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Abstract. In this paper, we establish several integral inequalities for the Tay-
lor’s remainder by Grüss and Cheyshev inequalities.
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1. INTRODUCTION

For two given integrable functions f and g on [a, b], the Chebychev func-
tional T (f, g) is defined by

T (f, g) = 1
b−a

∫ b

a
f(x)g(x)dx− 1

b−a

∫ b

a
f(x)dx · 1

b−a

∫ b

a
g(x)dx.

In 1935, Grüss [1] proved that

|T (f, g)| ≤ 1
4(M −m)(L− l)(1.1)

if

m ≤ f(x) ≤M, l ≤ g(x) ≤ L

for all x ∈ [a, b], where M,m,L and l are constants. Inequality (1.1) is called
Grüss inequality.

The well-known Chebyshev inequality [2] can be stated as follows: if both
f and g are increasing or decreasing, then

T (f, g) ≥ 0.

If one of the functions f and g is increasing and the other decreasing, then
the above inequality is reversed.
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In what follows n denotes a non-negative integer. We denote by Rn,f (x0, x)
the nth Taylor remainder of the function f(x) with center x0, i.e.

Rn,f (x0, x) = f(x)−
n∑

k=0

(x−x0)k

k! f (k)(x0).

The Taylor remainder has been the subject of intensive research [3]–[9].
In particular, many remarkable integral inequalities for the Taylor remainder
can be found in the literature [5]–[7]. The following Theorems A and B were
proved by Gauchman in [6].

Theorem A. Let f(x) be a function defined on [a, b] such that f(x) ∈
Cn+1[a, b] and m ≤ f (n+1)(x) ≤ M for each x ∈ [a, b], where m and M are
constants. Then∣∣∣ ∫ b

a
Rn,f (a, x)dx− f (n)(b)−f (n)(a)

(n+2)! (b− a)n+1
∣∣∣ ≤ (b−a)n+2

4(n+1)! (M −m)

and∣∣∣(−1)n+1

∫ b

a
Rn,f (b, x)dx− f (n)(b)−f (n)(a)

(n+2)! (b− a)n+1
∣∣∣ ≤ (b−a)n+2

4(n+1)! (M −m).

Theorem B. Let f(x) be a function defined on [a, b] such that f(x) ∈
Cn+1[a, b]. If f (n+1)(x) is increasing on [a, b], then

−f (n+1)(b)−f (n+1)(a)
4(n+1)! (b− a)n+2 ≤

≤
∫ b

a
Rn,f (a, x)dx− f (n)(b)−f (n)(a)

(n+2)! (b− a)n+1 ≤ 0

and

0 ≤ (−1)n+1

∫ b

a
Rn,f (b, x)dx− f (n)(b)−f (n)(a)

(n+2)! (b− a)n+1

≤ f (n+1)(b)−f (n+1)(a)
4(n+1)! (b− a)n+2.

If f (n+1)(x) is decreasing on [a, b], then

0 ≤
∫ b

a
Rn,f (a, x)dx− f (n)(b)−f (n)(a)

(n+2)! (b− a)n+1 ≤

≤ f (n+1)(a)−f (n+1)(b)
4(n+1)! (b− a)n+2

and

−f (n+1)(a)−f (n+1)(b)
4(n+1)! (b− a)n+2 ≤

≤ (−1)n+1

∫ b

a
Rn,f (b, x)dx− f (n)(b)−f (n)(a)

(n+2)! (b− a)n+1 ≤ 0.

It is the aim of this paper to establish several new inequalities for the Taylor
remainder by Grüss and Cheyshev inequalities.
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2. MAIN RESULTS

Lemma 2.1. Let f(x) be a function defined on [a, b] and x0 ∈ (a, b). If
f(x) ∈ Cn+1[a, b], then

∫ b

x0

Rn,f (x0, x)dx =

∫ b

x0

(b−x)n+1

(n+1)! f (n+1)(x)dx(2.1)

and ∫ x0

a
Rn,f (x0, x)dx =

∫ x0

a

(a−x)n+1

(n+1)! f (n+1)(x)dx.(2.2)

Proof. We only give the proof of (2.1) in detail, the similar argument leads
to (2.2). It follows from the formula of integration by parts that

∫ b

x0

(b−x)n+1

(n+1)! f (n+1)(x)dx =

= (b−x)n+1

(n+1)! f (n)(x)|bx0
+

∫ b

x0

(b−x)n

n! f (n)(x)dx

= − (b−x0)n+1

(n+1)! f (n)(x0) + (b−x)n

n! f (n−1)(x)|bx0
+

∫ b

x0

(b−x)n−1

(n−1)! f (n−1)(x)dx

= − (b−x0)n+1

(n+1)! f (n)(x0)− (b−x0)n

n! f (n−1)(x0)− · · · − (b− x0)f(x0) +

∫ b

x0

f(x)dx

=

∫ b

x0

[f(x)−
n∑

k=0

f (k)(x0)
k! (x− x0)k]dx

=

∫ b

x0

Rn,f (x0, x)dx.

�

Theorem 2.2. Let f(x) ∈ Cn+1[a, b], such that m1 ≤ f (n+1)(x) ≤ M1 for

x ∈ [a, x0] and m2 ≤ f (n+1)(x) ≤ M2 for x ∈ [x0, b], where m1, m2, M1 and
M2 are constants. Then∣∣∣ ∫ b

a
Rn,f (x0, x)dx− f (n)(b)−f (n)(x0)

(n+2)! (b− x0)n+1(2.3)

−f (n)(x0)−f (n)(a)
(n+2)! (a− x0)n+1

∣∣∣
≤ (x0−a)n+2

4(n+1)! (M1 −m1) + (b−x0)n+2

4(n+1)! (M2 −m2).

Proof. Let

F (x) = f (n+1)(x), G(x) = (b−x)n+1

(n+1)! .
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Then for any x ∈ [x0, b], we clearly see that

m2 ≤ F (x) ≤M2, 0 ≤ G(x) ≤ (b−x0)n+1

(n+1)! .

Making use of Grüss inequality (1.1) one has∣∣∣ ∫ b

x0

F (x)G(x)dx− 1
b−x0

∫ b

x0

F (x)dx

∫ b

x0

G(x)dx
∣∣∣ =(2.4)

=
∣∣∣ ∫ b

x0

(b−x)n+1

(n+1)! f (n+1)(x)dx− 1
b−x0

∫ b

x0

(b−x)n+1

(n+1)! dx

∫ b

x0

f (n+1)(x)dx
∣∣∣

≤ (b−x0)n+2

4(n+1)! (M2 −m2).

Equation (2.1) and inequality (2.4) lead to the conclusion that∣∣∣ ∫ b

x0

Rn,f (x0, x)dx− f (n)(b)−f (n)(x0)
(n+2)! (b− x0)n+1

∣∣∣ ≤(2.5)

≤ (b−x0)n+2

4(n+1)! (M2 −m2).

Similarly, if x ∈ [a, x0], then Grüss inequality (1.1) leads to∣∣∣ ∫ x0

a

(a−x)n+1

(n+1)! f (n+1)(x)dx(2.6)

− 1
x0−a

∫ x0

a

(a−x)n+1

(n+1)! dx

∫ x0

a
f (n+1)(x)dx

∣∣∣ ≤
≤ (x0−a)n+2

4(n+1)! (M1 −m1).

Equation (2.2) and inequality (2.6) imply that∣∣∣ ∫ x0

a
Rn,f (x0, x)dx− f (n)(x0)−f (n)(a)

(n+2)! (a− x0)n+1
∣∣∣ ≤(2.7)

≤ (x0−a)n+2

4(n+1)! (M1 −m1).

Therefore, inequality (2.3) follows form inequalities (2.5) and (2.7). �

If take n = 1 in Theorem 2.2, then we have

Corollary 2.3. Let f(x) ∈ C2[a, b] and m1 ≤ f (2)(x) ≤ M1 for any

x ∈ [a, x0], m2 ≤ f (2)(x) ≤M2 for any x ∈ [x0, b], where m1, m2, M1 and M2

are constants. Then∣∣∣ ∫ b

a
f(x)dx− (b− a)f(x0)− f ′(b)

6 (b− x0)2 + f ′(a)
6 (a− x0)2

− f ′(x0)
3 (a + b− 2x0)(b− a)

∣∣∣ ≤
≤ (x0−a)3

8 (M1 −m1) + (b−x0)3

8 (M2 −m2).

In particular, if x0 = a+b
2 , then Corollary 2.3 becomes
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Corollary 2.4. Let f(x) ∈ C2[a, b] and m1 ≤ f (2)(x) ≤ M1 for any

x ∈ [a, a+b
2 ], m2 ≤ f (2)(x) ≤ M2 for any x ∈ [a+b

2 , b], where m1, m2, M1 and
M2 are constants. Then∣∣∣ 1

b−a

∫ b

a
f(x)dx− f(a+b

2 )− 1
24(b− a)(f ′(b)− f ′(a))

∣∣∣ ≤
≤ (b−a)2

64 (M1 −m1 + M2 −m2).

If take n = 0 in Theorem 2.2, then we have

Corollary 2.5. Let f(x) ∈ C1[a, b] and m1 ≤ f ′(x) ≤ M1 for any x ∈
[a, x0], m2 ≤ f ′(x) ≤ M2 for any x ∈ [x0, b], where m1, m2, M1 and M2 are
constants. Then∣∣∣ ∫ b

a
f(x)dx− (b− a)f(x0)− f(b)−f(x0)

2 (b− x0)− f(x0)−f(a)
2 (a− x0)

∣∣∣ ≤
≤ (x0−a)2

4 (M1 −m1) + (b−x0)2

4 (M2 −m2).

In particular, if x0 = a+b
2 , then Corollary 2.5 becomes

Corollary 2.6. Let f(x) ∈ C1[a, b] and m1 ≤ f ′(x) ≤ M1 for any x ∈
[a, a+b

2 ], m2 ≤ f ′(x) ≤ M2 for any x ∈ [a+b
2 , b], where m1, m2, M1 and M2

are constants. Then∣∣∣ 1
b−a

∫ b

a
f(x)dx− 1

2f(a+b
2 )− f(a)+f(b)

4

∣∣∣ ≤
≤ 1

16(b− a)(M1 + M2 −m1 −m2).

Theorem 2.7. Let f(x) ∈ Cn+1[a, b] and x0 ∈ [a, b], then the following
statements are true:

(1) If n is an odd number and f (n+1)(x) is increasing in [a, b], then

(x0−a)n+2

4(n+1)! (f (n+1)(x0)− f (n+1)(a)) ≥(2.8)

≥
∫ b

a
Rn,f (x0, x)dx− f (n)(x0)−f (n)(a)

(n+2)! (a− x0)n+1

−f (n)(b)−f (n)(x0)
(n+2)! (b− x0)n+1

≥ − (b−x0)n+2

4(n+1)! (f (n+1)(b)− f (n+1)(x0));

(2) If n is an odd number and f (n+1)(x) is decreasing in [a, b], then

− (x0−a)n+2

4(n+1)! (f (n+1)(a)− f (n+1)(x0)) ≤(2.9)

≤
∫ b

a
Rn,f (x0, x)dx− f (n)(x0)−f (n)(a)

(n+2)! (a− x0)n+1

−f (n)(b)−f (n)(x0)
(n+2)! (b− x0)n+1

≤ (b−x0)n+2

4(n+1)! (f (n+1)(x0)− f (n+1)(b));
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(3) If n is an even number and f (n+1)(x) is increasing in [a, b], then

− (x0−a)n+2

4(n+1)! (f (n+1)(x0)− f (n+1)(a))(2.10)

− (b−x0)n+2

4(n+1)! (f (n+1)(b)− f (n+1)(x0)) ≤

≤
∫ b

a
Rn,f (x0, x)dx− f (n)(x0)−f (n)(a)

(n+2)! (a− x0)n+1

−f (n)(b)−f (n)(x0)
(n+2)! (b− x0)n+1

≤ 0;

(4) If n is an even number and f (n+1)(x) is decreasing in [a, b], then

(x0−a)n+2

4(n+1)! (f (n+1)(a)− f (n+1)(x0))(2.11)

+ (b−x0)n+2

4(n+1)! (f (n+1)(x0)− f (n+1)(b))

≥
∫ b

a
Rn,f (x0, x)dx− f (n)(x0)−f (n)(a)

(n+2)! (a− x0)n+1

− f (n)(b)−f (n)(x0)
(n+2)! (b− x0)n+1

≥ 0.

Proof. We divide the proof into two cases.

Case 1. x ∈ [x0, b]. Let F (x) = f (n+1)(x) and G(x) = (b−x)n+1

(n+1)! , then we

clearly see that G(x) is decreasing in [x0, b]. We divide this case into two
subcases.

Subcase 1.1. F (x) = f (n+1)(x) is increasing in [x0, b]. It follows from the
Chebyshev inequality that∫ b

x0

(b−x)n+1

(n+1)! f (n+1)(x)dx− 1
b−x0

∫ b

x0

(b−x)n+1

(n+1)! dx

∫ b

x0

f (n+1)(x)dx ≤ 0.

Making use of equation (2.1) we get∫ b

x0

Rn,f (x0, x)dx− f (n)(b)−f (n)(x0)
(n+2)! (b− x0)n+1 ≤ 0.(2.12)

From the monotonicity of F and G we have

f (n+1)(x0) ≤ F (x) ≤ f (n+1)(b)

and

0 ≤ G(x) ≤ (b−x0)n+1

(n+1)!
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for x ∈ [x0, b]. Therefore, inequalities (2.5) and (2.12) lead to the conclusion
that

− (b−x0)n+2

4(n+1)! (f (n+1)(b)− f (n+1)(x0)) ≤(2.13)

≤
∫ b

x0

Rn,f (x0, x)dx− f (n)(b)−f (n)(x0)
(n+2)! (b− x0)n+1 ≤ 0.

Subcase 1.2. F (x) = f (n+1)(x) is decreasing in [x0, b]. The Chebyshev
inequality implies that∫ b

x0

(b−x)n+1

(n+1)! f (n+1)(x)dx− 1
b−x0

∫ b

x0

(b−x)n+1

(n+1)! dx

∫ b

x0

f (n+1)(x)dx ≥ 0.

Then equation (2.1) and inequality (2.5) lead to the conclusion that

(b−x0)n+2

4(n+1)! (f (n+1)(x0)− f (n+1)(b)) ≥(2.14)

≥
∫ b

x0

Rn,f (x0, x)dx− f (n)(b)−f (n)(x0)
(n+2)! (b− x0)n+1 ≥ 0.

Case 2. x ∈ [a, x0]. Let F (x) = f (n+1)(x) and H(x) = (a−x)n+1

(n+1)! . We

divide the discussion into four subcases.
Subcase 2.1. n is an odd number and F (x) = f (n+1)(x) is increasing in

[a, x0]. Then H(x) = (a−x)n+1

(n+1)! is increasing in [a, x0] and

f (n+1)(a) ≤ F (x) ≤ f (n+1)(x0)

for all x ∈ [a, x0].
Making use of the Chebyshev inequality we get∫ x0

a

(a−x)n+1

(n+1)! f (n+1)(x)dx− 1
x0−a

∫ x0

a

(a−x)n+1

(n+1)! dx

∫ x0

a
f (n+1)(x)dx ≥ 0.

Then equation (2.2) and inequality (2.7) imply that

(x0−a)n+2

4(n+1)! (f (n+1)(x0)− f (n+1)(a)) ≥(2.15)

≥
∫ x0

a
Rn,f (x0, x)dx− f (n)(x0)−f (n)(a)

(n+2)! (a− x0)n+1 ≥ 0.

Subcase 2.2. n is an odd number and F (x) = f (n+1)(x) is decreasing in
[a, x0]. Then H(x) is increasing in [a, x0]. It follows from equation (2.2) and
inequality (2.7) together with the Chebyshev inequality that

− (x0−a)n+2

4(n+1)! (f (n+1)(a)− f (n+1)(x0)) ≤(2.16)

≤
∫ x0

a
Rn,f (x0, x)dx− f (n)(x0)−f (n)(a)

(n+2)! (a− x0)n+1 ≤ 0.

Subcase 2.3. n is an even number and F (x) = f (n+1)(x) is increasing in

[a, x0]. Then H(x) = (a−x)n+1

(n+1)! is decreasing in [a, x0]. Therefore, equation
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(2.2) and inequality (2.7) together with the Chebyshev inequality lead to the
conclusion that

− (x0−a)n+2

4(n+1)! (f (n+1)(x0)− f (n+1)(a)) ≤(2.17)

≤
∫ x0

a
Rn,f (x0, x)dx− f (n)(x0)−f (n)(a)

(n+2)! (a− x0)n+1 ≤ 0.

Subcase 2.4. n is an even number and F (x) = f (n+1)(x) is decreasing
in [a, x0]. Then H(x) and F (x) have the same monotonicity in [a, x0]. It
follows from equation (2.2) and inequality (2.7) together with the Chebyshev
inequality that

(x0−a)n+2

4(n+1)! (f (n+1)(a)− f (n+1)(x0)) ≥(2.18)

≥
∫ x0

a
Rn,f (x0, x)dx− f (n)(x0)−f (n)(a)

(n+2)! (a− x0)n+1 ≥ 0.

Therefore, inequality (2.8) follows from inequalities (2.13) and (2.15), in-
equality (2.9) follows from inequalities (2.14) and (2.16), inequality (2.10)
follows from inequalities (2.13) and (2.17), and inequality (2.11) follows from
inequalities (2.14) and (2.18). �

If take n = 0 and x0 = a+b
2 in Theorem 2.7, then we have

Corollary 2.8. Let f(x) ∈ C1[a, b], then the following statements are true:
(1) If f ′(x) is increasing in [a, b], then

− 1
16(b− a)(f ′(b)− f ′(a)) ≤(2.19)

≤ 1
b−a

∫ b

a
f(x)dx− 1

2f(a+b
2 )− f(a)+f(b)

4 ≤ 0.

(2) If f ′(x) is decreasing in [a, b], then

1
16(b− a)(f ′(a)− f ′(b)) ≥(2.20)

≥ 1
b−a

∫ b

a
f(x)dx− 1

2f(a+b
2 )− f(a)+f(b)

4 ≥ 0.

Let us recall the well known Hermite-Hadamard inequality:

f(a+b
2 ) ≤ (≥) 1

b−a

∫ b

a
f(x)dx ≤ (≥)f(a)+f(b)

2(2.21)

if f(x) is convex (concave) in [a, b].
Inequality (2.19) can be rewritten as

1
2f(a+b

2 ) + f(a)+f(b)
4 − 1

16(b− a)(f ′(b)− f ′(a)) ≤(2.22)

≤ 1
b−a

∫ b

a
f(x)dx ≤ 1

2f(a+b
2 ) + f(a)+f(b)

4 .
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We clearly see that f(a)+f(b)
2 ≥ 1

2f(a+b
2 )+ f(a)+f(b)

4 if f(x) is convex in [a, b].
Therefore, inequality (2.22) is an improvement of inequality (2.21) if f ′(x) is
decreasing in [a, b].

Acknowledgement. The authors wish to thank the anonymous referees
for their very careful reading of the manuscript and fruitful comments and
suggestions.

REFERENCES
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