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Abstract. Here we present multivariate quantitative approximations of real and
complex valued continuous multivariate functions on a box or RY, N € N, by
the multivariate quasi-interpolation, Baskakov type and quadrature type neural
network operators. We treat also the case of approximation by iterated opera-
tors of the last three types. These approximations are derived by establishing
multidimensional Jackson type inequalities involving the multivariate modulus
of continuity of the engaged function or its high order partial derivatives. Our
multivariate operators are defined by using a multidimensional density function
induced by the Gaussian error special function. The approximations are point-
wise and uniform. The related feed-forward neural network is with one hidden
layer.
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1. INTRODUCTION

The author in [2] and [3], see chapters 2-5, was the first to establish neural
network approximations to continuous functions with rates by very specifically
defined neural network operators of Cardaliagnet-Euvrard and ”Squashing”
types, by employing the modulus of continuity of the engaged function or its
high order derivative, and producing very tight Jackson type inequalities. He
treats there both the univariate and multivariate cases. The defining these
operators "bell-shaped” and ”squashing” functions are assumed to be of com-
pact support. Also in [3] he gives the Nth order asymptotic expansion for the
error of weak approximation of these two operators to a special natural class
of smooth functions, see chapters 4-5 there.

For this article the author is motivated by the article [I2] of Z. Chen and
F. Cao, also by [4], [5], [6], [7], [8], [9], [10], [13], [14].

The author here performs multivariate error function based neural network
approximations to continuous functions over boxes or over the whole R,
N € N; then he extends his results to complex valued multivariate functions.
Also he does iterated approximation. All convergences here are with rates
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expressed via the multivariate modulus of continuity of the involved function
or its high order partial derivative and given by very tight multidimensional
Jackson type inequalities.

The author here comes up with the "right” precisely defined multivariate
quasi-interpolation neural network operators related to boxes or RY, as well as
Baskakov type and quadrature type related operators on RY. Our boxes are
not necessarily symmetric to the origin. In preparation to prove our results
we establish important properties of the basic multivariate density function
induced by error function and defining our operators.

Feed-forward neural networks (FNNs) with one hidden layer, the only type
of networks we deal with in this article, are mathematically expressed as

N, (z) = cha(<aj-:n>+bj), zeR’ seN,
=0

where for 0 < j < n, b; € R are the thresholds, a; € R® are the connection
weights, ¢; € R are the coefficients, (a; - ) is the inner product of a; and «,
and o is the activation function of the network. In many fundamental network
models, the activation function is the error function. About neural networks
read [15], [16], [17].

2. BASICS

We consider here the (Gauss) error special function ([1], [I1])

(1) erf (z) = % /Ox e~ dt, xr € R,
which is a sigmoidal type function and is a strictly increasing function.
It has the basic properties
erf (0) =0, erf(—z)=—erf(z), erf(+o0)=1, erf(—o0)=—1.
We consider the activation function ([I0])
(2) X (z) = 1 (erf (x + 1) — erf (z — 1)) > 0, Vx € R,

which is an even function.

Next we follow [10] on x. We got there y (0) ~ 0.4215, and that x is strictly
decreasing on [0, 00) and strictly increasing on (—o0, 0], and the z-axis is the
horizontal asymptote on y, i.e. x is a bell symmetric function.

THEOREM 1. [I0] We have that

(3) i X (x—1)=1, Vr € R,

1=—00

(4) Z X (nx —1) =1, Vo eR, n €N,

1=—00
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(5) /_O:ox(x)dazzl,

that is x (z) is a density function on R.
We need the important
THEOREM 2. [10] Let 0 < a < 1, and n € N with n'=* > 3. It holds

o0

o 1
o S <

k=—o00
|nz—k|>nl-a

Denote by || the integral part of the number and by [-] the ceiling of the
number.

THEOREM 3. [10] Let x € [a,b] C R and n € N so that [na] < |nb|. It
holds

(7) <y 24019, Vee o).
Z x(nz—k)
k=[nal

Also from [10] we get

[nb]
(8) Jim sz: 1 X (nz — k) # 1,

at least for some z € [a, b].
For large enough n we always obtain [na] < [nb]. Alsoa < £ <p

< b, iff
[na] <k < |nb]. In general it holds by (4) that

[nb]
(9) > x(nz—k) <1
k=[na]
We introduce
(10)
N
Z(x1,y ., xN) = Z (x) := H X (), = (x1,..,zy) €RY, NeN.
i=1
It has the properties:
(i) Z(z) >0, Yz eRY,
(if)
o0 o0 oo o0
(11) ZZ(I’—]{I) ::Z Z Z Z(x1 — ki, ..., oy —kn) =1,
k=—00 ki=—00 ka=—00 kny=—00

where k := (ki1,...,k,) € ZV,V 2 € RV,
hence
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(i)
i Z(nx—k)=

k=—o00

(12)

= Z Z ZZ(nxl—kl,...,na:N—kN)zl, VwERN;neN,

k1=—00 ko=—00 kn=—00
and
(iv)
(13) Z (x)dx =1,
RN
that is Z is a multivariate density function.
Here ||z|| . := max{|z1],...,|zn|}, = € RY, also set co = (o0, ..., 00),

—00 := (=00, ...,—00) upon the multivariate context, and

(14) [na] : =([na1],..., [nan]),
Inb] : = (|nbi],...,|nbn]),

where a := (ay,...,an), b := (b1,...,bn) .
We obviously see that

|nb] [nb] /N
Z Z(nx—k)= Z (H X (nz; — k,))
k=[na] k=[na] \i=1
[nb1 ] [nbn] /N N |nb; |
15 = > . > (Hx(n:ﬂi - ki)) =11 ( > x(nwi— ki)) :
ki=[na1] kn=[nany]\i=1 =1 \ki=[na;]

For 0 < B <1and n €N, a fixed z € RY, we have that

[nb]
S x(no—k)=
k=[na]
[nb] [nb]
(16) = Z X (nz — k) + Z X (nx — k).
55 520> 2
] | Sy il | g

In the last two sums the counting is over disjoint vector sets of k’s, because the
k 1
>

Rr =
n x’r‘ nB?

condition H% - a:H > niﬁ implies that there exists at least one
o
where r € {1,..., N}.
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We treat
[nb] N [nb; ]
> Z(nz—k) =] X (nxi — ki)
k=[na] i=1 k 7|—nal-‘
15—l o> 15—l .>75

N o0 Lnb'rj
(17) < H Z X (nxz - kz) Z X (na:r —k )
=1 ki:—oo kr=[nar]
Z#T ki_mr|>fﬁ
L”bd o)
= X (najr kr) < Z X (nxr —k )
kr=[nar] kp=—o0
b a|> % —erl> 05
> (©)
(18) = Z X (nxr - kr) < 1

kr=—o0
|nxy—kp|>n1=8
when n!=#% > 3.
We have proved that
(v)
[nb)

1
" an:ﬂ Zinz =k < 2 /T (n1—F — 2) 6(n176—2)27

[5—=ll.>77
[ai,bi]> .

O<5<1,n€N;n1523,x€<

==

)

By Theorem [3] clearly we obtain

1 _ 1
(20) 0 < —; ~ 7 ]
Z Z(nz—k) H Z x(na;—k;)
k=[na] i=1 \ k;=[na;]
< (X(ll))N ~ (4.019)"
That is,
(vi) it holds
N
(21) 0< —r— < (X(11))N ~ (4.019), Vae <'H1 [aiabi]> , neN.
Z(nxz—k) =
k:%a'\

It is also clear that
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N
O<ﬁ<1,n€N:n1_'823,x€(H[az, Z])

Also we get that

[nb)
(23) lim k_z[: ] Z (nx — k) # 1,

N
for at least some x € (H (@i, bz]> :
i=1

N

Let f e C (H [ai,bi]> and n € N such that [na;] < [nb;],i=1,...,N.
i=1

We introduce and define the multivariate positive linear neural network

operator (z := (z1,...,ZN) € (l]_V[ [%‘J%]))

i—1

5 7(%) ztna-1)
(24) An (faxla axN) = An (f?ZC) = = ["‘Ele

[nby]  Lnbg) Lnew ]
E Z E f(%, ,n)<Hxnxl l)

_ ki=[nagl kp=[nagl ky=[napy]

T N [nb;]
II > x(nwi—ky)

=1\ k;=[na;]

For large enough n we always obtain [na;| < |nb;], i = 1,...,N. Also a; <
ki < by, iff [na;] < ks < [nbs), i=1,..,N.
For convenience we call
Lnb)
(25) A (f,x) - Z f() (nz — k)

k=[na]

[nb1] [nb2 ] [nbn ] N
= Z Z Z f(%,,%\’) <Hx(n:zz—kl)> ,

ki=[na1] ka=[na2] kn=[nan]

[CLZ', bz]> .

=5

Vm€<'
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That is
AL (f,x
(26) A (fra) = el —,
> Z(naz—k)
k=[na]

N
Ve (H [ai,bi]>, n € N.
=1

Hence

Lnbd]
AZ(fﬁ)f(@( > Z(mk)>
k=[na]
(27) Ap (fiz) = [ () = [nb] .
Z Z(nx—k)

k=[na]
Consequently we derive

Lnb]

AL (foa) = f(x) D Z(nx—k)

k=[na]

(28)  |An (f,2) — f(2)] < (4.019)"

)

N
Y€ H [ai, bl]
i=1
We will estimate the right hand side of (128]).

N
For the last we need, for f € C [ ] [a;, b;] | the first multivariate modulus
i=1
of continuity
(29) wi(f,h):= sup |f(x)=[f()], h>0.
N
z,y€ H [ai:b;]
=1
lz—yll o <h
It holds that
(30) limwy (f,h) = 0.
h—0

Similarly it is defined for f € Cp (]RN ) (continuous and bounded functions
on R™) the wy (f,h), and it has the property , given that f € Cy (RN)

(uniformly continuous functions on R™).

When f € Cp (]RN> we define,

(31)  Bu(f,2):= By (fiat, ) = > f(g)Z(nx—k)::

= i i i f(%,%,...,%v) (ﬁX(nxz_k1)>a

ki=—00 ko=—00 kn=—o00
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neN,VzeRY, N €N, the multivariate quasi-interpolation neural network
operator.

Also for f € Cp (RN ) we define the multivariate Kantorovich type neural
network operator

(32)
k=—0oc0 n
. 3 3 N le sz kNTf(t s ty)dty.dty | -
klg—:oo kg:X—:oo kN;oo< /1 /n2 /n ' N ' N

—=

X (na; — ki)) :

1

<i
neN, VazeRY,
Again for f € Cp (RN ) , N € N, we define the multivariate neural net-

work operator of quadrature type D, (f,z), n € N, as follows. Let 6§ =
(01,....,05) € NN, r = (r1,...,rN) € Zf, Wy = Wry po,..ry > 0, such that

0 01 62
Z Wr = Z Z Z Wry rg,..ry = 1; ke ZN and
r=0 r1=0r2=0 rn=0

Onk (f) 1= Opky kg, k Zwrf( )

01 02

@33) =3 3 .. Z Wes e (2 + 55, 2 + 2, B 4 T

r1=07r2=0 ry=0

r._ (rL T2 TN
where 5 := (91, oo GN) .
We put

(34) D, (f,x):= Dy (f,x1,....,TN) := i onk () Z (nz — k) :=

k=—o00
o 0]
Z Z Z On k1 ko, (Hx nx; — k; >
/ﬂ*—ookz*—oo k’Nf—oo

VzeRY,
Let fixed j € N, 0 < 8 < 1, and A, B > 0. For large enough n € N: n!=% >

3, in the linear combination <né] + B T ), the dominant rate of
(n1_5_2)6(n 72)

convergence, as n — 0o, is n~%7. The closer /3 is to 1 we get faster and better

rate of convergence to zero.
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Let f € C™ (H [a;, z}), m, N € N. Here f, denotes a partial derivative

N
of f, a:= (a1,...,an), a; € Zy, i = 1,..,N, and |of := E o; = I, where

[=0,1,...,m. We write also f, := gmff and we say it is of order l.
We denote

(3) ST (farh) = max w1 (fah).
Call also
(36) [ falloam = max {|falloo}

||| o is the supremum norm.

In this article we study the basic approximation properties of A, By, Cy, Dy,
neural network operators and as well of their iterates. That is, the quantitative
pointwise and uniform convergence of these operators to the unit operator I.
We study also the complex functions related approximation.

3. MULTIDIMENSIONAL REAL NEURAL NETWORK APPROXIMATIONS

Here we present a series of neural network approximations to a function
given with rates.

We give

=

N
THEOREM 4. Letf€C<H [a;, ,}),O<B< 1,z € (H [ai7bi]> , N,n €

i=1 i=1
N with n*=? > 3. Then
1)
(37)

[An (f,2) = f (2)] < (4.019)" lwl (£) + Ml ] =t i,

and
2)
(38) [An (f) = flloo < A1

We notice that li_>m Ay (f) = f, pointwise and uniformly.
n oo

Proof. We observe that

[nb]
A(z):= A (f,x) Z Z(nx—k)=

k [na]
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[nb| [nb|
= > () zma-k - Y f@)Z(nz—k)
k=[na] k=[na]
[nb]
(39) =Y (Fr&)-r@)zma—n)
k=[na]
Thus
[nb]
A@l< Y (&) -r@|zme—k =
k=[na]
[nb]
= Y (&) -r@|zme-k
. k=[na] )
15—l o<77
[nb]
+ Y &) -r@|2me—k
k=[na]
I%—ell>77
(by (12)) ) Lnb)
< w(fF)+2fle Y Za—k)
k=[na]
I%—ll>77
(by (19))
(40) < w(fh)+ M .
ﬁ(n1—5—2)e(" - )
So that
- 1< nﬁ) ﬁ(nlfﬁ—Q)e("lfﬁ‘Q)z
Now using we finish proof. O

We continue with

THEOREM 5. Let f € Cp (RN), 0<p <1 zeRN NneN with
nt=8 > 3. Then

1)

(M) Bu(fim)— f @) <wn (£ ) + ﬁ(nl_ﬁ”gznl_M)Q =,
2)

(42) 1Bn () = flloo < o

Given that f € (C’U (RN> NCg (RN>>, we obtain nh—{gan (f) = f, uniformly.
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Proof. We have that

@) B.(fo)- 1@ @ Y F(E)Zta-b-f@) S Zna—b)
k=—00 k=—o00
_ f: (F(5)=7@) 2 ma—k).
k=—o00
Hence
Ba(fr) - f @< S |7 (5) = 1 @)| 2z —b)
k=—0oc0
- Y () -r@|z2ma-n
[EREL™
+ Z ‘f(%)—f(w)‘Z(nx—k)
£ 2al >
Zu(nt) 2l Y Zea-B)
I5all >
(19)
(44) < (f )+ ﬁ(nliﬁ)iw—zf’
proving the claim. O
We give

THEOREM 6. Let f € Cg (RN), 0< B <1, z¢eRN, NneN with
ni=P > 3. Then

1)

(45)  |Cu(fie) — f@] <wr(fh+5)+ ﬁ(nlﬂgznlﬁ_z)g —: g,
2)

(46) 1Cn (£) = fllo < s

. N N . . _ .
Given that f € (C’U (R )ﬁCB (R )), we obtain nlgIoloC” (f) = f, uni-
formly.

Proof. We notice that

k41 k141 ko+l kn+1

A f(t)dt:/ﬂ /ﬁ / F (b1 by ooy ) dtrdts...dty =

kn
n
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1

(47)
1 1 n
_/0 /0 /0 f(tl—i—n,tg—i-n,...,t]v—i-n)dh...dtN—/O F(t+E)ar

Thus it holds

|—

00 1

(48) Cn(f,x) = Z (nN/Onf(t—i—Z)dt)Z(nx—k).

k=—o0

We observe that
|Cn (f,2) — f (@)

= kzoo<nN/0 f( )dt) (nz — k) Z f(z) Z (nx — k)
- k:z_:oo ((nN/O" f(t—i—%) dt) —f(a:)) Z (nx — k)
(49) = ki@ <nN/O’1L (F(t+5) - f@) dt) Z (na — k)
< kiioo <nN Orlz f (t—l— %) - f(m)’dt) Z (nx — k)
= i (nN/On’f<t+7’i)—f(x)‘dt)2(n:c—k)
|4=sllozs
n i (nN/On f(t+fl)—f(g;)‘dt>Z(ms—k‘)
&=l 2>
< i (nN/Onwl (f,||t||oo+H%—xHoo> dt) Z (nx — k)
I4-el o5
F20fll f: 2 (fnw — )
H**wH i
1 /1o
(50) <wi(fit+5)+ e
proving the claim. O

We also present
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THEOREM 7. Let f € Cg (RN>, 0<pB <1 z¢cRN, NnecN with
nt=8 > 3. Then

1)

(61 Da(fir) = f@)] Swn (fig+75)+ o BE):@_M)Q = s,
2)

(52) 1D (£) = Fllso < s

Given that f € (CU (RN> NCp (RN)) , we obtain li_)m D, (f) = f, uni-
formly. A

Proof. We have that

(53)  [Dn (f,2) = f (2)]

Y Dz -k = S F@) 2 —b)
k=—o00 k=—o00
| S G- F @) 2k
k=—0c0
00 0
S (Zwr(f(’;+rfe)f(w))>2(nka)
k=—00 \r=0
00 6
< > (Zwrf(ﬁﬂL{g)—f(fﬁ)DZ(m—k‘)
k=—00 \r=0
0o 6
= Z (Zwrf(,’iJr,fe)—f(x)DZ(m—k)
—00 :0
||"4L“Hoo B
00 0
Py (zwr f(z+,:9)—f<x>\)2<m—k>
k=—o0 r=0
152l >3
9
< _Z_: ;wrwl (f, ﬁ—xHOO+H7:9||OO>>Z(nx—k)+
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o0

+2{flloo Y. Z(nz—k)
k=—oc0
[5=2llo>77

ﬁ(nlfﬁ_g)e(”liﬁ_?‘y ’
proving the claim. O

In the next we discuss high order of approximation by using the smoothness

of f.
We give

THEOREM 8. Let f € C™ ( [ai,bi]>, 0<B<1,nmNEeN,n >3

i=1

N
x € <H [ai,bi]). Then
i=1

i)
(55)

m N
An<f,x>—f<x>—z(z (Hf”)A (Hc—xi)“zx)) <
j=1 \Jaj=j ~*H=17" i=1

N N™ max 1 IIb—alli.'l;IIfall';f,"anm 1
ii)
(56)

|An (f,2) — f (2)] < (4.019)" -

m N

N™  max 1 [b—allzellfallSem N™ 1
+ o Wim (Jas 75 ) T ml 1-5_5)% [’
ﬁ(n1*5—2)e(n B )

iii)

(57)

A (f) = fllo (4.019)Y -

{ail <|azj Gﬁﬂ&‘l') {"16] ’ <1]_V[1 e ai)ai> | zﬁ(nl—ﬂ_zl)e("”2)2D+
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N™  max 1 llb—alls Il fal S N ™ 1 .
+ i Wim (fc‘” W) +< = m! = TIPS (s Kn,
ﬁ(n1*5—2)e(n 72)

N
iv) Assume fo (x0) =0, forall a:|a|=1,...,m; 9 € (H (@i, Z]) Then
(58)
[An (f, 0) = f (20)| <
collfallsemN™

N™ max ”bia”oo oo, m 1
(4.019 {m w1 fos + ( pe > },
) InmB ( nﬁ) ! ﬁ(n1_572)e(n1_572)2

m+1)

notice in the last the extremely high rate of convergence at n=5

Proof. Consider g, (t) := f (xo+t(z —x0)), t > 0; x0,2 € H [a;, b;] .

Then =
J
[(Z —20;) z@) /

(59)
forall j =0,1,....m
We have the multivariate Taylor’s formula
f(le- N)=9:(1) =

(60) 99? st [0 (6 0) ) (0)) a0

(:E()l—l-t (Zl—xol) s ey TN 1T (ZN—$0N)) s

Notice g, (0) = f(xp). Also for j =0,1,...,m, we have

61) g9 (0) = Z ( 5 ) (H (zi — 3300”) fa (%0) -

OZZ:(OCL.. e 7 OQEZ+ H Oél i=1

Z:17~“’N7 |a‘ Zaz_]

Furthermore
(62)
N
g™ (6) = > ( ><H — 20;)" ) Jo (@0 + 6 (2 — 20)) ,
a:=(a1,...,an), a;€ZT, H a;! i=1

. N 1
i=1,...,N, |a|:= 21:1 a;=m =

0<6<1.
[ai,bi])

So we treat f € C™ <

=

1=

—_
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N
Thus, we have for %,.ﬁ S (Hl (@i, bl]> that
1=

() — f (@) =
RS S S (N1)<H(%—mfjﬁmm+R
j=1 i

a:=(a1,...,an), ;€EZT,

N =1
i=1,..,N, |a|:=)" a;=j
1=1

where

o wenfaat £ ()l

a:=(ai,...,an),
;€271 i=1,...,N, =1

N
lo:=>" a;=m
=1

: [fa <x+9 (% —:U)) — fa (x)} de.
We see that

|R| gm/01(1—0)m1 3 (Nl )(fv[l‘g_x‘“>

jaf=m *[] as!
i=1

(65) "fa(w—F@(fL—x))—fa(:):)’dﬁgm/ol(l—e)m_l.

. <|a|z_m (ﬁlai!) <ﬁ ‘% - a?z“ai >w1 (fa,e H% — xHOO) >d9 < ().

i=1

Notice here that

(66) Hg—x‘)wgniﬁ@‘%—xi‘gn%, i=1,..,N.

= (£ )(IE)))o

|laf=m

max (. L wmax (L
m>(L$$fU(;%§;)(Tﬁﬁ”)ww
i=1

Conclusion: When H% - :1;H < niﬁ’ we proved that
o

(68) IR < (7257 ) win (far ) -

We further see that

(¥) < m - Wi (fav n%) /01 (-0 (
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In general we notice that

1 N
’R‘ < m/ (1- (9)m_1 Z N1 (H (bi — ai)al) 2 HfaHoo

= 1 <H b _al )Hfa”oo
lal=m Haz i=1

69) < (Mllﬂv‘o‘im

: m! _ 2lb—all Xl fa IS N™
m! Z N - m!
|o¢|:m H Oci!

=1

We proved in general that

(70)

’R| < 2/|lb—all 2

sollfallogm N™
m! -
Next we see that
[nb)
Z Z(nx—k)R
k=[na]
[nb)

Z(nx—k)R
. k=[nal .
=B I5=2llo>75
Consequently
[nb]
U< | > Zma k) | Rt (far )
k=[na]
|52l <55
+p 1
2ﬁ(n1*572)e(n1_672)2
(71) < A (far s ) + 1 ! :
i L ( “ nﬁ) 2ﬁ(n1—572)e(n1_ﬁ72)2
We have established that
(72)
Unl| < e

ma,x 1 ||b_a||$||fa||max N™
mlnm,ﬁ fOZ’ 7

oo, m 1
m!

ﬁ(nkﬁ_Q)e("li’B_Q)z .
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We observe that

[nb] |nb]
S r(E)zZma—k) - @) Y Znz—k)=
k=[na] k=[na]
m [nb] N .
Jj=1\ |a|=j I;[lOéi! k=[na] i=1
[nb)
(73) + Z (nx — k) R.
k=[na]

The last says

[nb]
Ay (fox) = f(x) ( > Z(nfﬂ—k)) -

k=[na]
m N
(74) -1 S ({N) A% (]‘[ (- — ;) x) —U,.
=1 \lof=j \]] et i=1
i=1

Clearly A} is a positive linear operator.
Thus (here a; € Z1 : |a| = SN, a; = j)

N N
AL (H (- =)™ az) < A, <H |- — ™ x)
i=1

i=1

[nb] o
= (H by Z)Z(n:c—k)
k=[na] i=1
I5-2llo<5m
[nb] N
+ > (H ’j:—xi%)Z(na:—k)
k=[na] i=1
I5-2llo>75
N [nb]
< n% + H (b; — a;)™ Z Z (nx — k)
i=1 k=[na]
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N
1 —a; o 1 5.
(75) St (g (i) ) ay/m(ni-—2)e(r 7 2)

So we have proved that

N
A; (H ( - xi)ai ,(lZ)

=1

(76)

forall j =1,...,m.
At last we observe

m N
RIS o Doll K P 0 (RS ) |

J=1\ |a|=j Haz' i=1
[nb]

< @)Y - |AL (fa)— f(x) Y Z(nw—k) -
k=[na]

m N
) |3 | (T )
=1 \jal=j \ I] e i=1

=1
Putting all of the above together we prove theorem. O
We make

DEFINITION 9. Let f € Cp (]RN), N € N. We define the general neural
network operator

Fa(fie)= S b (F)Z (na—k) =

k=—0o0
Bu(fix), if L (f)=f (%),
k+1
(78) =3\Cn(fsz), if  Lu(f)=nN[" f(t)dt

Clearly I (f) is a positive linear functional such that [l,; (f)] < || f]l -

Hence F), (f) is a positive linear operator with || Fy, (f)|l < || fllo, & con-
tinuous bounded linear operator.

We need

TueoREM 10. Let f € Cp (RY), N > 1. Then F, (f) € Cp (RY).

Proof. Clearly F, (f) is a bounded function.

Next we prove the continuity of F), (f). Notice for N =1, Z = x by .

We will use the Weierstrass M test: If a sequence of positive constants
My, M5, Ms, ..., can be found such that in some interval
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() |un (2)] < My, n=1,2,3,...

(b) >° M, converges,

then Y u, (x) is uniformly and absolutely convergent in the interval.

Also we will use:

If {un ()}, n =1,2,3, ... are continuous in [a,b] and if }° u, () converges
uniformly to the sum S (z) in [a,b], then S (x) is continuous in [a,b]. Le. a
uniformly convergent series of continuous functions is a continuous function.
First we prove claim for N = 1.

We will prove that > 72l (f) x (nz — k) is continuous in x € R.

There always exists \ € N such that nz € [-\, A].

Since nx < A, then —nx > —Aand k—nz > k— X > 0, when k£ > .
Therefore

(79) ix(mc—k) = ix(k—m“) < ix(k—k) = i X (K) <1
k=X k=X k=X k'=0

So for k > X\ we get
ke () x (nz — k) < ([ flloo x (B = A),

and

1lloe D2 x (k= 2) < lIfll

k=X

[e.°]
Hence by Weierstrass M test we obtain that Y I,k (f) x (nz — k) is uniformly

k=X
and absolutely convergent on {—%, %} .
o0
Since I (f) x (nx — k) is continuous in z, then Y L,k (f) x (nz — k) is con-
k=\
tinuous on [—%, % .

Because nz > —\, then —nz < A\, and k —nx < k+ X <0, when k < —\.
Therefore

.Y DY
Z X (nx — k) = Z X (k — nx) Z x(kE+X) = Z x (k

k=—00 k=—o00 k——oo k'=—c0
So for k£ < —X\ we get
(80) Lk (F)] x (nz = k) < || flloo x (K +A),
and

Y
e D xk+X) <[fls

k=—o00
Y
Hence by Weierstrass M test we obtain that > Il (f) x (nz — k) is uni-
k=—0oc0
formly and absolutely convergent on {—%, %} .
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-\
Since Ik (f) x (nx — k) is continuous in x, then > Ik (f) x (nz — k) is

k=—00
continuous on [—%, %} .
00 A
So we proved that Y I,k (f) x (nz —k)and > Ly (f) x (nz — k) are con-
k=X k=—o00
A—1

tinuous on R. Since Y Il (f) x (nz —k) is a finite sum of continuous
+1

functions on R, it is also a continuous function on R.
Writing

oo -\
Z lnk(f)X(nJ:_k): Z lnk(f)X(n$_k)+

k=—0c0 k=—o00

A—1 00
(81) + Y L () x(nx = k) + D L (f) x (nz — k)
k=—A+1 k=X
we have it as a continuous function on R. Therefore F,, (f), when N =1, is a

continuous function on R.
When N = 2 we have

By (f,z1,22) = i i Lk (f) x (n@1 — k1) X (n@g — k) =

ki=—00 ko=—00

= i X(nm-kﬂ)( i lnk(f)X(nﬂfg—kg))

k1=—00 ko=—00

(there always exist A1, A2 € N such that nx; € [\, A\1] and nzy € [—A2, \2])

ko=—00

e’ —A2
= Z X(nxl—/ﬁ)[ Z Lok (f) x (nwe — k2) +

ki=—o0
Ag—1 0

+ Y L () x(nza—k2) 4+ Y Lk (f) x (na2 — k:g)]

ko=—Xo+1 ka=M\2

0 —A2
= Z Z Ink (f) x (nx1 — k1) X (nwo — ko) +

ki=—00 ko=—00

00 A2—1
+ > > L () x(nay — k1) x (nwg — ko) +

ki=—00 ka=—MXo+1

Y S G () x (e — k) x (n — ) = (1)

k1=—o00 ka=X2
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(For convenience call

F (k1 k2,1, 22) =k, (f) x (n1 — K1) x (n@2 — K2) . )

Thus
-1 -2 A1—1 —Xo
= > > Flkikym,z)+ >, >, F(ki ks, m0)+
k1=—00 ka=—00 ki=—X1+1ko=—00
—A2 -1 Ao—1
+ Z Z F kl;k27$17$2 + Z Z F(k17k2a$17$2)
k1=M\1 ko=—00 k1=—00 ko=—MXo+1
A—1 Ao—1 0 Ao—1
+ > > Fkikyaa)+ Y, Y, F(ky ko, r,20) +
ki=—X1+1kao=—Xo+1 k1=Xka=—Ao+1
(82)
-1 [e%s) A—1 [e%s)
+ Z Z F (k1, k2, 21, 22)+ Z Z F (k1 k2,21, 22) +
k1=—00 ka=MX2 ki=—A1+1k2=X2
oo oo
+ > > Fki, kg, w1, 22).
k1=X1 ka=X2

Notice that the finite sum of continuous functions F' (ki, ko, z1, z2),

A1—1 A2—1

Z Z F(k17k27x17x2>

ki=—A1+1 ka=—X2+1

is a continuous function.

The rest of the summands of F,, (f,z1,z2) are treated all the same way and
similarly to the case of N = 1. The method is demonstrated as follows.

We will prove that

,)\2

Z S bk (f) x (ny — k) x (navy — ko)

k1=A1 ka=—00

is continuous in (z1, 7o) € R2.
The continuous function

Lk ()] x (n@1 — k1) x (nxe — k2) < [[flloo X (k1 — A1) x (k2 + A2),
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and
~Xo

1f1l oo i > x (k1= A1) x (k2 +Xo) =

k1=X1 ka=—o00

%) — Ao
= [ fllso ( > X(kl—)\l)) ( > X(k2+)\2))
k1=M

ko=—o00

<1fll (i x(ki)) ( /i x(%)) <l

k=0 =—00
So by the Weierstrass M test we get that
—As

i D bk (f) X (nxy — k1) x (nay — ko)

k1=A1 ka=—c0
is uniformly and absolutely convergent. Therefore it is continuous on R2.
Next we prove continuity on R? of

Ar—1 —A2

Z Z Lok (f) x (nzq — k1) x (nwo — k2) .

ki=—X1+1 ko=—0c0
Notice here that
[k ()] x (n@1 — k1) x (nwg — k2) < [[flloo X (nz1 — K1) x (k2 + A2)

< || flloo x (0) x (k2 + A2)
=0.4215 - || f|l oo X (k2 + A2),

and
A1—1 —A2
0.4215 - | f]| ( )3 1) ( S X(k‘2+/\2)) _
ki=—X1+1 ko=—00
0
(83) =0.4215-[|f[loc 2A1 = 1) ( > X (kilz)) <0.4215- 2A = 1) [ f [l -
ki=—o00

So the double series under consideration is uniformly convergent and contin-
uous. Clearly F), (f,z1,22) is proved to be continuous on R2.

Similarly reasoning one can prove easily now, but with more tedious work,
that F, (f,x1,...,xn) is continuous on RY, for any N > 1. We choose to omit
this similar extra work. O

REMARK 1. By it is obvious that [|A, (f)|l < IIflle < oo, and

N N

An(f)eC <H [az‘,bz‘]>> given that f € C (H [ai, by]
i=1 i=1
Call L,, any of the operators A,, By, Cn, Dy,.
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Clearly then

(84) 122 D] = 120 (Bn (D)oo < 10 (Flleg < 11l
etc.

Therefore we get
(85) |12k D] < fllees ¥R EN,

the contraction property.
Also we see that

(86) Ik < st 0| < <1 (Dl < 1l
Also L, (1) =1, LF (1) =1,V k €N.
Here Lffb are positive linear operators. ]
NOTATION 11. Here N € N, 0 < 8 < 1. Denote by
4.019N, ifL,=A
(87) o = { O Lo = A,
1, if Ly = By,,Cy, Dy,
L if L, = An, By
(55) omy=17 , o
E—i_'n?’ (Lan:CTLvDﬂA
C ]]y[ [ai, bi] if L A
g, O ’ ? n — {n,
(89) Q:= i=1
Cp (RY), if Ln = By, Cy, D,
and
I b if L A
RN7 Zf Ln = Bna Cna Dn-

We give the condensed

THEOREM 12. Let f € Q, 0< <1,z € Y;n, N € N with n'=% > 3.
Then

(i)
(O1)  |Ln (f:2) = f (@) S en w1 (90 (n)) + Moo | =7,
NG P )
(ii)
(92) 1Lo (F) = fllo <7

For f uniformly continuous and in Q we obtain
Jim L, () = f,

pointwise and uniformly.
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Proof. By Theorems [4[7] O

Next we do iterated neural network approximation (see also [9]).
We make

REMARK 2. Let r € N and L,, as above. We observe that
Lnf—f=(Lnf =Ly hf) + (Lt — L 2F) +
+ (L2 = L2 f) o (B2 f = L) + (Lnf = ).

Then
ILof = Floo < |[Znf = 17|+ |t = Li72f|_+
+ | En2f = L3 ||+t B2 S~ Laf]| + Eaf = Flloe =
= || Lt = D A0 @t = D _H 2P @af = 5)||

(93) t oot 1o (Lnf = Dlloo + 1 Enf = Flloo <7 1Enf = Fllo -
That is
(94) 1L5f = Fllos S 7l1Lnf = fllog- O

We give

THEOREM 13. All here as in Theorem[12] and r € N, 7 as in (91). Then
(95) 1Lhf = fllog < 77

So that the speed of convergence to the unit operator of L] s not worse than

of L.

Proof. By and . O
We make

REMARK 3. Let my,....m e N:m; <mo < ...<m,,0< <1, fe.

Then ¢ (my) > ¢ (m2) > ... > ¢ (m,), ¢ as in (88]).
Therefore

(96) w1 (f7 ¥ (ml)) > w (fa 1% (m2)) > ...z w (fa ‘2 (mr)) :
Assume further that mil_ﬁ >3,i=1,...,7. Then

1 o> 1 .
(mifﬁ,g)e(mi%”) - (m;fﬂ,Q)e(m{B*Q)

(97) > .. > (miﬁ_g):(mr 7

Let L,,, as above, i = 1,...,r, all of the same kind.
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We write

Ly, (Lmrfl ( ma ( mlf))) —f=
= L, (Lmrq ( ms (Lmy f) )) L, (Lmr 1 (ngf)> +
+ me' (Lm,ﬂ,1 ( ma2 )) Lmr (Lmr 1\ m3f)) +
(98)
+ L, (Liny—y (L ) = Liny (Lny—y (- Lo, ) +
+ Lo, (L, f) = Lin, f + Ln, f — f =
= L, (Lmrﬂ (e mz)) (L f — L, (Lmrfl (Lms)) (Lo f = )+
+ L, (L, (--Liny)) (Lng f — )AL, (L, f — f) + Lin,. f — 1.

Hence by the triangle inequality property of |||, we get

[ Zom, (Lm,—y (-Lomy (L, £))) = £l <

<Ly (Lng s (oo Loma)) (L =) oHl Ly (Lo (- Limg ) (Lo f=£)| o+
+ Loy (Lony s (L)) (Lms f = F)l| o +
+ [ Loy (Lony o f = )|l + I1m, f = fll

(repeatedly applying )
SN f = flloo + I Lmaf = flloo + 1 Lms f = flloo + -4

(99) [ Loy f = Fllo + 1L f = Flloo = D 1Lmif = fllo
i=1

That is, we proved

(100) (L, (Lamyy oLy (Ena 1)) = £l ZHLmJ flloo- O

We give

THEOREM 14. Let f € Q; N, my,mo,...mp € N:mj <ms < ...<m,, 0<
B<lym!™P >3 i=1,..,r,z €Y, and let (Lm,, ..., Lm,) as (Amy, - Am,)
or (Bmy,..ey Bm,) or (Cpyy ooy Cin) 07 (Dinyy ooy D, ) . Then

‘Lmr (Lm'rfl (oL, (L m1f)))( ) — f(w)‘ <
< HLmr (Lmrﬂ ( m2 ( m1f ) - f“oo

=1
d , [Ei
<cN ; wi (f, ¢ (ms)) + ﬁ(mrﬁ_Q)e(mgfﬁ_zf
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(101) < ren |wi (f e (ma)) + M
Va(mt P a)elm " 2)

Clearly, we notice that the speed of convergence to the unit operator of the
multiply iterated operator is not worse than the speed of Ly, .

Proof. Using , , and , . O

We continue with

THEOREM 15. Let all as in Theorem and r € N. Here K,, is as in .
Then

(102) [ALf = flloo S T ARf = flloo < 7K.
Proof. By and . O

4. COMPLEX MULTIVARIATE NEURAL NETWORK APPROXIMATIONS
We make

n

REMARK 4. Let Y = [] [a;,b] or RN, and f : Y — C with real and
i=1
imaginary parts fi, fo: f = f1 +ifs, i = v/—1. Clearly f is continuous iff f;
and fo are continuous.
Given that fi, fo € C"™(Y), m € N, it holds

(103) fa (CC) = fl,oz (x) =+ if?,a (x) ,

where « indicates a partial derivative of any order and arrangement.
We denote by Cp (RN , C) the space of continuous and bounded functions

f:RN — C. Clearly f is bounded, iff both fi, fo are bounded from R into
R, where f = f1 +ifs.

Here L,, is any of A,, By,,Cy, Dy, n € N.

We define

(104) L, (f,x) :== L, (fi1,x) +iL, (f2,x2), Vx €Y.

We observe that

(105) |Ln (fs2) — [ (2)] < |Ln (f1,2) — f1(2)| + |Ln (f2, 2) — f2 (2)]

and

(106) ILn (f) = flloo <N Ln (f1) = fill oo + 1 Ln (f2) = follw- O
We present

THEOREM 16. Let f € C (Y, C) which is bounded, f = f1 +if2, 0 < B <1,
nNeN:n" B >3 zecY. Then
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[Ln (f,2) = f (2)] <

(107) < ey |wr (f1,0 (1) + w1 (far 0 (na)) + —Wileetloloc) _f o

V(-8 —2)e(772)
(108) Lo (f) = flloo < €
Proof. Use of . U

In the next we discuss high order of complex approximation by using the
smoothness of f.

We give
THEOREM 17. Let f : ﬁ [a;,bi]] — C, such that f = fi1 + ifs. Assume
i=1
f17f2 € Cm(H [a’iabi])a 0 < /8 < 17 nvmaN € N7 nl_'B > 37
i=1

x € (Zﬁ [ai,bi]). Then

=1

i)

m N
(109)  |An(fo2)—f@) =Y | X {ﬁ“ An<H<-—xi>“i,x> <
=1\ |a|=j v:1ozi! i=1

< (4.019)V - {% (winﬁlx (fl,a, 7716) + Wil (fz,m n%)) +

n <ba| 7 (e ll5s, 4 f2,al 22, )Nm> 1
7 (>
m! \/E(nlfﬁ—Q)e(nl_[aiQ)

i)
(110)

Ay (f,x) — f(2)] < (4.019)Y
{ m ( |f1a<m)l+|f2a> <ﬁ b a, ) : D
J’Zl lazj( J[V[ a;! =1 ' zﬁ(nl—a_g)e("lfﬁﬂ)z’

N™ max max 1
+m!nm5 (W flaynﬁ)_‘_wlm (fQ,aam))

N (b all 7 (11,0 1225, | fo, 2%, )Nm) 1
2 9
m! ﬁ(n1*3—2)e(nliﬁ_2)
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iii)
(111)

145 (f) = fllo < (4.019) -

m
: fl,a<x)||m+||f2,a<x>m) [1_ +< T (b — a,> 1 D
{Jz::l <|§::]( lj_\][ a;! n ’Ll;ll ( “ ) Qﬁ(nlfg_Q)e(nl_[afZ)Q
i=1
o (s (frar ) + ol (for )

lIb—allZ% (I1f1.all S 2.0 2 ) N ™ 1
+ m! 1-8 2 bl
ﬁ(n1—572)e(" 72)

i) Assume fo (x9) =0, for all a: |a| =1,...,m; xg € (Hi]il [ai,biD. Then

(112) |An (f.z0) — f (z0)] < (4.019)"

N™ max 1 max 1
{m!nmﬁ (wl,m (fLCY? niﬁ) + Wim (fQ,OH ﬁ)) +

(nb—an:z(fl,anl;;émnfmga;;)Nm) 1
I 2
m! \/7?(7’1,176—2)6(’”176_2) )

notice in the last the extremely high rate of convergence at n~8(m+1).

Proof. By Theorem [§ and Remark O
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