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ON APPROXIMATING THE SOLUTIONS OF EQUATIONS

BY THE CHORD METHOD AND A METHOD

OF AITKEN-STEFFENSEN TYPE∗

ADRIAN DIACONU†

Abstract. In [13] we have studied the existence and the convergence of itera-
tive methods that use generalized abstract divided differences (this notion being
defined there). We have indicated a construction model for these differences
as well. A special place has been given to the iterative method of the chord for
which we have established a convergence theorem which in the same time ensures
the existence of the solution of the considered equation. We have obtained the

convergence order with the value 1+
√
5

2
. This value is inferior to 2, this last value

representing the convergence order of the method of Newton-Kantorovich. This
diminuation of the convergence order is the price to pay for the replacement of
the Fréchet differential with the generalized abstract divided difference. In this
paper we consider the issue of the improvement of the convergence order with re-
spect to the method of Steffensen and Aitken-Steffensen or their generalizations
through the method of the auxiliary sequences. This method will be presented
in the paper together with the specification of the convergence order of the main
sequence and the auxiliary sequences.
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1. INTRODUCTION

In [13] we have studied certain approximation methods for the solutions
of equations in linear normed spaces, methods that use the abstract divided
differences or the generalized abstract divided differences. The main result
concerned the study of the convergence of the iterative method of chord with
the fixing of its convergence order.

Let us consider X,Y two linear normed spaces, denote by ‖·‖X : X → R and
‖·‖Y : Y → R their norms respectively, and by θX and θY their null elements
respectively. By (X,Y )∗ we denote the set of the linear and continuous map-
pings defined from X to Y. The set (X,Y )∗ is a linear normed space as well, if
we define the norm ‖·‖ : (X,Y )∗ → [0,+∞[ , by ‖U‖ = suph∈X, ‖h‖X=1 ‖U (h)‖
for any U ∈ (X,Y )∗ . For the case of Y = R we denote by X∗ the set (X,R)∗ ,
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this set representing the space of real, linear and continuous functionals defined
on the linear normed space X.

Let us consider now a set D ⊆ X and a nonlinear mapping f : D → Y.
Using this mapping we have the equation:

(1) f (x) = θY .

We will study the approximation of its solutions.
In order to clarify the aforementioned notions we have the following defini-

tion:

Definition 1.1. Considering the nonlinear mapping f : D → Y together
with the points x, y ∈ D, x 6= y, any mapping Γf ;x,y ∈ (X,Y )∗ that verifies the
equality:

(2) Γf ;x,y (x− y) = f (x)− f (y)

is called generalized abstract divided difference of the function f : D → Y at
the points x, y.

In connection with the previous definition we have the following remark:

Remark 1.2. a) If we consider the theorem according to which in every
linear normed space (X, ‖·‖X) , for any a ∈ X� {θX} there exists a linear and
continuous functional u ∈ X∗ such that ‖u‖ = 1 and u (a) = ‖a‖X . Therefore,
for any x, y ∈ X with x 6= y there exists the functional Uxy ∈ X∗ such that
‖Uxy‖ = 1 and Uxy (x− y) = ‖x− y‖X . At the same time there exists the
functional Uyx ∈ X∗ such that ‖Uyx‖ = 1 and Uyx (y − x) = ‖y − x‖X as well.
In the paper [13] there appears the mapping [x, y; f ] ∈ (X,Y )∗ , defined by
the equality:

(3) [x, y; f ]h =
Uxy(h)f(x)+Uyx(h)f(y)

‖x−y‖X

for any h ∈ X.
This mapping verifies the equality (2) and it is called abstract divided difference
of the nonlinear mapping f : D → Y at the points x, y ∈ D with x 6= y. This
mapping is a special case of generalized abstract divided difference.

b) Let us suppose now that the space X is a space with a scalar product

〈·|·〉 : X × X → R. Defining ‖·‖X : X → R by ‖x‖X =
√
〈x|x〉, the space

(X, ‖·‖X) is a linear normed space.
For any x, y ∈ X with x 6= y the functional Uxy ∈ X∗ from a) will be

defined by:

Uxy (h) = 〈h|x−y〉
‖x−y‖X

for any h ∈ X. So, for the same elements x, y ∈ X with x 6= y we have that
the abstract divided difference [x, y; f ] ∈ (X,Y )∗ is defined by:

[x, y; f ]h = 〈x−y|h〉(f(x)−f(y))

‖x−y‖2X

for any h ∈ X.
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�
The main result of the paper [13] concerns the convergence of the chord

method for the approximation of a solution of the equation (1). This method
consists in the consideration of an approximant sequence (xn)n∈N∗ ⊆ D (here
N∗ = N ∪ {0} and this notation remains valid for the rest of this paper) and
that for any n ∈ N verifies the equality:

(4) Γf ;xn−1,xn (xn+1 − xn) + f (xn) = θY .

If we suppose the existence for a certain n ∈ N of the mapping Γ−1
f ;xn−1,xn

∈
(Y,X)∗ representing the inverse of the mapping Γf ;xn−1,xn ∈ (X,Y )∗ , for this
number n ∈ N the equality (4) is equivalent to:

(5) xn+1 = xn − Γ−1
f ;xn−1,xn

f (xn) = xn−1 − Γ−1
f ;xn−1,xn

f (xn−1) .

2. THEOREM OF CONVERGENCE OF THE CHORD METHOD

The main result with regard to the possibility that the equality (4) can be
written under the form (5), together with the convergence of the sequence
(xn)n∈N∗ ⊆ D to a solution of the equation (1) the existence of which is also
proved, is the following theorem:

Theorem 2.1. We suppose that the following assumptions hold:

i) (X, ‖·‖X) is a Banach space;
ii) the nonlinear mapping f : D → Y, for any x, y ∈ D with x 6= y admits

a generalized abstract divided difference Γf ;xn−1,xn ∈ (X,Y )∗ and there
exists a number L > 0 such that for any x, y, z ∈ D with x 6= y and
y 6= z we have the following inequality:

(6) ‖Γf ;x,y − Γf ;y,z‖ ≤ L ‖x− z‖X ;

iii) the sequence (xn)n∈N∗ ⊆ D is such that for any n ∈ N we have xn−1 6=
xn and the equality (4) is verified;

iv) referring to the initial elements x0, x1 ∈ D of the sequence (xn)n∈N∗ ⊆
D we suppose the carrying out of the following conditions:
iv1) the mapping Γf ;x0,x1 ∈ (X,Y )∗ is invertible and Γ−1

f ;x0,x1
∈ (Y,X)∗ ;

iv2) there exist the numbers h0 ∈ ]0, 1[ and B0 > 0 such that we have
the following inequality:

(7)
∥∥Γ−1

f ;x0,x1

∥∥ ≤ B0
1−h0 ;

iv3) if we note R0 = ‖f (x0)‖Y and h1 =
LB2

0R0

(1−h0)2
there exists a number

q ∈
[

1
2 , 1
[

such that we have the following inequality:

(8) d = max

{
h0

(1−q)2 ,
[

h1
(1−q)2

] 1
α

}
< 1,

where α = 1+
√

5
2 ;



4 On the chord method and an Aitken-Steffensen type method 135

iv4) if δ = (1−q)2
LB0

· dα

1−d and S (x0, δ) = {x ∈ X/ ‖x− x0‖X ≤ δ} the

relation x1 ∈ S (x0, δ) ⊆ D is true.

Then the following conclusions are true:

j) for any n ∈ N we have that xn ∈ S (x0, δ) , there exists the mapping
Γ−1
f ;xn−1,xn

∈ (Y,X)∗ , and the sequence (xn)n∈N∗ verifies the equality

(5);
jj) the sequence (xn)n∈N∗ ⊆ X is convergent;

jjj) if x = lim
n→∞

xn, then x ∈ S (x0, δ) and f (x) = θY ;

jv) for any n ∈ N∗ the following estimate of the error of approximation is
true:

(9) ‖x− xn‖X ≤
(1−q)2
LB0

· d
αn+1

1− dαn
.

The proof of this theorem is given in [13].
Regarding this theorem we have the following remark:

Remark 2.2. From the conclusions of the theorem 2.1, corroborated with
the fact that d < 1, we deduce that there exists a number N ∈ N such that
for any number n ∈ N, n ≥ N we have the following inequality:

(10) ‖x− xn‖X ≤
dα

n

LB0
.

This inequality indicates that the convergence order of the iterative method

of the chord is α = 1+
√

5
2 . �

The inequality (10) is obvious from (9).

3. CERTAIN REMARKS IN CONNECTION WITH THE PREVIOUS RESULT

We have the following statements:

Remark 3.1. Under the hypotheses of Theorem 2.1 the sequence of real
and positive numbers

(∥∥Γ−1
f ;xn−1,xn

∥∥)
n∈N has an upper bound, for any n ∈ N

the following inequality taking place:

(11)
∥∥Γ−1

f ;xn−1,xn

∥∥ ≤ B0e
(1−q)d
1−dα−1 .

�

Indeed, as ‖Γ−1
f ;xn−1,xn

‖ ≤ Bn, and using the recurrence relation of the se-

quence (Bn)n∈N∗ , we have Bn
Bn−1

≤ 1
1−hn−1

and so:

Bn ≤ B0
(1−h0)(1−h1)·...·(1−hn−1) .
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Evidently:

1
(1−h0)(1−h1)·...·(1−hn−1) ≤

[
1
n

n−1∑
j=0

1
1−hj

]n
=

=
[
1 + 1

n

n−1∑
j=0

hj
1−hj

]n
≤
[
1 + 1

n ·
1

1−q

n−1∑
j=0

hj

]n
.

But:
n−1∑
j=0

hj ≤ (1− q)2
n−1∑
j=0

dα
j ≤ (1− q)2 d

1−dα−1 ,

therefore:

1
(1−h0)(1−h1)·...·(1−hn−1) ≤

[
1 + 1

n ·
(1−q)d
1−dα−1

]n
< exp

( (1−q)d
1−dα−1

)
,

from where the inequality (11) is evident.

Remark 3.2. If in the hypotheses of Theorem 2.1 we choose q = 1
2 , the

values of the other constants from this theorem are:

(12) d = max
{

4h0, (4h1)
1
α
}
< 1, δ = dα

4LB0(1−d) ,

and the inequality that expressed an upper bound of the error by which xn
approximates x is:

(13) ‖x− xn‖X ≤
dα

n+1

4LB0 (1− dαn)
.

For the upper bound of the sequence
(∥∥Γ−1

f ;xn−1,xn

∥∥)
n∈N for any n ∈ N, we

have the following inequality:

(14)
∥∥Γ−1

f ;xn−1,xn

∥∥ ≤ B0e
d

2(1−dα−1) .

�

The statements are obvious:

Remark 3.3. For any n ∈ N there exists the generalized abstract di-
vided difference Γf ;xn,x ∈ (X,Y )∗ , this mapping is invertible, so the mapping

Γ−1
f ;xn,x

∈ (Y,X)∗ exists and the sequence
(∥∥Γ−1

f ;xn,x

∥∥)
n∈N has an upper bound,

more precisely, there exists a number p ∈ N such that for any n ∈ N, n ≥ p
we have the inequality:

(15)
∥∥Γ−1

f ;xn,x

∥∥ ≤ 2B0e
(1−q)d
1−dα−1 .

�
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It is obvious that x 6= xn for any n ∈ N. Indeed, if there exists a number
n0 ∈ N such that x = xn0 then:

xn0+1 = xn0 − Γ−1
f ;xn0−1,xn0

f (xn0) = xn0 ,

which is impossible.
As x 6= xn for any n ∈ N we deduce the existence of the mapping Γf ;xn,x ∈

(X,Y )∗ representing the generalized abstract divided difference of the function
f : D → Y on the points xn and x.

In order to prove the invertibility of the mapping Γf ;xn,x ∈ (X,Y )∗ for any
any n ∈ N let us consider the following expression:

Wn = Γ−1
f ;xn−1,xn

(
Γf ;xn−1,xn − Γf ;xn,x

)
∈ (X,X)∗ .

We have:

Γf ;xn,x = Γf ;xn−1,xn (IX −Wn) .

It is clear that:

‖Wn‖ ≤ BnL ‖x− xn−1‖X ≤ B0Le
(1−q)d
1−dα−1 ‖x− xn−1‖X .

As lim
n→∞

‖x− xn−1‖X = 0, we deduce that there exists a number p ∈ N such

that for any n ∈ N, n ≥ p, we have the inequality:

B0Le
(1−q)d
1−dα−1 ‖x− xn−1‖X ≤

1
2 < 1,

therefore ‖Wn‖ ≤ 1
2 < 1 and so there exists the mapping (IX −Wn)−1 ∈

(X,X)∗ and: ∥∥ (IX −Wn)−1
∥∥ ≤ 1

1−‖Wn‖ ≤ 2.

From the existence of the mapping Γ−1
f ;xn−1,xn

∈ (Y,X)∗ and using the in-

equality
∥∥Γ−1

f ;xn−1,xn

∥∥ ≤ Bn we deduce the existence of the mapping Γ−1
f ;xn,x

∈
(Y,X)∗ by the equality:

Γ−1
f ;xn,x

= (IX −Wn)−1 Γ−1
f ;xn−1,xn

,

again:∥∥Γ−1
f ;xn,x

∥∥ ≤ ‖ (IX −Wn)−1 ‖ ·
∥∥Γ−1

f ;xn−1,xn

∥∥ ≤ 2Bn ≤ 2B0e
(1−q)d
1−dα−1 .

Remark 3.4. The sequence (‖Γf ;xn,x‖)n∈N also has an upper bound and
for any n ∈ N we have the inequality:

(16) ‖Γf ;xn,x‖ ≤ ‖Γf ;x0,x‖+ (1−q)2
B0
· dα1−d .

�
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Indeed, for any n ∈ N, we have:

‖Γf ;xn,x‖ = ‖Γf ;x0,x‖+

n∑
k=1

(
‖Γf ;xk,x‖ −

∥∥Γf ;xk−1,x

∥∥)
≤ ‖Γf ;x0,x‖+

n∑
k=1

∥∥Γf ;xk,x − Γf ;xk−1,x

∥∥
≤ ‖Γf ;x0,x‖+ L

n∑
k=1

‖xk − xk−1‖X

≤ ‖Γf ;x0,x‖+ (1−q)2
B0

n∑
k=1

dα
k

≤ ‖Γf ;x0,x‖+ (1−q)2
B0
· dα1−d .

Remark 3.5. There exists a number N ∈ N such that for the same values
n ∈ N with n ≥ N we have that:

(17) ‖x− xn‖X ≤
dα

n

LB0
,

and this inequality proves that the convergence order of this method is at least

α = 1+
√

5
2 . �

Indeed, as αn+1 = αn + αn−1 it is clear that dα
n+1

1−dαn = dα
n · dα

n−1

1−dαn and from

the fact that lim
n→∞

dα
n−1

1−dαn = 0 the conclusion is obvious.

4. THE ACCELERATION OF THE CONVERGENCE.

ITERATIVE METHODS OF THE AITKEN-STEFFENSEN TYPE

The main conclusion of the introduction is the fact that the convergence

order of the chord method is α = 1+
√

5
2 .

At the same time it is well known that the convergence order of the Newton-
Kantorovich method is 2, therefore greater. But the Newton-Kantorovich
method uses the Fréchet differential instead of the divided difference.

One naturally thinks of improving the convergence order of the chord me-
thod, without renouncing at the divided difference in the favor of the Fréchet
differential.

One way of doing this is using Steffensen’s method, that uses a mapping Q :
X → X that verifies the inclusion Q (D) ⊆ D for a set D ⊆ X, generates the
sequence (xn)n∈N∗ ⊆ D, starting from an arbitrary x0 ∈ D, by the verification
for any n ∈ N∗ of the equality:

(18) Γf ;xn,Q(xn) (xn+1 − xn) + f (xn) = θY .
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If for any n ∈ N∗ there exists the mapping Γ−1
f ;xn,Q(xn) ∈ (Y,X)∗ the last

equality is equivalent to:

(19) xn+1 = xn − Γ−1
f ;xn,Q(xn)f (xn) .

A more general case is the one which use two mappings Q1, Q2 : X → X
which verify for i ∈ {1, 2} the relations Qi (D) ⊆ D. Starting from an arbitrary
x0 ∈ D one build the sequence (xn)n∈N∗ ⊆ D by the verification for any n ∈ N∗
of the equality:

(20) Γf ;Q1(xn),Q2(xn) (xn+1 −Q1 (xn)) + f (Q1 (xn)) = θY ,

equality which in the hypothesis of the existence of Γ−1
f ;Q1(xn),Q2(xn) ∈ (Y,X)∗

is equivalent to:

(21) xn+1 = Q1 (xn)− Γ−1
f ;Q1(xn),Q2(xn)f (Q1 (xn)) .

A study of the convergence of this method, known as the iterative method
of Aitken-Steffensen was made by Păvăloiu in [21]. The established result
requests very strong conditions imposed on the mappings f : D → Y together
with Q1, Q2 : X → X and one requests the verification of these conditions on
every point of a set D ⊆ X.

We propose a more general frame and we will build an iterative process
after as follows.

Let us consider a initial element x0 ∈ D. Besides the main sequence (xn)n∈N∗
⊆ D we also use two auxiliary sequences (yn)n∈N∗ , (zn)n∈N∗ ⊆ D.

For these auxiliary sequences we request the existence of the numbers K1,
K2, p, q > 0 such that for any n ∈ N∗ the following inequalities are verified:

(22) ‖f (yn)‖Y ≤ K1 ‖f (xn)‖pY , ‖f (zn)‖Y ≤ K1 ‖f (xn)‖qY .

Then, if for a number n ∈ N∗ we have available the elements yn, zn ∈ D
starting from xn ∈ D, we will generate the new iterate xn+1 ∈ D by the
following relation:

(23) Γf ;yn,zn (xn+1 − yn) + f (yn) = θY .

On account of the property of definition of the mapping Γf ;yn,zn ∈ (X,Y )∗

the equality (23) is equivalent with:

(24) Γf ;yn,zn (xn+1 − zn) + f (zn) = θY .

If for any n ∈ N∗ there exists the mapping Γ−1
f ;yn,zn

∈ (Y,X)∗ we have:

(25) xn+1 = yn − Γ−1
f ;yn,zn

f (yn) = zn − Γ−1
f ;yn,zn

f (zn) .

In connection to the main sequence (xn)n∈N∗ and the auxiliary sequences
(yn)n∈N∗ , (zn)n∈N∗ ⊆ D we have the following remarks. Here for a number

k ∈ N we denote by
(
X(k), Y

)∗
the set of mappings defined from Xk to Y

that are k-linear and continuous. This set is a linear normed space as well
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with the norm ‖·‖ :
(
X(k), Y

)∗ → Y is defined for U ∈
(
X(k), Y

)∗
by ‖U‖ =

sup
hi∈X; ‖hi‖=1; i=1,k

‖U (h1, ..., hk)‖Y .

Remark 4.1. If the mapping f : D → Y admits Fréchet differentials up to
the order s− 1, where s = max {p, q} and p, q ∈ N, the mapping f (s−1) : D →(
X(s−1), Y

)∗
is a Lipschitz mapping, namely there exist the constants M∗ > 0

such that for any x, y ∈ D the inequality:

(26)
∥∥f (s−1) (x)− f (s−1) (y)

∥∥ ≤M∗ ‖x− y‖X ,
is verified and for any n ∈ N∗ the inequalities:

∥∥∥∥p−1∑
j=0

1
j!f

(j) (xn) (yn − xn)j
∥∥∥∥
Y

≤ α ‖f (xn)‖pY ,(27)

∥∥∥∥q−1∑
j=0

1
j!f

(j) (xn) (zn − xn)j
∥∥∥∥
Y

≤ β ‖f (xn)‖qY ,

‖yn − xn‖X ≤ a ‖f (xn)‖Y ,
‖zn − xn‖X ≤ b ‖f (xn)‖Y ,

then:

j) the mappings f (p−1) :D →
(
X(p−1), Y

)∗
and f (q−1) : D →

(
X(q−1), Y

)∗
are Lipschitz mappings, namely there exist the constants M1,M2 > 0
such that for any x, y ∈ D the following inequalities are true:

‖f (p−1) (x)− f (p−1) (y) ‖ ≤M1‖x− y‖X ,(28)

‖f (q−1) (x)− f (q−1) (y) ‖ ≤M2‖x− y‖X ;

jj) the sequences (xn)n∈N∗ , (yn)n∈N∗ , (zn)n∈N∗ ⊆ D verify the equalities
(22) with:

K1 = α+ M1ap

p! , K2 = β + M2bq

q! .

�

Indeed, from the hypothesis (26) we deduce that for any k ∈ N, k ≤ s− 1

the mapping f (k) : D →
(
X(k), Y

)∗
is a Lipschitz mapping as well (we can

use the well known theorem of Lagrange), particularly, the mappings f (p−1)

: D →
(
X(p−1), Y

)∗
and f (q−1) : D →

(
X(q−1), Y

)∗
are Lipschitz mappings

and the rest of the conclusion j) is obvious especially the inequalities (28).
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From these inequalities we deduce easily that for any x, y ∈ D the following
inequalities are also verified:

∥∥∥f (y)−
p−1∑
j=0

1
j!f

(j) (x) (y − x)j
∥∥∥
Y
≤ M1

p! ‖y − x‖
p
X ,(29)

∥∥∥f (y)−
q−1∑
j=0

1
j!f

(j) (x) (y − x)j
∥∥∥
Y
≤ M2

q! ‖y − x‖
q
X

(we can use Taylors’ formula for mappings).
On account of the fact that xn, yn and zn ∈ D, using the inequalities (27)

and (29) we deduce that for any n ∈ N∗ the following inequalities are verified:

∥∥f (yn)
∥∥
Y
≤
∥∥∥f (yn)−

p−1∑
j=0

1
j!f

(j) (xn) (yn − xn)j
∥∥∥
Y

(30)

+
∥∥∥p−1∑
j=0

1
j!f

(j) (xn) (yn − xn)j
∥∥∥
Y

≤M1
p!

∥∥yn − xn∥∥pX + α
∥∥f (xn)

∥∥p
Y

≤
(
α+ M1ap

p!

)∥∥f (xn)
∥∥p
Y
,

and similarly:

‖f (zn)‖Y ≤
M2
q! ‖zn − xn‖

q
X + β ‖f (xn)‖qY(31)

≤
(
β + M2bq

q!

)
‖f (xn)‖qY ,

and these letter inequalities justify the statement of the present remark.

Remark 4.2. It is clear that if the first of the inequalities (22) is verified
for any n ∈ N with a certain K1 > 0, this inequality is verified with any
number K ≥ max {1,K1} . The situation is identical regarding the second
inequality from (22). In conclusion we can suppose that in these relations we
have K1 = K2 = K ≥ 1.

Identically, we can suppose that in the inequalities:

‖yn − xn‖X ≤ a ‖f (xn)‖Y , ‖zn − xn‖X ≤ b ‖f (xn)‖Y ,

that are true for any n ∈ N, we can have b = a ≥ 1.

In conclusion, for the main sequence (xn)n∈N∗ ⊆ D together with the auxil-
iary sequences (yn)n∈N∗ , (zn)n∈N∗ ⊆ D we can suppose that for any n ∈ N∗ we
have yn 6= zn and there exist the numbers K, a ≥ 1 such that for any n ∈ N∗



142 Adrian Diaconu 11

the following inequalities are verified:

‖f (yn)‖Y ≤ K ‖f (xn)‖pY ,(32)

‖f (zn)‖Y ≤ K ‖f (xn)‖qY ,
‖yn − xn‖X ≤ a ‖f (xn)‖Y ,
‖zn − xn‖X ≤ a ‖f (xn)‖Y

�

The statements are obvious.

5. THE CONVERGENCE OF SOME AUXILIARY REAL NUMBER SEQUENCES

In connection with the enounced problem we consider, for the real numbers
p, q ≥ 1, the following equation in x on the interval [0,+∞[ :

(33) xp+q−1 + 2x2 + 2x− 1 = 0.

We have the following remarks:

Remarks 5.1. a) The equation (33) has an unique positive root and this
root is α ∈ ]0, 1[ .
b) If α ∈ ]0, 1[ is the root of the equation (33) one verifies the following
inequalities as well:

(34) α2 + α− 1 < 0, α2 + 2α− 1 < 0, 2α2 + 2α− 1 < 0

and these inequalities are equivalent to the following inequalities respectively:

(35) 0 < α2

1−α < 1, 0 < α
1−α−α2 < 1, 0 < α2

1−2α−α2 < 1.

�

Indeed, let us consider the function ϕ : [0,+∞[ → R defined by ϕ (x) =
xp+q−1 + 2x2 + 2x− 1. It is obvious that for any x ∈ [0,+∞[ there exists the
derivative ϕ′ (x) at the point x and:

ϕ′ (x) = (p+ q − 1)xp+q−2 + 4x+ 2.

As it is obvious that for any x ∈ [0,+∞[ we have that ϕ′ (x) > 0, therefore
the function ϕ : [0,+∞[ → R is a strictly increasing function, therefore an
injective function, thus the equation ϕ (x) = 0 has at most one root.

As ϕ (0) = −1, ϕ (1) = 4, this root exists indeed and it belongs to the
interval ]0, 1[ .

If α ∈ ]0, 1[ is the root of the equation (33) it is clear that 2α2 + 2α− 1 =
= −αp+q−1 < 0, whence α2 + 2α− 1 = −αp+q−1 − α2 < 0 and α2 + α− 1 =
= −αp+q−1 − α2 − α < 0, therefore the relations (34) are true.

The inequality α2 + α− 1 < 0 is equivalent to 0 < α2 < 1− α therefore to

0 < α2

1−α < 1, the inequality α2 +2α−1 < 0 is equivalent to 0 < α < 1−α−α2,

therefore to 0 < α
1−α−α2 < 1, again the inequality 2α2+2α−1 < 0 is equivalent

to 0 < α2 < 1− 2α− α2 therefore to 0 < α2

1−2α−α2 < 1.
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Let us consider now the numbers a,K,L,B0, R0 > 0 and the numbers p, q ≥
1 and using these numbers we build the real number sequences (un)n∈N∗ ,
(sn)n∈N∗ , (vn)n∈N∗ , (wn)n∈N∗ , (tn)n∈N∗ , (Bn)n∈N∗ and (Rn)n∈N∗ using the
following recurrence relations:

un = LKB2
nR

p
n,(36)

sn = LKB2
nR

q
n,

vn = aL2K2 · B
3
nR

p+q
n

1−un ,

wn = LKB2
nR

q
n

(1−un)(1−vn) ,

tn = aL2K2B3
nR

p+q
n

(1−un)(1−vn)(1−wn) ,

Bn+1 = Bn
(1−un)(1−vn)(1−wn)(1−tn) ,

Rn+1 = LK2B2
nR

p+q
n .

It is obvious that this construction has a meaning if for any n ∈ N∗ we have
that un, vn, wn, tn ∈ R� {1} and Bn, Rn > 0.

It is clear that for any n ∈ N∗ we have:

vn = a
Bn
· unsn1−un ,(37)

wn = sn
(1−un)(1−vn) ,

tn = vn
(1−vn)(1−wn) ,

Rn+1 = unsn
LB2

n
,

as well.
Referring to the sequences that are defined by the relations (36) we have

the following proposition:

Proposition 5.2. If the following inequalities are verified:

(38) a ≤ B0 ≤ 1√
L
·min

{
K

p−q+1
2(q−1) ,K

q−p+1
2(p−1)

}
(with the specification that for q = 1 the expression that has q − 1 in its
denominator is +∞, and the same for the expression that has p − 1 in its
denominator) and:

(39) d =
LKB2

0
α2 ·max

1
p+q−1

{
R
p(p+q−1)
0 Kp−q+1

(LB2
0)
q−1 ,

R
q(p+q−1)
0 Kq−p+1

(LB2
0)
p−1

}
< 1

where α ∈ ]0, 1[ is the unique root of the equation (33), then for any n ∈ N∗
we have the following inequalities:

un ≤ αd(p+q)n < α < 1,(40)
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sn ≤ αd(p+q)n < α < 1,

vn ≤ α2

1−α · d
2(p+q)n < α2

1−α < 1,

wn ≤ α
1−α−α2 · d(p+q)n < α

1−α−α2 < 1,

tn ≤ α2

1−2α−α2d
2(p+q)n < α2

1−2α−α2 < 1,

Bn+1 ≤ Bn
1−2α−2α2 ,(41)

Rn+1 ≤ α2

LB2
0
d2(p+q)n .

Proof. Let us consider first that q > 1.
From the definition of d it is clear that:

LKB2
0R

2
0

α2

[
Kp−q+1

(LB2
0)
q−1

] 1
p+q−1 ≤ d,

therefore:

u0 ≤ α · α
(

LB2
0

K
p−q+1
q−1

) q−1
p+q−1 · d.

From B0 ≤ 1√
L
K

p−q+1
2(q−1) we deduce that K

p−q+1
q−1

LB2
0
≥ 1, therefore as q−1

p+q−1 ≥ 0

it is clear that
(
K
p−q+1
q−1

LB2
0

) q−1
p+q−1 ≥ 1 > α, therefore:

(42) α
(

LB2
0

K
p−q+1
q−1

) q−1
p+q−1

< 1,

therefore:
u0 ≤ αd = αd(p+q)0 < α < 1.

For q = 1 from the same definition of d we have:

LKB2
0

α2 Rp0K ≤ d,
namely u0 ≤ α · αK · d.

But α < 1 ≤ K, so α
K < 1, therefore u0 ≤ αd.

Identically if p > 1 we have that:

LKB2
0R

q
0

α2

[
Kq−p+1

(LB2
0)
p−1

] 1
p+q−1 ≤ d,

whence, in the same manner as in the case of u0, by inverting the roles of the

numbers p and q, we deduce that s0 ≤ αd = αd(p+q)0 < α < 1.
For p = 1 one can show the inequality s0 ≤ αd in the same manner as the

inequality u0 ≤ αd for the case of q = 1.
As v0 = a

B0
· u0s01−u0 and using a ≤ B0 and the inequalities concerning to u0

and s0, we have that:

v0 ≤ α2

1−α · d
2 = α2

1−α · d
2(p+q)0 < α2

1−α < 1,

the last inequality being the first from (35).
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Also:

w0 = s0
(1−u0)(1−v0) ≤

αd

(1−α)
(

1− α2

1−α

) =

= α
1−α−α2 · d(p+q)0 < α

1−α−α2 < 1,

the last inequality being the second from (35), while:

t0 = v0
(1−v0)(1−w0) ≤

α2

1−α ·d(
1− α2

1−α

)(
1− α

1−α−α2

) =

= α2

1−2α−α2 · d(p+q)0 < α2

1−2α−α2 < 1,

the last inequality being the third from (35).
As u0, v0 ∈ ]0, 1[ it is clear that v0, w0, t0 ∈ ]0, 1[ as well.
Then we have:

B1
B0

= 1
(1−u0)(1−v0)(1−w0)(1−t0)

≤ 1

(1−α)
(

1− α2

1−α

)(
1− α

1−α−α2

)(
1− α2

1−2α−α2

)
= 1

1−2α−2α2 ,

therefore:
B1 ≤ B0

1−2α−2α2 .

As:
R1 = 1

LB2
0
· u0s0 = α2

LB2
0
· d2 = α2

LB2
0
· d2(p+q)0 .

From the afore established relations we deduce that the properties (40)-(41)
are true in the case of n = 0.

We suppose that these properties are true for any n ∈ N with n ≤ k and
we prove that they are also true for n = k + 1.

For any i ∈ N with i ≤ k we have that:

ui+1 = LKB2
i+1R

p
i+1 = LK · B2

i

(1−2α−2α2)2
· LpK2pB2p

i R
p(p+q)
i

=
Lp+1K2p+1B2p+2

i R
p(p+q)
i

(1−2α−2α2)2
= Lp+1K2p+1

(1−2α−2α2)2
· (B2

iR
p
i )
p+q

B2q−2
i

= Lp+1K2p+1

(1−2α−2α2)2
· 1

B2q−2
i

·
(
ui
LK

)p+q
.

From the equality that defined the sequence (Bn)n∈N∗ we deduce that:

Bi
Bi−1

= 1
1−ui−1

· 1
1−vi−1

· 1
1−wi−1

· 1
1−si−1

≥ 1,

every fraction from those that multiply being greater than the unit.
Therefore Bi ≥ Bi−1.
From this we actually have that Bi ≥ B0, from where as 2q−2 ≥ 0 we have

B2q−2
i ≥ B2q−2

0 , namely 1

B2q−2
i

≤ 1

B2q−2
0

and so:

(43) ui+1 ≤ L1−qKp−q+1

(1−2α−2α2)2
· 1

B
2(q−1)
0

· up+qi = Cup+qi ,



146 Adrian Diaconu 15

where:
C = Kp−q+1

(LB2
0)
q−1 · 1

(1−2α−2α2)2
.

If we multiply by C
1

p+q−1 the two members of the inequality (43) we obtain
that:

C
1

p+q−1ui+1 ≤
(
C

1
p+q−1ui

)p+q
,

namely the inequality hi+1 ≤ hp+qi if hi = C
1

p+q−1ui.
As i ∈ {0, 1, ..., k} we immediately deduce that:

h1 ≤ hp+q0 , h2 ≤ hp+q1 ≤ h(p+q)2

0 , ... , hk+1 ≤ hp+qk = h
(p+q)k+1

0 .

Therefore we have that:

(44) uk+1 ≤
(

1
C

) 1
p+q−1

(
C

1
p+q−1u0

)(p+q)k+1

.

But α ∈ ]0, 1[ is the root of the equation (33), therefore:(
1− 2α− 2α2

)2
= α2(p+q−1),

therefore:

C
1

p+q−1u0 = 1
α2

[
Kp−q+1

(LB0)q−1

] 1
p+q−1

LKB2
0R

p
0

=
LKB2

0
α

[
R
p(p+q−1)
0 Kp−q+1

(LB0)q−1

] 1
p+q−1 ≤ d.

At the same time, if q > 1 we have that:(
1
C

) 1
p+q−1 =

(
1− 2α− 2α2

) 2
p+q−1

[
(LB2

0)
q−1

Kp−q+1

] 1
p+q−1

= α2
(

LB2
0

K
p−q+1
q−1

) q−1
p+q−1

< α;

for the last inequality we have take into account (42).
For q = 1 we have: (

1
C

) 1
p+q−1 =

(
1
C

) 1
p = α2

K < α.

So, from the inequality (44) we obtain that uk+1 ≤ αd(p+q)k+1

and as d < 1,

we obtain uk+1 ≤ αd(p+q)k+1

< α < 1.

One can obtain the inequality sk+1 ≤ αd(p+q)k+1

< α < 1 in a similar
manner with the one concerning uk+1. It is only necessary to invert the roles
of the numbers p and q.

We have:
vk+1 = a

Bk+1
· uk+1sk+1

1−uk+1
.

Identically, as Bi
Bi−1

≥ 1 for any i ≤ k we deduce that
Bk+1

Bk
≥ 1, therefore

Bk+1 ≥ Bk and in fact Bk+1 ≥ B0, namely:

vk+1 ≤ a
B0
· α2d2(p+q)

k+1

1−α .
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As a ≤ B0 and d < 1 we have:

vk+1 ≤ α2

1−α · d
2(p+q)k+1

< α2

1−α < 1.

In the same manner we have:

wk+1 =
sk+1

(1−uk+1)(1−vk+1) ≤
αd(p+q)

k+1

(1−α)
(

1− α2

1−α

)
= α

1−α−α2 · d(p+q)k+1

< α
1−α−α2 < 1

and:

tk+1 =
vk+1

(1−vk+1)(1−wk+1) ≤
α2

1−α ·d
2(p+q)k+1(

1− α2

1−α

)(
1− α

1−α−α2

)
= α2

1−2α−α2 · d2(p+q)k+1

< α2

1−2α−α2 < 1.

For the sequence (Bn)n∈N∗ we have:

Bk+2

Bk+1
= 1

(1−uk+1)(1−vk+1)(1−wk+1)(1−tk+1)

≤ 1

(1−α)
(

1− α2

1−α

)(
1− α

1−α−α2

)(
1− α2

1−2α−α2

)
= 1

1−2α−2α2 ,

therefore:

Bk+2 ≤ Bk+1

1−2α−2α2 .

Finally:

Rk+2 =
uk+1sk+1

LB2
k+1

≤ 1
LB0

α2d2(p+q)k+1

.

Therefore the inequalities (40) are also true for n = k + 1.
On the basis of the principle of the mathematical induction these

inequalities are true for any n ∈ N∗. The proposition is proved. �

6. THE MAIN RESULT

We return to the issue of the convergence of the sequences (xn)n∈N∗ ,
(yn)n∈N∗ , (xn)n∈N∗ ⊆ D ⊆ X to the solution of the equation f (x) = θY ,
where f : D → Y.

We have the following fundamental result:

Theorem 6.1. Suppose that the following assumptions hold:

i) The linear normed space (X, ‖·‖X) is a Banach space;
ii) The mapping f : D → Y admits for any x, y ∈ D with x 6= y a

generalized abstract divided difference Γf ;x,y ∈ (X,Y )∗ and there exists
a number L > 0 such that for any x, y, z ∈ D with x 6= y, y 6= z we
have the inequality:

‖Γf ;x,y − Γf ;y,z‖ ≤ L ‖x− z‖X ;
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iii) The main approximant sequence (xn)n∈N∗ together with the secondary
sequences (yn)n∈N∗ and (zn)n∈N∗ are such that for any n ∈ N∗ the
following equality is fulfilled:

(45) Γf ;yn,zn (xn+1 − yn) + f (yn) = θY

and the inequalities (32) with the constants a,K > 0. We also have that
f (yn) , f (zn) ∈ Y� {θY } , yn 6= zn and we are in one of the following
situations:
iii1) xn 6= yn and yn+1 6= zn,

or
iii2) xn 6= zn and zn+1 6= yn.

iv) The mapping Γf ;y0,z0 ∈ (X,Y )∗ is invertible and Γ−1
f ;y0,z0

∈ (Y,X)∗ .

v) Denoting:

B0 = max
{
a,
∥∥Γ−1

f ;y0,z0

∥∥},
R0 = ‖f (x0)‖Y ,

K = max
{
K,
(
B0

√
L
) 2(q−1)
p−q+1 ,

(
B0

√
L
) 2(p−1)
q−p+1

}
,

d =
LKB2

0
α2 ·max

{
R
p(p+q−1)
0 K

p−q+1

(LB2
0)q−1 ,

R
q(p+q−1)
0 K

q−p+1

(LB2
0)p−1

}
,

δ = 2aR0 + aα2

LB2
0
· d2

1−d2(p+q−1) + 2α
LKB0

· d
1−dp+q−1 ,

where α ∈ ]0, 1[ is the unique root of the equation (33), the conditions
d < 1 and S (x0, δ) = {x ∈ X/ ‖x− x0‖X ≤ δ} are fulfilled.

Then the following conclusions are true:

j) for any n ∈ N∗ we have that xn, yn, zn ∈ S (x0, δ) , there exists the
mapping Γ−1

f ;yn,zn
∈ (Y,X)∗ and:

(46) xn+1 = yn − Γ−1
f ;yn,zn

f (yn) = zn − Γ−1
f ;yn,zn

f (zn) ;

jj) the sequences (xn)n∈N∗ , (yn)n∈N∗ , (zn)n∈N∗ ⊆ X are convergent to the
limit x ∈ S (x0, δ) for that f (x) = θY ;

jjj) for any n ∈ N∗ the following inequalities are fulfilled:

(47) ‖xn+1 − xn‖X ≤
aα2

LB2
0
· d2(p+q)n−1

+ α
LKB0

· d(p+q)n ;

‖xn − x‖X ≤
aα2

LB2
0
· d2(p+q)

n−1

1−d2(p+q)n−1(p+q−1)
(48)

+ α
LKB0

· d(p+q)
n

1−d(p+q)n(p+q−1) ;

max
{
‖yn − x‖X , ‖zn − x‖X

}
≤ aα2

LB2
0
· d2(p+q)n−1

· 2−d2(p+q)n−1(p+q−1)

1−d2(p+q)n−1(p+q−1)

+ α
LKB0

· d(p+q)
n

1−d(p+q)n(p+q−1) .

The proof of this result we will given in the following paper of this paperset.
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