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THE EIGENSTRUCTURE
OF SOME POSITIVE LINEAR OPERATORS
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Abstract. Of concern is the study of the eigenstructure of some classes of pos-
itive linear operators satisfying particular conditions. As a consequence, some
results concerning the asymptotic behaviour as t → +∞ of particular strongly
continuous semigroups (T (t))t≥0 expressed in terms of iterates of the operators
under consideration are obtained as well. All the analysis carried out herein
turns out to be quite general and includes some applications to concrete cases
of interest, related to the classical Beta, Stancu and Bernstein operators.
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1. INTRODUCTION AND NOTATION

The present paper is devoted to the study of the eigenstructure of some
classes of positive linear operators Ln acting on the Banach lattice C([0, 1]) of
all real-valued continuous functions on [0, 1], endowed with the uniform norm
‖ · ‖∞ and the usual order.

In order to pursue our main results, we adopt some assumptions over the
Ln’s. Some of them (see (3) and (4) at the beginning of Section 2) encircle
our analysis in a general scheme of investigation initiated by Altomare and
continued and developed originally and extensively, in different frameworks, by
his school, dealing with the strong interplay between positive linear operators
and strongly continuous semigroups: without attempting to be exhaustive in
this respect, we confine ourselves to citing [1]-[7], [9]-[11], [14], [15] and all the
references quoted therein.

Further conditions over the Ln’s, gathered together into three groups,
namely Case I, Case II and Case III, are needed to our purposes; as the
reader will quickly realize, such additional assumptions, far from being some-
what artificial, turn out to be shared by classical positive linear operators of
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continuous and discrete type, namely the Beta, the Stancu and the Bernstein
operators.

Indeed, the whole set of conditions provides a nice eigenstructure and, in
this sense, we confirm and expand what already addressed in [7, Remark 2.6].

The paper is organized as follows: in Section 2 we study the eigenstructure
of our operators, indicating the eigenvalues and the corresponding eigenpoly-
nomials by quite simple techniques, which should however be compared with
those employed in [8] and [11].

The same analysis is carried out with respect to the differential operator W
quoted in (2.1) and to the strongly continuous semigroup (T (t))t≥0 written as
limit of iterates of Ln as in (2.2).

In Section 3, proceeding along the lines illustrated in [7, Section 3] and
sketched, though inside a simpler context, in [6, Theorem 2.2], we focus our
attention upon the asymptotic behaviour of the semigroup (T (t))t≥0, namely
upon the limit lim

t→+∞
T (t)f (f ∈ C([0, 1])) and to its possible interplay with

the limits

(1.1) lim
n→+∞

lim
k→+∞

Lknf, lim
n→+∞

Lk(n)
n f,

(k(n))n≥1 being a sequence of positive integers satisfying k(n)/n → +∞ as
n → +∞ and Lkn denoting the iterate of Ln of order k (n, k ≥ 1). The limits
in (1.1) are involved in an overiteration procedure, introduced and developed
by the authors in [7] and which will be our leading mark in Section 3.

Occasionally, we also touch upon the convergence of the series
+∞∑
k=0

Lknf

for suitable functions f .
As a significant application, we recapture, as particular cases, some results

about the limits of the semigroups expressed in terms of iterates of the Beta,
Stancu and Bernstein operators.

The notation used throughout the paper are quite standard in approxima-
tion theory and needs no particular or preparatory indication.

Therefore we shall confine ourselves to list only the most important ones:
for any integer r ≥ 0 let us set er(x) := xr, x ∈ [0, 1].

In the sequel Π will denote the subalgebra of all polynomials on [0, 1]: more
specifically, we shall often deal with the space Πr of all polynomials on [0, 1]
of degree at most r = 0, 1, . . . If p ∈ Π, deg p is the degree of p. As usual,
if k ≥ 1 is an integer, Ck([0, 1]) is the vector space of all real-valued k-times
continuously differentiable functions on [0, 1]. Finally, if x is a real number,
then the integer part of x will be denoted by [x].

Other notation which are not encompassed above, shall be specified at each
occurrence.
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2. EIGENVALUES AND EIGENPOLYNOMIALS

Throughout this section we shall deal with positive linear operators Ln :
C([0, 1])→ C([0, 1]) (n ≥ 1) acting on the Banach space (C([0, 1]), ‖ · ‖∞) and
satisfying the following:

(1) For each n ≥ 1 and r ≥ 1 Lner is a polynomial of degree r with positive
leading coefficient, i.e., Lner = an,rer + . . . , with an,r ≥ 0; moreover
Lne0 = an,0e0 with an,0 > 0.

(2) The limit
lr := lim

n→+∞
(an,r)n, r ≥ 0,

exists and is finite.
(3) (Voronovskaja-type result) For any u ∈ C2([0, 1]) we have

(2.1) lim
n→+∞

n
(
Lnu− u

)
= Wu in C([0, 1]),

where explicitly Wu(x) := a(x)u′′(x)+ b(x)u′(x), a, b ∈ C([0, 1]), x ∈
[0, 1].

(4) For every f ∈ C([0, 1]) and t ≥ 0 the limit

(2.2) T (t)f := lim
n→+∞

L[nt]
n f

exists in C([0, 1]), and (T (t))t≥0 is a C0-semigroup on C([0, 1]) with
infinitesimal generator (A,D(A)) such that C2([0, 1]) ⊂ D(A) and
Au = Wu for any u ∈ C2([0, 1]).

From (1) it clearly follows that each Ln is bounded with ‖Ln‖ = ‖Lne0‖∞ =
an,0; moreover each Πr is invariant under Ln and consequently the same hap-
pens under W and the semigroup (T (t))t≥0 as well, due to (2.1), (2.2) and the
closedness of Πr itself. In particular We1 = b ∈ Π1 and We2 = 2a + 2be1,
whence a ∈ Π2.

As outlined in the introduction, besides these general assumptions we have
to impose some further conditions over the coefficients an,j , lj as well as
over the degree of the polynomials Lner, gathered together into three groups,
namely Case I, Case II and Case III.

Case I
(5) 1 = an,0 > an,1 > · · · > 0, n ≥ 1.
(6) 1 = l0 > l1 > · · · > 0.

Case II
(7) degLner = min{n, r}, n ≥ 1, r ≥ 0.
(8) 1 = an,0 > an,1 > · · · > an,r > 0, n ≥ r ≥ 0.
(9) 1 = l0 > l1 > · · · > 0.

Case III
(10) degLner = min{n, r}, n ≥ 1, r ≥ 0.
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(11) 1 = an,0 = an,1 > an,2 > · · · > an,r > 0, n ≥ r ≥ 0.
(12) 1 = l0 = l1 > l2 > · · · > 0.

Remark 2.1. (i) All the assumptions (1)-(6) are satisfied by the classical
Beta operators Bn, introduced by Lupaş in [13] and studied for instance, as
far as our investigation is concerned, in [4], [5] and [7]: in particular, in [5,
Example 3.1], the explicit expression of the coefficients an,r and of the limits
lr may be found.
In addition, the related differential operator W defined in (3) and its interplay
with a strongly continuous semigroup has been completely investigated in [4,
Theorem 2.10].
Note that each Bn maps Πr into itself for any r ≥ 0, hence Bn(Π) ⊂ Π, even
if its whole range R(Bn) is different from Π.
The classical Stancu operators Sn fulfill all the assumptions (1)-(4) and the
ones listed in Case II : we refer the reader, e.g., to [7, Section 4], where a
result about the related Voronovskaja-type formula and the existence of a
strongly continuous semigroup expressed in terms of iterates of the Sn’s has
been stated. For the reader’s convenience we recall that explicitly, for fixed
α ≥ 1/2 and β ≥ α+ 1/2, the n-th Stancu operator Sn is given by

Snf :=
n∑
i=0

bnif
(
i+α
n+β

)
for all f ∈ C([0, 1]), where bni(x) :=

(n
i

)
xi(1− x)n−i, x ∈ [0, 1].

Accordingly, it is not a difficult task to show that an,0 = 1 and

an,r = n(n−1)×···×(n−(r−1))
(n+β)r , n ≥ r ≥ 1, lr = e−

r(r+2β−1)
2 , r ≥ 0.

Finally, we remark how the last Case III is of particular interest since all
the conditions (10)-(12) enclosed herein, together with (1)-(4), hold true for
the Bernstein operators Bn. In this particular situation one easily computes
an,0 = 1 and

an,r = n(n−1)×···×(n−(r−1))
nr , n ≥ r ≥ 1, lr = e−

r(r−1)
2 , r ≥ 0.

For a rather complete analysis about the related Voronovskaja formula and
the existence of a strongly continuous semigroup expressed in terms of the
iterates of the Bn’s see, for instance, [1]-[3], [9], [10], [14] and [15].

(ii) Under the assumptions quoted in Cases II and III, each Ln maps con-
tinuous functions into polynomials in Πn; indeed, choose f ∈ C([0, 1]) and a
sequence (pr)r≥1 in Π such that lim

r→+∞
pr = f . For a fixed n ≥ 1 we get

Lnf = Ln( lim
r→+∞

pr) = lim
r→+∞

Lnpr,

which gives Lnf ∈ Πn since Πn is closed and Lnpr ∈ Πn for r large enough by
virtue of (7) or (10).
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(iii) In Case III the additional information Lne1 = e1 is available, too;
indeed, for any given n ≥ 1, by assumption (11) we already know that Lne1 =
e1 + αne0 for some αn ∈ R. On the other hand 0 ≤ e1 ≤ e0 and therefore
0 ≤ e1+αne0 ≤ e0 because obviously Lne0 = e0. Evaluating the last inequality
in x = 0 and x = 1 gives αn = 0, as desired.
In turn, according to (4), the condition Lne1 = e1 gives T (t)e1 = e1 for all
t ≥ 0 whence We1 ≡ 0, i.e., b ≡ 0 (see the discussion straight after (2.2)).
(iv) Incidentally observe that in any case Lne0 = e0 and therefore each Ln has
norm 1. �

Now we may establish our first result.

Theorem 2.2. Let n ≥ 1 and r ≥ 0 be fixed; in Cases II and III we further
assume n ≥ r. Then Ln : Πr → Πr has r + 1 eigenvalues
(2.3) an,0, an,1, . . . , an,r.

To each an,j there corresponds a monic eigenpolynomial pn,j with deg pn,j = j,
i.e., Lnpn,j = an,jpn,j , j = 0, . . . , r.

Proof. The assumptions over n and r guarantee that in any case Ln(Πr) ⊂
Πr so that on account of (1), (7) and (10) we may rightly write Ln : Πr → Πr;
with respect to the basis {e0, . . . , er} the matrix of Ln is upper triangular and
is given by

(2.4) Mn,r =


an,0 . . . . . .

0 an,1 . . .
... . . . ...
0 . . . an,r

 .
Clearly the corresponding eigenvalues are those indicated in (2.3). More-
over, they are distinct in Cases I and II on account of (5) and (8), and an
easy computation allows to determine uniquely the related eigenpolynomi-
als pn,j , j = 0, . . . , r. In Case III the eigenpolynomials corresponding to
the eigenvalues an,0 = an,1 = 1 are given respectively by pn,0 = e0 and
pn,1 = e1 by virtue of (iii) and (iv) in Remark 2.1, whereas the remaining
ones pn,j , j = 2, . . . , r may be found in the usual way. �

The following theorem is devoted to the analysis of the eigenstructure of
the differential operator W .

Theorem 2.3. The differential operator W : Π → Π defined in (2.1)
has eigenvalues log l0, log l1, . . . and corresponding monic eigenpolynomials
p0, p1,. . .with deg pj = j, i.e., Wpj = (log lj)pj , j = 0, 1, . . . In addition,
for any j we have
(2.5) lim

n→+∞
pn,j = pj uniformly on [0, 1],

pn,j being defined in the previous theorem.
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Proof. Since Π0 ⊂ Π1 ⊂ · · · ⊂ Π, it is enough to show that, for an
arbitrary but fixed r ≥ 0, the operator W : Πr → Πr has eigenvalues
log l0, log l1, . . . , log lr with monic eigenpolynomials p0, p1, . . . , pr (deg pj =
j) satisfying (2.5) for any j = 0, 1, . . . , r.

To this purpose, let us fix, once and for all, an integer r ≥ 0 and denote
by Ur the matrix of the operator W : Πr → Πr with respect to the basis
{e0, . . . , er}. Writing down (2.1) for e0, . . . , er and denoting by I the unit
matrix, we deduce a matricial version of the Voronovskaja formula, namely
(2.6) lim

n→+∞
n(Mn,r − I) = Ur coordinatewise,

which soon implies lim
n→+∞

Mn,r = I, i.e.,

(2.7) lim
n→+∞

an,j = 1, j = 0, 1, . . . , r

on account of (2.4). But then, recalling (2), we get

lj = lim
n→+∞

(
1 + (an,j − 1)

)n = e
lim
n→+∞

n(an,j − 1)
,

and consequently
(2.8) lim

n→+∞
n(an,j − 1) = log lj , j = 0, 1, . . . , r,

which, together with (2.4) and (2.6), allows to conclude that the matrix Ur is
upper triangular and is given by

(2.9) Ur =


log l0 . . . . . .

0 log l1 . . .
... . . . ...
0 . . . log lr

 .
Thus Ur (or equivalently W ) has log l0, log l1, . . . , log lr as its eigenvalues: they
are distinct in Cases I and II and to each of them there corresponds a unique
eigenpolynomial pj , j = 0, 1, . . . , r. In Case III we find log l0 = log l1 = 0
with corresponding eigenpolynomials p0 = e0 and p1 = e1 and a standard
computation allows to determine uniquely the remaining ones pj , j = 2, . . . , r.

In order to prove (2.5), for the above fixed r let n ≥ r. By Theorem 2.2 we
already know that
(2.10) n(Ln − I)pn,j = n(an,j − 1)pn,j , j = 0, 1, . . . , r,

which may be rephrased by saying that each pn,j is an eigenpolynomial of
n(Ln − I) corresponding to the eigenvalue n(an,j − 1).

For each j = 0, 1, . . . , r let pn,j = ej + xnj−1ej−1 + · · ·+ xn0e0. According to
(2.10) the unknowns xnj−1, . . . , x

n
0 may be uniquely determined by solving the

(r + 1)× (r + 1) system

(2.11)
(
n(Mn,r−I)−n(an,j−1)I

)
·(xn0 , . . . , xnj−1, 1, 0, . . . , 0)T = (0, . . . , 0)T ,
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which obviously reduces to a (j + 1)× (j + 1) system



n(an,0−an,j) . . . . . . . . . . . .
0 n(an,1−an,j) . . . . . . . . .

0 0 . . . . . . . . .
...

... . . . n(an,j−1−an,j)
...

0 0 . . . 0 0


·



xn0
...
...

xnj−1
1


=



0
...
...
0
0


.

(2.12)

On the other hand, if we consider an eigenpolynomial pj = ej +yj−1 + · · ·+
y0e0 of Ur, then the unknowns yj−1, . . . , y0 are the solution of the (r+1)×(r+1)
system

(2.13)
(
Ur − (log lj)I

)
· (y0, . . . , yj−1, 1, 0, . . . , 0)T = (0, . . . , 0)T ,

which obviously reduces to a (j + 1)× (j + 1) system



log l0−log lj . . . . . . . . . . . .
0 log l1−log lj . . . . . . . . .

0 0 . . . . . . . . .
...

... . . . log lj−1−log lj
...

0 0 . . . 0 0


·



y0
...
...

yj−1
1


=



0
...
...
0
0


.

(2.14)

From (2.6) and (2.8) we infer that the matrix of the coefficients of the system
(2.11) tends coordinatewise as n→ +∞ to the analogous matrix of the system
(2.13) and therefore the same happens for the matrices of the coefficients
in the systems (2.12) and (2.14), respectively. It immediately follows that

lim
n→+∞

xni = yi for any i = 0, . . . , j − 1 and consequently

(2.15) lim
n→+∞

pn,j = pj , uniformly on [0, 1], j = 0, 1, . . . , r ,

which concludes the proof. �

The next corollary deals with the eigenstructure of the strongly continuous
semigroup (T (t))t≥0 quoted in (2.2).

Corollary 2.4. For any t ≥ 0 T (t) : Π → Π has eigenvalues lt0, lt1, . . .
with the same eigenpolynomials p0, p1, . . . from Theorem 2.3.

Proof. Simply observe that, on account of Theorem 2.2, for any n ≥ 1, j ≥ 0
and t ≥ 0 one gets L[nt]

n pn,j = a
[nt]
n,j pn,j ; passing to the limit as n→ +∞ yields

(2.16) T (t)pj = ltjpj

by virtue of (2), (2.2), (2.5) and the boundedness of each Ln. �
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It seems useful to display the situation described so far about eigenpoly-
nomials in the following tables, where we adopt the same notation used in
Theorems 2.2 and 2.3.

Case I

(2.17)

p1,0 p1,1 p1,2 p1,3 . . .
p2,0 p2,1 p2,2 p2,3 . . .
p3,0 p3,1 p3,2 p3,3 . . .
p4,0 p4,1 p4,2 p4,3 . . .

...
...

...
...

...
↓ ↓ ↓ ↓ ↓ (n→ +∞)
p0 p1 p2 p3 . . .

Cases II and III

(2.18)

p1,0 p1,1
p2,0 p2,1 p2,2
p3,0 p3,1 p3,2 p3,3
p4,0 p4,1 p4,2 p4,3 p4,4

...
...

...
...

...
...

↓ ↓ ↓ ↓ ↓ ↓ (n→ +∞)
p0 p1 p2 p3 p4 . . .

3. ASYMPTOTIC BEHAVIOUR OF THE SEMIGROUP (T (t))t≥0
AND OVERITERATION

Let us open this section with the following two general results, which shall
be useful in the sequel, covering, perhaps, an interest on their own.

Proposition 3.1. Let T be an arbitrary bounded positive linear operator
on a Banach space (X, ‖ · ‖) and suppose that, for a given x ∈ X, there exists
Px := lim

k→+∞
T kx ∈ X. Then we have:

(i) P 2x = Px.
(ii) There exists P Tx ∈ X and TPx = Px = P Tx.

Proof. If k ≥ 1, then
(3.1) T kPx = T k

(
lim

j→+∞
T jx

)
= lim

j→+∞
T k+jx = Px,

which, for k = 1 and k → +∞, gives TPx = Px and P 2x = Px, respectively.
Lastly, Px = lim

k→+∞
T k+1x = lim

k→+∞
T k(Tx), i.e., P Tx exists in X and is

equal to Px. The proof is now complete. �

Proposition 3.2. Under the same assumptions and notation of Proposition
3.1, the following are equivalent:
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(a) The series
+∞∑
k=0

T kx is convergent in X.

(b) There exists y ∈ X with Py = 0 such that x = y − Ty.
(c) There exists z ∈ X such that Pz exists in X and x = z − Tz.

Proof. (a) =⇒ (b) : Let us set y =
+∞∑
k=0

T kx ∈ X; then for all j ≥ 1 one has

T jy =
+∞∑
k=0

T k+jx =
+∞∑
i=0

T ix−
j−1∑
i=0

T ix = y −
j−1∑
i=0

T ix,

and therefore lim
j→+∞

T jy = y − y = 0, i.e., Py = 0. Moreover, for any k ≥ 1

(3.2)
(
I − T

)(
I + T + · · ·+ T k

)
x =

(
I − T k+1)x,

and letting k → +∞ immediately gives y − Ty = x, since clearly
lim

k→+∞
T k+1x = 0.

Since (b) =⇒ (c) is obvious, let us pass to show that (c) =⇒ (a). To this
aim, replacing x in (3.2) with the z given in (c) soon yields

(3.3)
(
I + T + · · ·+ T k

)
x = z − T k+1z −→

k→+∞
z − Pz ∈ X,

so that the series
+∞∑
k=0

T kx is convergent, as desired. �

Remark 3.3. As a deeper insight, let us consider, as in (c), x = z − Tz
such that Pz exists in X. If we put y := z − Pz, then one readily gets
Py = Pz − P 2z = 0 and y − Ty = x as a direct application of Proposition
3.1. �

Now let us pass to the main objective of this section, i.e., the study of the
asymptotic behaviour of the semigroup (T (t))t≥0 by means of the overiteration
procedure involving limits in (1.1). To attain our main goals, we have to
assume that henceforth each Ln has a totally positive kernel in the sense of
Karlin, as described, in great details, in [12].

As pointed out in [5], we are dealing with a quite natural hypothesis, by no
means breaking the generality of our investigation, since commonly fulfilled in
concrete cases by most of the classical positive linear operators occurring in
approximation theory and, however, intimately connected to the issue about
the preservation of higher order convexity and Lipschitz classes: for a rather
complete analysis in this direction, we refer the reader to [12] and [5].

Throughout the remaining of this section the discussion will be split up into
two parts, the first concerning the Case I and the latter the Cases II and III.
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Case I
As a preparatory material, let us start by choosing p ∈ Π; if deg p = r, r ≥ 0,
then surely by Proposition 2.2 for every fixed n ≥ 1 the polynomial p may be
expanded as
(3.4) p = cn,0(p)pn,0 + cn,1(p)pn,1 + · · ·+ cn,r(p)pn,r,
where the coefficients cn,j(p), j = 0, 1, . . . , r, are uniquely determined and
cn,0(p) does not depend on r. Then, for each k ≥ 1, we easily compute

(3.5) Lknp = cn,0(p)e0 + cn,1(p)akn,1pn,1 + · · ·+ cn,r(p)akn,rpn,r ,
because Lnpn,j = an,jpn,j , j = 1, . . . , r due to Theorem 2.2, an,0 = 1 and
pn,0 = e0.

Note that cn,0 : Π → R is a linear functional; moreover, if p ≥ 0, then
Lknp ≥ 0 and letting k → +∞ in (3.5) yields cn,0(p) ≥ 0 since an,j < 1 for
every j = 1, . . . r by assumption.

On the other hand, taking p = e0 in (3.5) gives cn,0(e0) = 1.
Summing up, we have just shown that cn,0 : Π → R is a positive linear

functional on (Π, ‖ · ‖∞) with ‖cn,0‖ = 1.
The application of the classical Hahn-Banach Theorem allows to extend cn,0

to a norm-one functional on the whole space C([0, 1]); due to the density of
Π, such extension, still denoted by cn,0, is unique and positive, as well.

Now let us set Pn : C([0, 1])→ C([0, 1]) as
(3.6) Pnf = cn,0(f)e0 for every f ∈ C([0, 1]).
Of course Pn is a norm-one positive linear operator on C([0, 1]) such that

lim
k→+∞

Lknp = Pnp for all p ∈ Π and this, by a density argument, leads soon to

(3.7) lim
k→+∞

Lknf = Pnf for every f ∈ C([0, 1]).

Now we are in a position to state the following result.

Theorem 3.4. Under the above-mentioned assumptions and notation, there
exists lim

t→+∞
T (t)f := Sf for every f ∈ C([0, 1]); moreover

(3.8) lim
n→+∞

Pnf = Sf, lim
n→+∞

Lk(n)
n f = Sf

for every f ∈ C([0, 1]) and for every sequence of positive integers (k(n))n≥1
satisfying k(n)/n→ +∞ as n→ +∞.

Proof. The existence of the limit of the semigroup (T (t))t≥0 as t → +∞
follows from Theorem 2.2 in [6], indicating, in addition, that Sf is a constant
function. For the remainder of the proof simply apply Corollary 2.3 and
Theorem 2.2 in [7]. �

Remark 3.5. (i) If, in particular, the Ln’s are the Beta operators Bn (see
(i) in Remark (2.1)), then S is explicitly described in [7, Theorem 3.1].
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(ii) If for a given n ≥ 1 cn,0(p) = 0 in (3.5), then
+∞∑
k=0

Lknp = cn,1(p)
1−an,1

pn,1 + · · ·+ cn,r(p)
1−an,r

pn,r =
(
I − Ln

)−1
p,

where
(
I − Ln

)−1 : Π→ Π.
(iii) By using (3.5) an estimate of the speed of convergence in (3.7) for every

fixed n ≥ 1 as far as the polynomials are concerned may be obtained; indeed,
since 1 = an,0 > an,1 > · · · > 0, n ≥ 1, one has

‖Lknp− Pnp‖ ≤
(
|cn,1(p)| · ‖pn,1‖+ · · ·+ |cn,r(p)| · ‖pn,r‖

)
akn,1

for all k ≥ 1 and p ∈ Π. �

Actually, something more can be said still in the framework of Case I, as
stated in the two next propositions.

Proposition 3.6. For a fixed n ≥ 1 and p ∈ Π we have

(3.9) lim
k→+∞

Lknp = 0 ⇐⇒ p ∈ R(I − Ln),

R(I − Ln) denoting the range of I − Ln.

Proof. According to (3.5) and the subsequent discussion, if deg p = r, r ≥ 0,
then lim

k→+∞
Lknp = 0 if and only if cn,0(p) = 0 which, on account of (3.4), implies

p = cn,1(p)pn,1 + · · ·+ cn,r(p)pn,r,

i.e., p = (I − Ln)z where, by definition,

(3.10) z := cn,1(p)
1−an,1

pn,1 + · · ·+ cn,r(p)
1−an,r

pn,r.

�

Proposition 3.7. For a fixed n ≥ 1 and p ∈ Π we have

(3.11)
+∞∑
k=0

Lknp is convergent ⇐⇒ p ∈ R
(
(I − Ln)2).

Proof. By virtue of Proposition 3.2, the series
+∞∑
k=0

Lknp is convergent if and

only if p = y − Lny for some y ∈ Π such that lim
k→+∞

Lkny = 0, which, by
virtue of (3.9), equals to y = s − Lns for some s ∈ R(I − Ln). But then
p ∈ R

(
(I − Ln)2) and the proof is now fully performed. �

Now we have to consider the Cases II and III which will be treated simul-
taneously.
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Cases II and III
Also in these cases a result word-for-word identical to Theorem 3.4 (with Pnf
defined below in (3.15) or (3.16)) may be achieved. Therefore we do not
restate the assertion, passing soon to show the proof which runs similar, in
fact simpler.

Indeed, due to [6, Theorem 2.2], in both cases there exists

(3.12) lim
t→+∞

T (t)f := Sf for every f ∈ C([0, 1]),

Sf being a constant function in Case II (when l1 < 1, l2 < 1), a polynomial
in Π1 in Case III (when l2 < 1 and b ≡ 0; see (iii) in Remark 2.1).

Now consider f ∈ C([0, 1]) and n ≥ 1; on account of (ii) in Remark 2.1 we
already know that Ln ∈ Πn and therefore an expansion analogous to (3.4)

(3.13) Lnf = cn,0(f)pn,0 + cn,1(f)pn,1 + · · ·+ cn,n(f)pn,n

is just available; consequently, for any k ≥ 2, keeping in mind Theorem 2.2
one has

(3.14) Lknf = cn,0(f)ak−1
n,0 pn,0 + cn,1(f)ak−1

n,1 pn,1 + · · ·+ cn,n(f)ak−1
n,n pn,n

so that we may easily investigate the limit as k → +∞. More precisely, in
Case II we have

(3.15) Pnf := lim
k→+∞

Lknf = cn,0(f)e0

since an,0 = 1 and pn,0 = e0, whereas in Case III

(3.16) Pnf := lim
k→+∞

Lknf = cn,0(f)e0 + cn,1(f)e1

since now an,0 = an,1 = 1 and pn,0 = e0, pn,1 = e1.
Note that the limit Sf of the semigroup in (3.12) is invariant under each

Ln in both cases (simply recall (iii) in Remark 2.1); therefore, exactly as in
Case I, we are in a position to apply Corollary 2.3 and Theorem 2.2 in [7] and
hence

(3.17) lim
n→+∞

Pnf = Sf, lim
n→+∞

Lk(n)
n f = Sf

hold true for every f ∈ C([0, 1]) and for every sequence of positive integers
(k(n))n≥1 satisfying k(n)/n→ +∞ as n→ +∞.

Remark 3.8. We also point out that, if f ∈ C([0, 1]) and n ≥ 1, then from
(3.14) it easily follows that

+∞∑
k=0

Lknf is convergent ⇐⇒ Pnf = 0
(

= lim
k→+∞

Lknf

)
,

where Pnf is defined in (3.15) or (3.16), accordingly. �
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Remark 3.9. As already mentioned, the Stancu operators Sn fall within
Case II; an explicit expression of Sf in (3.12) and (3.17) in this particular case
may be found in [7, Formula (4.1) and Theorem 4.1].

An application of [7, Theorem 2.2] supplying a relationship analogous to
(3.17) for the Bernstein operators is indicated in [15, Theorem 2.3]. However
in this context, which corresponds to Case III, something more can be said
in general about Sf . Indeed, we already know that S : C([0, 1]) → Π1 is a
positive linear projection.

Furthermore, T (t)e0 = e0 and T (t)e1 = e1 for all t ≥ 0 (see (2.2) and (iii)
in Remark 2.1) so that Se0 = e0 and Se1 = e1 by (3.12).

For any given x ∈ [0, 1] let us set ηx(f) := Sf(x) for any f ∈ C([0, 1]).
Then ηx is a probability Radon measure with barycenter x; in particular,
η0 = δ0 and η1 = δ1, where δ0 and δ1 denote the Dirac measures at 0 and 1,
respectively.

Now, for an arbitrary f ∈ C([0, 1]), we may write down Sf = αe0 + βe1 for
suitable reals α and β which entails Sf(0) = α and Sf(1) = α+β; on the other
hand, Sf(0) = δ0(f) = f(0) and Sf(1) = δ1(f) = f(1). In conclusion, we get
α = f(0), β = f(1)−f(0) so that the projection S is uniquely determined by

Sf(x) = (1− x)f(0) + xf(1) (f ∈ C[0, 1]), x ∈ [0, 1]),

recapturing, in this way, a well-known result, scattered in the literature, about
the limit, as t→ +∞, of the semigroup (T (t))t≥0 expressed through iterates of
the classical Bernstein operators: we refer, for instance, to [3, Remark 3.11.1]
and [14, Theorem 3.10]. �
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[5] A. Attalienti and I. Raşa, Total Positivity: an application to positive linear operators
and to their limiting semigroup, Anal. Numér. Théor. Approx., 36 (2007), pp. 51–66.
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