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Abstract. We provide a tighter than before convergence analysis for the two-
step Newton method of order four using recurrent functions. Numerical examples
are also provided in this study.
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1. INTRODUCTION

In this study, we are concerned with the problem of approximating a locally
unique solution x? of equation

(1.1) F(x) = 0,

where, F is Fréchet-differentiable operator defined on a convex subset D of a
Banach space X with values in a Banach space Y.

Many problems in computational mathematics can be brought in the form
(1.1). The solutions of these equations are rarely found in closed form. There-
fore most solution methods for these equations are iterative. Newton’s method

(1.2) xn+1 = xn −F ′(xn)−1F(xn) (n ≥ 0), (x0 ∈ D)

is undoubtedly the most popular method for generating a sequence {xn} con-
verging quadratically to x? [5, 13, 15]. Two-step Newton method (TSNM)

yn = xn −F ′(xn)−1F(xn) (n ≥ 0), (x0 ∈ D),
xn+1 = yn −F ′(yn)−1F(yn),

(1.3)

generates a converging sequence {xn} to x? with order four [5, 9]. The following
conditions have been used to show the semilocal convergence for the Newton’s
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method (1.2) and consequently the semilocal convergence of (TSNM) [5, 13,
15, 17] (CK):

F ′(x0)−1 ∈ L(Y,X ) for some x0 ∈ D;∥∥F ′(x0)−1F(x0)
∥∥ ≤ ν∥∥F ′(x0)−1[F ′(x)−F ′(y)
]∥∥ ≤ L ‖x− y‖ for all x, y ∈ D;
hK = Lη ≤ 1

2(1.4)

and

U(x0, λ) =
{
x ∈ X

∣∣ ‖x− x0‖ ≤ λ
}
⊆ D,

for specified λ ≥ 0.
Note that (1.4) is the, famous for its simplicity and clarity, Kantorovich

sufficient convergence hypothesis for the Newton’s method (1.2). A current
survey on Newton-type methods can be found in [5] and the references therein
(see also [1–4] and [6–17]). We have shown [5] the quadratic convergence of
the Newton’s method (1.2) using the set of conditions (CAH)

F ′(x0)−1 ∈ L(Y,X ) for some x0 ∈ D;∥∥F ′(x0)−1F(x0)
∥∥ ≤ η∥∥F ′(x0)−1[F ′(x)−F ′(x0)
]∥∥ ≤ L0 ‖x− x0‖ for all x ∈ D;∥∥F ′(x0)−1[F ′(x)−F ′(y)
]∥∥ ≤ L ‖x− y‖ for all x, y ∈ D;

hAH = Lη ≤ 1
2(1.5)

and

U(x0, λ0) ⊆ D,
for some specified λ0 ≥ 0, where

L = 1
8

(
L+ 4L0 +

√
L2 + 8L0L

)
.(1.6)

Note that
(1.7) L0 ≤ L
holds in general, and L/L0 can be arbitrarily large [4, 5]. Moreover, the L0
Center-Lipschitz is not an additional condition, since L0 is a special case of L.
Furthermore, we have by (1.4)-(1.7)
(1.8) hK ≤ 1

2 =⇒ hAH ≤ 1
2

but not necessarily vice versa unless if L0 = L. The error analysis under (1.5)
is also tighter than (1.4). Hence, the applicability of Newton’s method (1.2)
has been extended.

In this study, we provide the sufficient convergence conditions for (TSNM)
corresponding to (1.4). The paper is organized as follows: §2 contains the
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semilocal convergence analysis for (TSNM), whereas the numerical examples
are given in §3.

2. SEMILOCAL CONVERGENCE ANALYSIS FOR (TSNM)

We need the following result on majorizing sequence for (TSNM).

Lemma 1. Let L0, L, η be constants. Assume: there exist parameters α
and φ such that

Lη
2(1−L0η) ≤ α,(2.1)
L1η

2(1−L2η) ≤ φ ≤ φ0(2.2)

and

η ≤ η0(2.3)
where,

L1 = α2 L, L2 = (1 + α)L0,(2.4)
φ1 = 4L0α

2(L0+L2)α−L+
√

[2(L0+L)α−L]2+8L0Lα
,(2.5)

φ2 = 2L1
L1+
√
L2

1+8L1L2
, φ3 = 2α[1−(L0+L2)η]

Lη ,(2.6)

φ0 = min {φ1, φ2, φ3} ,(2.7)
η1 = 2

L1+2L2(1+φ) , η2 = 1
L0+L2

,(2.8)
η0 = min {η1, η2} .(2.9)

Then, sequences {sn}, {tn} generated by

(2.10)
t0 = 0, s0 = η, tn+1 = sn + L(sn−tn)2

2(1−L0sn) ,

sn+1 = tn+1 + L(tn+1−sn)2

2(1−L0tn+1) ,

are non-decreasing, bounded from above by

(2.11) t?? =
(

1+α
1−φ

)
η,

and converge to their common least upper bound t? ∈ [0, t??]. Moreover, the
following estimates holds

0 ≤ tn+1 − sn ≤ α(sn − tn),(2.12)

and

0 ≤ sn+1 − tn+1≤ φ(sn − tn).(2.13)

Proof. We shall show using induction on k:

0 ≤ L(sk−tk)
2(1−L0sk) ≤ α,(2.14)
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and

0 ≤ L1(sk−tk)
2(1−L0tk+1)≤ φ.(2.15)

Note that estimates (2.12) and (2.13) will then follow from (2.14) and (2.15),
respectively. Estimates (2.14) and (2.15) hold by the left hand side hypotheses
in (2.1) and (2.2), respectively. It follows from (2.10), (2.14) and (2.15) that
estimates (2.12) and (2.13) hold for n = 0. Let us assume estimates (2.14) and
(2.15) hold for all k ≤ n. It then follows that estimates (2.12) and (2.13) hold
for n = k. We then have:

0 ≤ sk − tk ≤ φ(sk−1 − tk−1) ≤ φ · φ(sk−2 − tk−2) ≤ · · · ≤ φkη,(2.16)
0 ≤ tk+1 − sk ≤ α(sk − tk) ≤ αφkη,(2.17)

and

tk+1 ≤ sk + αφkη ≤ tk + αφkη + φkη

≤ sk−1 + αφk−1η + αφkη + φkη

≤ tk−1 + φk−1η + αφk−1η + αφkη + φkη

= tk−1 + (φk−1 + φk)η + α(φk−1 + φk)η ≤ · · ·
≤ s0 + α(η + φη + · · ·+ φkη) + α(φη + · · ·+ φkη)
= (1 + α)(1 + φ+ · · ·+ φkη) ≤ t??.(2.18)

In view of (2.16) and (2.18), estimate (2.14) certainly holds if

0 ≤ Lφkη

2[1−L2(1+φ+···+φk−1)η−L0tk−1η] ≤ α,(2.19)

or

Lφkη + 2αL2(1 + φ+ · · ·+ φk−1)η − 2α+ 2L0αt
k−1η ≤ 0.(2.20)

Estimate (2.20) motivates us to introduce functions fk on [0, 1) by

(2.21) fk(t) = Lηtk + 2αL2(1 + t+ · · ·+ tk−1)η + 2L0αt
k−1η − 2α.

We need a relationship between two consecutive functions fk:

fk+1(t) = Ltk+1η + +2αL0t
kη + 2αL2(1 + t+ · · ·+ tk)η − 2α− Ltkη

− 2αL2(1 + t+ · · ·+ tk−1)η − 2L0αt
k−1η + 2α+ fk(t)

= fk(t) + Ltk+1η − Ltkη + 2αL2t
kη + 2L0αt

kη − 2L0αt
k−1η

= fk(t) + g(t)tk−1η,(2.22)

where

g(t) = Lt2 + [2α(L2 + L0)− L] t− 2L0α.(2.23)
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Using (2.21), we see that (2.20) holds
if fk(φ) ≤ 0(2.24)
or f1(φ) ≤ 0,(2.25)

since, g(φ) ≤ 0 and fk+1(φ) = fk(φ) + g(φ)φkη ≤ fk(φ)(2.26)
where φ is chosen as in the right hand side inequality of (2.1). But (2.23) also
holds by (2.1). Moreover, define function f∞ on [0, 1) by

f∞(t) = lim
k→∞

fk(t).(2.27)

Then, we have by (2.24)

f∞(φ) ≤ 0.
Hence, (2.12) and (2.14) hold for all k. Similarly, (2.15) holds if

L1φ
kη ≤ 2φ

[
1− L2(1 + φ+ · · ·+ φk)η

]
(2.28)

or

L1φ
kη + 2φL2(1 + φ+ · · ·+ φk)η − 2φ ≤ 0.(2.29)

As in (2.21) we define functions hk on [0, 1) by
(2.30) hk(t) = L1t

kη + 2tL2(1 + t+ · · ·+ tk)η − 2φ.
We need a relationship between two consecutive functions hk:

hk+1(t) = L1t
k+1η + 2tL2(1 + t+ · · ·+ tk+1)η − 2φ− L1t

kη−

− 2tL2(1 + t+ · · ·+ tk)η + 2φ+ hk(t)
= hk(t) + L1t

k+1η − L1t
kη + 2L2t

k+2η

= hk(t) + g1(t)tkη(2.31)

where

g1(t) = 2L2t
2 + L1t− L1.(2.32)

In view of (2.30), estimate (2.29) holds if
(2.33) if hk(φ) ≤ 0 or h1(φ) ≤ 0

since, g1(φ) ≤ 0 and hk+1(φ) = hk(φ) + g1(φ)φkη ≤ hk(φ)(2.34)
where φ is chosen as in the right hand side of (2.2). Note now that (2.33)
holds by (2.3). Furthermore, define functions h∞ on [0, 1) by
(2.35) h∞(t) = lim

k→∞
hk(t).

We then have
(2.36) h∞(φ) ≤ 0.
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That completes the induction for (2.13) and (2.15). Finally, in view of (2.12),
(2.13) and (2.18), sequences {tn}, {sn} converge to t?. That completes the
proof of the Lemma. �

We need an Ostrowski-type relationship between iterates {xn} and {yn}
[5, 14].

Lemma 2. Let us assume iterates {xn} and {yn} in (TSNM) are well defined
for all n ≥ 0. Then, the following identities hold:

F(xn+1) =
∫ 1

0

[
F ′(yn + θ(xn+1 − yn))−F ′(yn)

]
(xn+1 − yn)dθ,(2.37)

and

F(yn) =
∫ 1

0

[
F ′(xn + θ(yn − xn))−F ′(xn)

]
(yn − xn)dθ.(2.38)

Proof. Identity (2.37) follows from the Taylor’s theorem and the first itera-
tion in (TSNM), whereas (2.38) follows from Taylor’s theorem and the second
iteration in (TSNM). That completes the proof of the Lemma. �

We can show the following semilocal convergence result for (TSNM).

Lemma 3. Let F : D ⊂ X → Y be Fréchet-differentiable operator. Assume:
there exist x0 ∈ D, L0 > 0, L > 0 and η ≥ 0 such that for all x, y ∈ D:

F ′(x0)−1 ∈ L(Y,X ),(2.39) ∥∥F ′ (x0)−1F(x0)
∥∥ ≤ η,(2.40) ∥∥F ′ (x0)−1 (F ′(x)−F ′(x0)
)∥∥ ≤ L0 ‖x− x0‖ ,(2.41) ∥∥F ′ (x0)−1 (F ′(x)−F ′(y)
)∥∥ ≤ L ‖x− y‖ ,(2.42)

U(x0, t
?) ⊆ D;(2.43)

hypotheses of Lemma 2.1 hold, where t? is given in Lemma 2.1. Then, se-
quences {xn} and {yn} generated by (TSNM) are well defined, remain in
U(x0, t

?) for all n ≥ 0 and converge to a solution x? ∈ U(x0, t
?) of equa-

tion F(x) = 0. Moreover, the following estimates hold
‖yn − xn‖ ≤ sn − tn,(2.44)
‖xn+1 − yn‖ ≤ tn+1 − sn,(2.45)
‖xn+1 − xn‖ ≤ tn+1 − tn,(2.46)
‖yn+1 − yn‖ ≤ sn+1 − sn,(2.47)
‖xn − x?‖ ≤ t? − tn,(2.48)
‖yn − x?‖ ≤ t? − sn.(2.49)

Furthermore, if there exists R ≥ t? such that
U(x0, R) ⊆ D(2.50)
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and

L0(t? +R) < 2,(2.51)

then, x? is the only solution of F(x) = 0 in U(x0, R)

Proof. We shall show using induction on k that (TSNM) is well defined, the
iterates remain in U(x0, t

?) for all n ≥ 0 and estimates (2.44) and (2.45) hold
for all n ≥ 0. Iterate y0 is well defined by the first equation in (TSNM) for
n = 0 and (2.39). We also have by (2.6) and (2.40)

‖y0 − x0‖ =
∥∥∥F ′(x0)−1F(x0)

∥∥∥ ≤ η = s0 = s0 − t0 ≤ t?.

That is (2.44) holds for n = 0 and y0 ∈ U(x0, t
?). Using (TSNM) for n = 0,

we see that x1 is well defined. Let w ∈ U(x0, t
?). Then, we have by Lemma

2.1 and (2.41):

(2.52)
∥∥F ′ (x0)−1 [F ′(w)−F ′(x0)

]∥∥ ≤ L0 ‖w − x0‖ ≤ L0t
? < 1.

It follows from (2.52) and the Banach lemma on invertible operators [5, 13, 15]
that F ′ (w)−1 exists and∥∥F ′ (w)−1F ′(x0)

∥∥ ≤ 1
1−L0‖w−x0‖ .(2.53)

In particular, for x1 ∈ U(x0, t
?), we have∥∥F ′ (x1)−1F ′(x0)
∥∥ ≤ 1

1−L0‖x1−x0‖ ≤
1

1−L0(t1−t0) = 1
1−L0t1

.(2.54)

Moreover, in view of (2.38) for n = 0, (TSNM), (2.6) and (2.40)-(2.42), we get

‖x1 − y0‖ =

(2.55)

=
∥∥∥∥∫ 1

0

[
F ′(y0)−1F ′(x0)

]
F ′(x0)−1 [F ′(x0+θ(y0 − x0))−F ′(x0)

]
dθ(y0 − x0)

∥∥∥∥
≤ L0

1−L0‖y0−x0‖

∫ 1

0
θ‖y0 − x0‖2dθ

= L0
2(1−L0‖y0−x0‖)‖y0 − x0‖2

≤ L0
2(1−L0s0)(s0 − t0)2 = t1 − s0,

which shows (2.45) for n = 0. We also have

‖x1 − x0‖ ≤ ‖x1 − y0‖+ ‖y0 − x0‖ ≤ t1 − s0 + s0 − t0 = t1 − t0 ≤ t?,

which implies (2.46) holds for n = 0 and x1 ∈ U(x0, t
?).
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Using (TSNM), (2.6), (2.37) (for n = 0) and (2.54), we get

‖y1 − x1‖ =
∥∥∥[F ′(x1)−1F ′(x0)

] [
F ′(x0)−1F(x1)

]∥∥∥
≤
∥∥∥F ′(x1)−1F ′(x0)

∥∥∥ ∥∥∥F ′(x0)−1F(x1)
∥∥∥

≤ 1
1−L0t1

∥∥∥∥∫ 1

0
F ′(x0)−1 [F ′(y0 + θ(x1 − y0))−F ′(y0)

]
dθ(x1 − y0)

∥∥∥∥
≤ L0

1−L0t1

∫ 1

0
θ‖x1 − y0‖dθ‖x1 − y0‖

≤ L
1−L0t1

1
2(t1 − s0)(t1 − s0) = s1 − t1,

which implies (2.44) for n = 1. We then have:

‖y1 − y0‖ ≤ ‖y1 − x1‖+ ‖x1 − y0‖ ≤ s1 − t1 + t1 − s0 = s1 − s0,

‖y1 − x0‖ ≤ ‖y1 − y0‖+ ‖y0 − x0‖ ≤ s1 − s0 + s0 − t0 = s1 ≤ t?,

which imply (2.47) for n = 0 and y1 ∈ U(x0, t
?). Let us now assume (2.44)-

(2.47), yn, xk ∈ U(x0, t
?) for all n ≤ k. Using (TSNM), (2.6), (2.37), (2.38),

(2.42), (2.53) and the induction hypotheses, we have in turn:

‖xk+1 − x0‖ ≤ ‖xk+1 − xk‖+ ‖xk − xk−1‖+ · · ·+ ‖x1 − x0‖
≤ tk+1 − tk + tk − tk−1 + · · ·+ t1 − t0 = tk+1 ≤ t?,(2.56)

‖yk − x0‖ ≤ ‖yk − xk‖+ ‖xk − x0‖(2.57)
≤ sk − tk + tk − t0
= sk ≤ t?

‖yk+1 − xk+1‖ =

(2.58)

=
∥∥∥[F ′(xk+1)−1F ′(x0)

][
F ′(x0)−1F(xk+1)

]∥∥∥
≤
∥∥∥F ′(xk+1)−1F ′(x0)

∥∥∥ ∥∥∥F ′(x0)−1F(xk+1)
∥∥∥

≤ 1
1−L0‖xk+1−x0‖

∫ 1

0

∥∥F ′(x0)−1 [F ′(yk+θ(xk+1 − yk))−F ′(yk)
]
dθ(xk+1−yk)

∥∥
≤ L

1−L0tk+1

∫ 1

0
θ‖xk+1 − yk‖2dθ

≤ L
1−L0tk+1

1
2(tk+1 − sk)2

= sk+1 − tk+1,

‖xk+2 − yk+1‖ =
∥∥∥[F ′(yk+1)−1F ′(x0)

][
F ′(x0)−1F(yk+1)

]∥∥∥ ≤(2.59)
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≤ 1
1−L0sk+1

∫ 1

0

∥∥F ′(x0)−1[F ′(xk+1+θ(yk+1−xk+1))−F ′(xk+1)
]
dθ(yk+1−xk+1)

∥∥
≤ L

1−L0sk+1

∫ 1

0
θ‖yk+1 − xk+1‖2dθ

≤ L
2(1−L0sk+1)(sk+1 − tk+1)2 = tk+2 − sk+1,

‖yk+2 − yk+1‖ ≤ ‖yk+2 − xk+2‖+ ‖xk+2 − yk+1‖
≤ sk+2 − tk+2 + tk+2 − sk+1 = sk+2 − sk+1,(2.60)

‖xk+2 − xk+1‖ ≤ ‖xk+2 − yk+1‖+ ‖yk+1 − xk+1‖
≤ tk+2 − sk+1 + sk+1 − tk+1 = tk+2 − tk+1(2.61)

which show (2.44)-(2.47) hold for all n ≥ 0. Estimates (2.48) and (2.49) follow
from (2.46) and (2.47), respectively by using standard majorization technique
[5, 13, 15]. It follows from Lemma 2.1 and (2.44)-(2.48) that (TSNM) is
Cauchy in a Banach space X and as such it converges to some x? ∈ U(x0, t

?)
(since U(x0, t

?) is a closed set). Moreover, we have by (2.58)∥∥F ′(x0)−1F(xk+1)
∥∥ ≤ L

2 ‖xk+1 − yk‖‖xk+1 − yk‖ → 0, as k →∞.(2.62)

That is F(x?) = 0. Finally to show uniqueness, let y? ∈ U(x0, R) be a solution
of equation F(x) = 0. Let us define linear operator M by

(2.63) M =
∫ 1

0
F ′(y? + θ(x? − y?))dθ.

Then using (2.41), (2.50) and (2.51), we get in turn

∥∥F ′(x0)
[
M −F ′(x0)

]∥∥ ≤ L0

∫ 1

0
‖y? + θ(x? − y?)− x0‖dθ

≤ L0

∫ 1

0
[(1− θ)‖y? − x0‖+ θ‖x? − x0‖] dθ

≤ L0
2 (R+ t?) < 1.(2.64)

It follows from (2.60) and the Banach Lemma on invertible operators that
M−1 exists. Then, in view of the identity

(2.65) 0 = F(x?)−F(y?) = M(x? − y?),

we conclude that x? = y?. That completes the proof of the Theorem. �

Remark 4. 1) Limit point t? can be replaced by t??, given in closed form
by (2.7), in hypotheses (2.40) and (2.48).

2) The verification of conditions (2.1)-(2.3) require simple algebra (see also
Example 3.1).
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3) If L0 = L, then scalar sequences {sn}, {tn} given by (2.6) reduce essen-
tially to the ones used in [9]. In particular, we have in this case

(2.66)
t0 = 0, s0 = η, tn+1 = sn + L(sn−tn)2

2(1−Lsn) ,

sn+1 = tn+1 + L(tn+1−sn)2

2(1−Ltn+1)

If L0 < L iteration (2.6) is tighter than (2.62). Moreover, in view of the proof
of the Theorem 2.3, we note that sequence

(2.67)
t0 = 0, s0 = η, tn+1 = sn + L?(sn−tn)2

2(1−L0sn) ,

sn+1 = tn+1 + L?(tn+1−sn)2

2(1−L0tn+1)
,

is also majorizing for (TSNM), where

L? =
{
L0, if n = 0
L, if n > 0.

In case L0 < L, (2.26) is even a tighter majorizing sequence than (2.62).
Furthermore, L,L1 can be replaced by L0, L

?
1 = α2L0 at the left hand sides of

(2.1) and (2.2), respectively.
4) If α = 0, define L1 = L, then it is simple algebra to show that conditions

of Lemma 2.1 reduce to (1.5). Moreover, if L0 = L, these conditions reduce to
(1.4). That is we have Newton’s method (1.2) and iteration (2.6) reduces to

(2.68) t0 = 0, t1 = η, tn+2 = tn+1 + L(tn+1−tn)2

2(1−L0tn+1) .

In the case of Newton’s method for L0 = L, we have the well-known Kan-
torovich majorizing sequence.

(2.69) ν0 = 0, ν1 = η, νn+2 = νn+1 + L(νn+1−νn)2

2(1−L0νn+1) .

Note that if L0 < L, {tn} is a tighter majorizing sequence than {νn} for the
Newton’s method [5, 13, 15]. �

3. NUMERICAL EXAMPLES

Let X = Y = R2 be equipped with the max-norm, x0 = (1, 1)T , D =
U(x0, 1− p), p ∈ [0, 1) and define F on D by

(3.1) F(x) =
(
ξ3

1 − p, ξ3
2 − p

)T
, x = (ξ1, ξ2)T .

Using (2.35)-(2.37), we get

η = 1−p
3 , L0 = 3− p and L = 2(2− p) > L0.

Let p = 0.7. Then, we get

η = 0.1, L0 = 2.3 and L = 2.6.
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The Newton-Kantorovich hypothesis (1.4) is satisfied, since
2
3(1− p)(2− p) = 0.26 < 1 for all p ∈ [0, 1/2).

Using Lemma 2.1, for α = 0.17 and φ = 0.0052, we get
L1 = 0.07514, L2 = 2.691 φ = 0.756703694,
φ2 = 0.111383518, φ3 = 0.666923077, φ0 = φ2

η1 = 0.364622409, η2 = 0.200360649, η0 = η2,

Lη/[2(1− L0η)] = 0.168831169 and L1η/[2(1− L2η)] = 0.005140238.

Hence, the hypotheses of Lemma 2.1 are satisfied. Moreover, we have by (2.11)
that

t?? = 0.11761158 < 1− p = 0.3.
Furthermore, using (2.48) (for t? replaced by t??), we get

t?? < R < 2
L0
− t?? = 0.751953637.

So, we can choose R = 0.3. Hence, hypotheses of Theorem 2.3 hold, and
(TSNM) converges to

x? =
(

3√0.7, 3√0.7
)T

= (0.887904002, 0.887904002)T .

We compare (2.6) to (2.62).
n sn−tn tn+1−sn sn−tn tn+1−sn sn−tn tn+1−sn

0 1.00 · 10−01 1.69 · 10−02 1.00 · 10−01 1.76 · 10−02 1.00 · 10−01 1.49 · 10−02

1 5.07 · 10−04 4.57 · 10−07 5.78 · 10−04 6.27 · 10−07 3.49 · 10−04 2.15 · 10−07

2 3.73 · 10−13 2.47 · 10−25 5.37 · 10−13 1.02 · 10−24 8.19 · 10−14 1.19 · 10−26

3 1.09 · 10−49 2.11 · 10−98 1.94 · 10−48 1.09 · 10−96 2.49 · 10−52 1.09 · 10−103

4 7.91 · 10−196 1.11 · 10−390 9.44 · 10−191 1.67 · 10−380 2.11 · 10−206 7.88 · 10−412

5 2.21 · 10−780 8.70 · 10−1560 5.24 · 10−760 5.15 · 10−1519 1.09 · 10−822 2.13 · 10−1644

Table 1. Comparison among (2.6), (2.66) and (2.67)

As expected from the theoretical results iteration (2.6) is faster than (2.66).
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