1≤n<ñ

{n · ‖L(M)
n (f)− f‖[c,d]},

we finally obtain

|L(M)
n (f)(x)− f(x)| ≤ C

n , for all n ∈ N, x ∈ [c, d],

with C = max{2C0(b− a), C1} depending only on a, b, c, d and f . This proves
the corollary. �

At the end of this section, as a consequence of the localization result in
Theorem 2.2 we present a locally constant preserving property.

Corollary 2.4. Let f : [a, b] → [0,∞) be bounded on [a, b] with strictly
positive lower bound and suppose that there exists a′, b′ ∈ [a, b], a < a′ < b′ < b
such that f is constant on [a′, b′] with the constant value α > 0. Then for any
c, d ∈ [a′, b′] with a′ < c < d < b′, there exists ñ ∈ N which depends only on

a, b, a′, b′, c, d and f such that L
(M)
n (f)(x) = α for all x ∈ [c, d] and n ∈ N,

n ≥ ñ.

Proof. Let g : [a, b] → R+ be given by g(x) = α > 0 for all x ∈ [a, b].

Since f(x) = g(x) for all x ∈ [a′, b′] and since obviously L
(M)
n (g)(x) = α for all

x ∈ [a, b], by Theorem 2.2 we easily obtain the desired conclusion. �

3. FINAL REMARKS

Let us note that in Hermann-Vértesi [15], starting from a Lagrange inter-
polatory process (convergent or not)

Pn(f)(x) =

n∑
k=0

pn,k(x)f(xn,k),

with

pn,k(x) =
(x− xn,0)...(x− xn,k−1)(x− xn,k+1)...(x− xn,n)

(xn,k − xn,0)...(xn,k − xn,k−1)(xn,k − xn,k+1)...(xn,k − xn,n)
,

new linear interpolatory (rational) operators of the form

Rn(f)(x) =
∑n

k=0 f(xn,k)|pn,k(x)|r∑n
k=0 f(xn,k)|pn,k(x)|r ,
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are constructed, for which in the case when r > 2 and the knots xn,k satisfy
some special requirements (e.g. some Jacobi knots), the Jackson-type order of
approximation

‖Rn(f)− f‖ ≤ Cω1(f ; 1/n),

is obtained (see e.g. Theorem 3.2 in Hermann-Vértesi [15]).
In other words, for the linear rational construction Rn(f)(x), we get the

same order of approximation as for the interpolatory max-product operator
(which is piecewise rational)

L(M)
n (f)(x) =

n∨
k=0

ln,k(x)f (xn,k)

n∨
k=0

ln,k(x)

.

But clearly that with respect to Rn(f)(x), the max-product rational operator

L
(M)
n (f)(x) presents several advantages, pointed out by the next remarks.

Remark 3.1. For positive continuous functions, it provides an estimate in
terms of ω1(f ; 1/n) for the simplest systems of knots (that is for the equidistant
nodes). But, in fact, as it was mentioned in the last Remark in the paper
[7], the estimate holds for any kind of interpolatory systems of points with
the property that the distance between two consecutive nodes converges to
zero as n → ∞. It is worth noting that the operator Rn(f)(x) provides the
same Jackson-type estimate, but for systems of interpolatory points satisfying
additional requirements (e.g. Theorem 3.2 in [15] for the Jacobi knots). �

Remark 3.2. In our best knowledge, the strong localization results in The-
orem 2.1 and Corollary 2.4, have not equivalence for Rn(f)(x). �

Remark 3.3. Although the expression of L
(M)
n (f)(x) theoretically looks

more complicated than that of Rn(f)(x), however from practical/computatio-
nal point of view, there not exists any difference between the usage of computer

softwares (like Matlab or Mathematica) to trace the graphs of L
(M)
n (f)(x) and

Rn(f)(x), for any concrete choices of f . In fact, in Computer Science, the
sum (

∑
) operation and the maximum (

∨
) operator have similar levels of

computability. �

Remark 3.4. The results in Theorem 2.2 and Corollary 2.4 show the nice

property of the max-product interpolation operator L
(M)
n to reproduce locally

with great accuracy the graph of a strictly positive non-smooth continuous

function f . For example, Corollary 2.4 shows that L
(M)
n (f) is very suitable to

approximate continuous functions which are strictly positive constants on some
subintervals. Namely, if f is a continuous strictly positive function which is
constant on some subintervals [αi, βi], i = 1, ..., p, of [a, b], then for sufficiently
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large n, L
(M)
n (f) takes the same constant values on subintervals sufficiently

close to each [αi, βi], i = 1, ..., p. �

Remark 3.5. It is easy to see that the results expressed by Theorem 2.2 and
Corollaries 2.3-2.4 can be extended to bounded functions of variable sign, for

the new max-product operators of the form L̄
(M)
n (f)(x) = L

(M)
n (f + c̄)(x)− c̄,

where c̄ is a constant such that f(x) + c̄ > 0, for all x ∈ [a, b]. Note that,
for example in the case of Theorem 2.2, for f and g bounded and of variable
sign, evidently that we may choose a constant c̄ such that f(x) + c̄ > 0 and
g(x) + c̄ > 0, for all x ∈ [a, b]. �
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