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ON APPROXIMATING THE SOLUTIONS OF NONLINEAR
EQUATIONS BY A METHOD OF AITKEN-STEFFENSEN TYPE
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Abstract. This paper completes the results that are presented in [14]. Using
as a starting point the abstract method of the chord, in the mentioned paper
we have presented an iterative method of approximation for the solutions of an
equation. This method uses auxiliary sequences, and aims to improve the con-
vergence order. The used method generalizes the method of Aitken-Steffensen.
In the paper [14] we have given the statement of the main theorem and the
statement and the proof of an auxiliary proposition concerning the convergence
of some recurrence sequences of real numbers. In the present paper we give the
proof of the main result and at the same time we discuss an interesting special
case.
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1. INTRODUCTION

We will take again the main elements that are presented in detail in the
papers [13]-[14] and that constitute the basis of our result.

Let us consider X,Y two linear normed spaces. We note by ‖·‖X : X → R
and ‖·‖Y : Y → R their norms respectively, and by θX and θY their null
elements. Through (X,Y )∗ we note the set of the linear and continuous map-
pings defined from X to Y. The set (X,Y )∗ is a linear normed space as well,
if we define the norm ‖·‖ : (X,Y )∗ → [0,+∞[ , for any U ∈ (X,Y )∗ having
‖U‖ = sup

{
‖U (h)‖ : h ∈ X, ‖h‖X = 1

}
. For the case of Y = R we de-

note by X∗ the set (X,R)∗ , this set representing the space of real, linear and
continuous functionals defined on the linear normed space X.

Let us consider now a set D ⊆ X and a nonlinear mapping f : D → Y.
Using this mapping we have the equation:
(1) f (x) = θY .

We will study the approximation of its solutions.
In order to clarify the aforementioned notions we have the following de-

finition:
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Definition 1. If we fix the nonlinear mapping f : D → Y together with the
points x, y ∈ D, x 6= y, any mapping Γf ;x,y ∈ (X,Y )∗ that verifies the equality:

(2) Γf ;x,y (x− y) = f (x)− f (y)

is called generalized abstract divided difference of the function
f : D → Y at the points x, y.

In connection with the previous definition we have the following remark:

Remark 2. a) We consider the theorem according to which in every lin-
ear normed space (X, ‖·‖X) , for any a ∈ X \ {θX} there exists a linear and
continuous functional u ∈ X∗ such that ‖u‖ = 1 and u (a) = ‖a‖X . Then,
for any x, y ∈ X with x 6= y there exists the functional Uxy ∈ X∗ such that
‖Uxy‖ = 1 and Uxy (x− y) = ‖x− y‖X . At the same time there exists the
functional Uyx ∈ X∗ such that ‖Uyx‖ = 1 and Uyx (x− y) = ‖y − x‖X as well.
In the paper [13] there appears the mapping [x, y; f ] ∈ (X,Y )∗ , defined by
the equality:

(3) [x, y; f ]h = Uxy(h)f(x)+Uyx(h)f(y)
‖x−y‖X

for any h ∈ X.
This mapping verifies the equality (2) and it is called abstract divided

difference of the nonlinear mapping f : D → Y at the points x, y ∈ D with
x 6= y. This mapping is a special case of generalized abstract divided difference.
Therefore we can choose Γf ;x,y = [x, y; f ] .

b) Let us suppose now that the space X is a space with a scalar product
〈·|·〉 : X × X → R. Defining ‖·‖X : X → R by ‖x‖X =

√
〈x|x〉, the space

(X, ‖·‖X) is a linear normed space.
For any x, y ∈ X with x 6= y the functional Uxy ∈ X∗ from a) will be

defined by:
Uxy (h) = 〈h|x−y〉

‖x−y‖X

for any h ∈ X. So, for the same elements x, y ∈ X with x 6= y we have that
the abstract divided difference [x, y; f ] ∈ (X,Y )∗ is defined by:

[x, y; f ]h = 〈x−y|h〉(f(x)−f(y))
‖x−y‖2

X

for any h ∈ X. �

Let us consider a initial element x0 ∈ D. Besides the main sequence
(xn)n∈N∗ ⊆ D we also use two auxiliary sequences (yn)n∈N∗ , (zn)n∈N∗ ⊆ D.

For these auxiliary sequences we request the existence of the numbers
K1,K2, p, q > 0 such that for any n ∈ N∗ the following inequalities are verified:

‖f (yn)‖Y ≤ K1 ‖f (xn)‖pY ,(4)
‖f (zn)‖Y ≤ K2 ‖f (xn)‖qY .
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Then, if for a number n ∈ N∗ we have available the elements yn, zn ∈
D starting from xn ∈ D, we will build the new iterate xn+1 ∈ D for the
verification of the equality:
(5) Γf ;yn,zn (xn+1 − yn) + f (yn) = θY .

On account of the property of definition of the mapping Γf ;yn,zn ∈ (X,Y )∗
the equality (5) is equivalent to:
(6) Γf ;yn,zn (xn+1 − zn) + f (zn) = θY .

If for any n ∈ N∗ there exists the mapping Γ−1
f ;yn,zn

∈ (Y,X)∗ we have:

(7) xn+1 = yn − Γ−1
f ;yn,zn

f (yn) = zn − Γ−1
f ;yn,zn

f (zn) .
In connection with the main sequence (xn)n∈N ⊆ D and also with the

auxiliary sequences (yn)n∈N , (zn)n∈N ⊆ D, one can see the remarks 2.1– 2.2
from the paper [14].

Remark 3. It is clear that if the first of the inequalities (4) is verified
for any n ∈ N with a certain K1 > 0, this inequality is verified with any
number K ≥ max {1,K1} . The situation is identical regarding the second
inequality from (4). In conclusion we can suppose that in these relations we
have K1 = K2 = K ≥ 1.

Identically, we can suppose that in the inequalities:
‖yn − xn‖X ≤ a ‖f (xn)‖Y ,
‖zn − xn‖X ≤ b ‖f (xn)‖Y ,

that are true for any n ∈ N, we can have b = a ≥ 1.
In conclusion, for the main sequence (xn)n∈N∗ ⊆ D together with the auxil-

iary sequences (yn)n∈N∗ , (zn)n∈N∗ ⊆ D we can suppose that for any n ∈ N∗ we
have yn 6= zn and there exist the numbers K, a ≥ 1 such that for any n ∈ N∗
the following inequalities are verified:

‖f (yn)‖Y ≤K ‖f (xn)‖pY ,(8)
‖f (zn)‖Y ≤K ‖f (xn)‖qY ,
‖yn − xn‖X ≤a ‖f (xn)‖Y ,
‖zn − xn‖X ≤a ‖f (xn)‖Y . �

In connection with the stated problem we consider, for the real numbers
p, q ≥ 1, the following equation in x on the interval [0,+∞[ :
(9) xp+q−1 + 2x2 + 2x− 1 = 0.

We have the following remarks:
Remark 4. a) The equation (9) has an unique root α ∈ ]0, 1[ .
b) If α ∈ ]0, 1[ is the root of the equation (9) one verifies the following

inequalities as well:
(10) α2 + α− 1 < 0, α2 + 2α− 1 < 0, 2α2 + 2α− 1 < 0
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and these inequalities are equivalent to the following inequalities respectively:

�(11) 0 < α2

1−α < 1, 0 < α
1−α−α2 < 1, 0 < α2

1−2α−α2 < 1.

Let us consider now the numbers a,K,L,B0, R0 > 0 and the numbers p, q ≥
1 and using these numbers we build the real number sequences (un)n∈N∗ ,
(sn)n∈N∗ , (vn)n∈N∗ , (wn)n∈N∗ , (tn)n∈N∗ , (Bn)n∈N∗ and (Rn)n∈N∗ using the
following recurrence relations:

un = LKB2
nR

p
n,(12)

sn = LKB2
nR

q
n,

vn = aL2K2 · B
3
nR

p+q
n

1−un
,

wn = LKB2
nR

q
n

(1−un)(1−vn) ,

tn = aL2K2B3
nR

p+q
n

(1−un)(1−vn)(1−wn) ,

Bn+1 = Bn
(1−un)(1−vn)(1−wn)(1−tn) ,

Rn+1 = LK2B2
nR

p+q
n .

It is obvious that this construction has a meaning if for any n ∈ N∗ we have
that un, vn, wn, tn ∈ R� {1} and Bn, Rn > 0.

It is clear that for any n ∈ N∗ we have:

vn = a
Bn
· unsn

1−un
,(13)

wn = sn
(1−un)(1−vn) ,

tn = vn
(1−vn)(1−wn) ,

Rn+1 = unsn
LB2

n
,

as well.
Referring to the sequences that are defined by the relations (12) we have

the following proposition:

Proposition 5. If the following inequalities are verified:

(14) a ≤ B0 ≤ 1√
L
·min

{
K

p−q+1
2(q−1) ,K

q−p+1
2(p−1)

}
(with the specification that for q = 1 the expression that has q − 1 in its
denominator is +∞, and the same for the expression that has p − 1 in its
denominator) and:

(15) d = LKB2
0

α2 ·max
1

p+q−1

{
R

p(p+q−1)
0 Kp−q+1

(LB2
0)q−1 ,

R
q(p+q−1)
0 Kq−p+1

(LB2
0)p−1

}
< 1
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where α ∈ ]0, 1[ is the unique root of the equation (9), then for any n ∈ N∗ we
have the following inequalities:

un ≤ αd(p+q)n

< α < 1,(16)

sn ≤ αd(p+q)n

< α < 1,

vn ≤ α2

α−1 · d
2(p+q)n

< α2

α−1 < 1,

wn ≤ α
1−α−α2 · d(p+q)n

< α
1−α−α2 < 1,

tn ≤ α2

1−2α−α2d
2(p+q)n

< α2

1−2α−α2 < 1,

Bn+1 ≤ Bn
1−2α−2α2 ,

Rn+1 ≤ α2

LB2
0
d2(p+q)n

.

The proof of this proposition has been given in the paper [14].

2. THE MAIN RESULT

In this section we present the statement and the proof of the main theorem
regarding the convergence of the sequences (xn)n∈N∗ , (yn)n∈N∗ , (zn)n∈N∗ ⊆
D ⊆ X.

Theorem 6. We suppose that the following conditions hold:
i) The linear normed space (X, ‖·‖X) is a Banach space;
ii) The mapping f : D → Y admits for any x, y ∈ D with x 6= y a

generalized abstract divided difference Γf ;x,y ∈ (X,Y )∗ and there exists
a number L > 0 such that for any x, y, z ∈ D with x 6= y, y 6= z we
have the inequality:

‖Γf ;x,y − Γf ;y,z‖ ≤ L ‖x− z‖X ;

iii) The main approximant sequence (xn)n∈N∗ together with the secondary
sequences (yn)n∈N∗ and (zn)n∈N∗ are such that for any n ∈ N∗ the
following equality is fulfilled:

(17) Γf ;yn,zn (xn+1 − yn) + f (yn) = θY

together with the inequalities (8) with the constants a,K > 1 and p, q ≥
1. We also have that f (yn) , f (zn) ∈ Y� {θY } , yn 6= zn and we are in
one of the following situations:
iii1) xn 6= yn and yn+1 6= zn,

or
iii2) xn 6= zn and zn+1 6= yn.

iv) The mapping Γf ;y0,z0 ∈ (X,Y )∗ is invertible and Γ−1
f ;y0,z0

∈ (Y,X)∗ .
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v) If we note:

B0 = max
{
a, ‖Γ−1

f ;y0,z0
‖
}
,

R0 = ‖f (x0)‖Y ,

K = max
{
K,

(
B0
√
L
) 2(q−1)

p−q+1 ,
(
B0
√
L
) 2(p−1)

q−p+1
}
,

d = LKB2
0

α2 ·max
{
R

p(p+q−1)
0 K

p−q+1

(LB2
0)q−1 ,

R
q(p+q−1)
0 K

q−p+1

(LB2
0)p−1

}
,

δ = 2aR0 + aα2

LB2
0
· d2

1−d2(p+q−1) + 2α
LKB0

· d
1−dp+q−1 ,

where α ∈ ]0, 1[ is the unique root of the equation (9), the conditions
d < 1 and S (x0, δ) = {x ∈ X/ ‖x− x0‖X ≤ δ} are fulfilled.

If the previous hypotheses are true, then the following conclusions are true
as well:

j) for any n ∈ N∗ we have that xn, yn, zn ∈ S (x0, δ) , there exists the
mapping Γ−1

f ;yn,zn
∈ (Y,X)∗ and:

(18) xn+1 = yn − Γ−1
f ;yn,zn

f (yn) = zn − Γ−1
f ;yn,zn

f (zn) ;

jj) the sequences (xn)n∈N∗ , (yn)n∈N∗ , (zn)n∈N∗ ⊆ X are convergent to the
limit x ∈ S (x0, δ) and f (x) = θY ;

jjj) for any n ∈ N∗ the following inequalities are fulfilled:

‖xn+1 − xn‖X ≤
aα2

LB2
0
· d2(p+q)n−1

+ α
LKB0

· d(p+q)n

;(19)

‖xn − x‖X ≤
aα2

LB2
0
· d2(p+q)n−1

1−d2(p+q)n−1(p+q−1) + α
LKB0

· d(p+q)n

1−d(p+q)n(p+q−1) ;(20)

max {‖yn − x‖X , ‖zn − x‖X} ≤(21)

≤ aα2

LB2
0
· d2(p+q)n−1

· 2−d2(p+q)n−1(p+q−1)

1−d2(p+q)n−1(p+q−1) + α
LKB0

· d(p+q)n

1−d(p+q)n(p+q−1) .

Proof. For more clarity in the case of the hypothesis iii) we suppose that
the situation iii1) is fulfilled, namely for any n ∈ N∗ we will suppose that we
have:

f (yn) , f (zn) ∈ Y� {θY } , yn 6= zn, xn 6= yn, yn+1 6= zn,

while the equality (17) is verified.
Using the constants L,B0,K,R0 > 0 we generate the real number sequences

(un)n∈N∗ , (sn)n∈N∗ , (vn)n∈N∗ , (wn)n∈N∗ , (tn)n∈N∗ , (Bn)n∈N∗ , (Rn)n∈N∗ on the
basis of the relations (12) in which the constant K > 0 is replaced by K > 0.

From the expression of K we immediately deduce that:

K
p−q+1
2(q−1) ≥ B0

√
L, K

q−p+1
2(p−1) ≥ B0

√
L,

therefore:

B0 ≤ 1√
L
·min

{
K

p−q+1
2(q−1) ,K

q−p+1
2(p−1)},
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so the double inequality (14) is true. The condition imposed to d, expressed
by the inequality (15), from the hypothesis of the Proposition 5 is fulfilled on
the basis of the hypotheses of the theorem.

On account of the Proposition 5 we deduce that for any n ∈ N∗ the relations
(16) are true.

We now prove that for any n ∈ N∗ the following relations are true:
a) xn, yn, zn ∈ S (x0, δ) ;
b) ‖f (xn)‖Y ≤ Rn;
c) there exists the mapping Γ−1

f ;yn,zn
∈ (Y,X)∗ , ‖Γ−1

f ;yn,zn
‖ ≤ Bn and:

(22) xn+1 = yn − Γ−1
f ;yn,zn

f (yn) = zn − Γ−1
f ;yn,zn

f (zn) .
In order to prove these relations we will use the method of the mathematical

induction.
For n = 0 we notice the following statements:

a) Evidently x0 ∈ S (x0, δ) and:
‖y0 − x0‖X ≤ a ‖f (x0)‖Y = aR0 ≤ δ,

therefore y0 ∈ S (x0, δ) .
Similarly:

‖z0 − x0‖X ≤ a ‖f (x0)‖Y = aR0 ≤ δ
so we have that z0 ∈ S (x0, δ) as well.

b) Evidently ‖f (x0)‖Y ≤ R0;
c) The existence of the mapping Γ−1

f ;y0,z0
∈ (Y,X)∗ is assured from the

hypotheses of the theorem and the inequality ‖Γ−1
f ;y0,z0

‖ ≤ B0 is assured
from the definition of the number B0.

We suppose that the inequalities a) - c) are true for any number n ∈ N∗,
n ≤ k and we prove them for n = k + 1.

a) For any j ∈ {0, 1, ..., k} we have that:

‖xj+1 − xj‖X ≤ ‖yj − xj‖X + ‖Γ−1
f ;yj ,zj

‖ · ‖f (yj)‖Y
≤ a ‖f (xj)‖Y +Bj ‖f (xj)‖pY
= aRj +BjR

p
j

= aRj + B2
jR

p
j

Bj

≤ aRj + uj

LKB0
.

For j = 0 we obtain:
‖x1 − x0‖X ≤ aR0 + u0

LKB0
= aR0 + α

LKB0
· d.

For j ∈ {1, 2, ..., k} we obtain:

(23) ‖xj+1 − xj‖X ≤ a ·
α2

LB2
0
· d2(p+q)j−1

+ α
LKB0

· d(p+q)j

.
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Therefore:

‖xk+1 − x0‖X ≤
∥∥∥∥∥
k∑
j=0

(xj+1 − xj)
∥∥∥∥∥
X

≤
k∑
j=0
‖xj+1 − xj‖X

≤ aR0 + α
LKB0

· d+ aα2

LB2
0

k−1∑
j=0

d2(p+q)j

+ α
LKB0

k∑
j=0

d(p+q)j

.

In the last expression we have:
k−1∑
j=0

d2(p+q)j

= d2 + d2(p+q) + ...+ d2(p+q)k−1
= d2

k−1∑
j=0

d2(p+q)j−2.

As p, q ≥ 1 we have that:

2 (p+ q)j − 2 = 2 (p+ q − 1)
[
1 + (p+ q) + ...+ (p+ q)j−1

]
≥ 2j (p+ q − 1) ,

and as d < 1 we deduce that d2(p+q)j−2 ≤
[
d2(p+q−1)

]j
, therefore:

k−1∑
j=0

d2(p+q)j

≤ d2
∞∑
j=0

[
d2(p+q−1)

]j
= d2

1−d2(p+q−1) .

Similarly
k∑
j=0

d(p+q)j

≤ d
1−dp+q−1 .

Therefore

‖xk+1 − x0‖X ≤ aR0 + aα2

LB2
0

(
d2 + d2

1−d2(p+q−1)

)
+ α

LKB0
· d

1−dp+q−1

≤ δ,

so xk+1 ∈ S (x0, δ) .
From here it is clear that:

‖yk+1 − x0‖X ≤ ‖yk+1 − xk+1‖X + ‖xk+1 − x0‖X
≤ a ‖f (xk+1)‖Y + ‖xk+1 − x0‖X
≤ aRk+1 + ‖xk+1 − x0‖X
≤ aα2

LB2
0
· d2(p+q)k

+ ‖xk+1 − x0‖X .
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As d < 1 and (p+ q)k ≥ 1 it is clear that d2(p+q)K

≤ d2, therefore:

‖yk+1 − x0‖X ≤ 2aR0 + aα2

LB2
0

(
d2 + d2

1−d2(p+q−1)

)
+ α

LKB0
· d

1−dp+q−1

= δ,

therefore yk+1 ∈ S (x0, δ) .
As

‖zk+1 − x0‖X ≤ ‖zk+1 − xk+1‖X + ‖xk+1 − x0‖X
≤ a ‖f (xk+1)‖Y + ‖xk+1 − x0‖X ,

we obtain for ‖zk+1 − x0‖X the same delimitation as for ‖yk+1 − x0‖X and the
expression of this delimitation is δ. Therefore we have that zk+1 ∈ S (x0, δ) .

b) We know that:

‖f (xk+1)‖Y = ‖f (xk+1)− θY ‖Y
= ‖f (xk+1)− f (yk)− Γf ;yk,zk

(xk+1 − yk)‖Y
≤
∥∥∥Γf ;yk,xk+1 − Γf ;yk,zk

∥∥∥ · ‖xk+1 − yk‖X
≤ L ‖xk+1 − yk‖X · ‖xk+1 − zk‖X .

On account of the equalities (7) that are true for n = k we have that:

‖f (xk+1)‖Y ≤ L‖Γ
−1
f ;yk,zk

‖2 · ‖f (yk)‖Y · ‖f (zk)‖Y .

Using the hypothesis of the induction and the hypothesis of the verification
of the inequalities (8) we obtain:

‖f (xk+1)‖Y ≤ LK
2B2

k ‖f (xk)‖p+qY ≤ LK2
B2
kR

p+q
k = Rk+1.

c) From the existence of the mapping Γ−1
f ;yk,zk

∈ (Y,X)∗ , of the fact that
f (yk) 6= θY , f (zk) 6= θY and using the equalities:

xk+1 = yk − Γ−1
f ;yk,zk

f (yk) = zk − Γ−1
f ;yk,zk

f (zk)

we deduce that xk+1 6= yk and zk+1 6= zk.
So, the following mapping has a meaning:

Uk = Γ−1
f ;yk,zk

(
Γf ;yk,zk

− Γf ;xk+1,zk

)
∈ (X,X)∗ .

From here it is clear that:

(24) Γf ;xk+1,zk
= Γf ;yk,zk

(IX − Uk) .

Considering the fact that yk, zk ∈ S (x0, δ) and taking into account what we
have proved at a) and as we have xk+1 ∈ S (x0, δ) , we deduce that:

‖Uk‖ ≤ ‖Γ−1
f ;yk,zk

‖ ·
∥∥∥Γf ;yk,zk

− Γf ;xk+1,zk

∥∥∥
≤ BkL ‖xk+1 − yk‖X ≤
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≤ LBk‖Γ−1
f ;yk,zk

‖ · ‖f (yk)‖Y
≤ LB2

kK ‖f (xk)‖pY
= LKB2

kR
p
k

= uk ≤ α < 1.

From here, using the well known theorem of Banach (on account of the fact
that (X, ‖·‖X) is a Banach space), we deduce that there exists the mapping
(IX − Uk)−1 ∈ (X,X)∗ and

‖ (IX − Uk)−1 ‖ ≤ 1
1−‖Uk‖ ≤

1
1−uk

.

From the existence of the mappings Γ−1
f ;yk,zk

∈ (Y,X)∗ and (IX − Uk)−1

∈ (X,X)∗ using the equality (24) we deduce the existence of the mapping
Γ−1
f ;xk+1,zk

∈ (Y,X)∗ and:

(25) Γ−1
f ;xk+1,zk

= (IX − Uk)−1 Γ−1
f ;yk,zk

.

From the equality (25) we have the inequality:

‖Γ−1
f ;xk+1,zk

‖ ≤ ‖ (IX − Uk)−1 ‖ · ‖Γ−1
f ;yk,zk

‖ ≤ Bk
1−uk

as well.
Also the mapping

Sk = Γ−1
f ;yk,zk

(
Γf ;yk,zk

− Γf ;yk,xk+1

)
∈ (X,X)∗

has a meaning. We can write that:

(26) Γf ;yk,xk+1 = Γf ;yk,zk
(IX − Sk) .

In the same way as in the case of the mapping Uk we have that:

‖Sk‖ ≤ LKB2
kR

q
k = sk ≤ α < 1,

therefore there exists the mapping (IX − Sk)−1 ∈ (X,X)∗, so there exists the
mapping Γ−1

f ;yk,xk+1
∈ (Y,X)∗ as well.

As Γ−1
f ;yk,xk+1

= (IX − Sk)−1 Γ−1
f ;yk,zk

we have that:

‖Γ−1
f ;yk,xk+1

‖ ≤ ‖ (IX − Sk)−1 ‖ · ‖Γ−1
f ;yk,zk

‖ ≤ Bk
1−sk

.

As yk+1 6= zk the following mapping has a meaning

Vk = Γ−1
f ;xk+1,zk

(
Γf ;xk+1,zk

− Γf ;yk+1,zk

)
∈ (X,X)∗ ,

from where evidently

(27) Γf ;yk+1,zk
= Γf ;xk+1,zk

(IX − VK) .

As xk+1, zk, yk+1 ∈ S (x0, δ) ⊆ D we deduce that:
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‖Vk‖ ≤ ‖Γ−1
f ;xk+1,zk

‖ ·
∥∥∥Γf ;xk+1,zk

− Γf ;yk+1,zk

∥∥∥
X

≤ ‖Γ−1
f ;xk+1,zk

‖L ‖xk+1 − yk+1‖

≤ aL · Bk
1−uk

· ‖f (xk+1)‖Y
= aLBk

1−uk
· LK2

B2
kR

p+q
k

= aL2K
2
B3

kR
p+q
k

1−uk

= vk <
α2

1−α < 1.

From here we deduce that there exists the mapping (IX − Vk)−1 ∈ (X,X)∗

and ‖ (IX − Vk)−1 ‖ ≤ 1
1−vk

.

Taking into account of the existence of the mappings Γ−1
f ;xk+1,zk

∈ (Y,X)∗

and (IX − Vk)−1 ∈ (X,X)∗ we deduce the existence of the mapping:

Γ−1
f ;yk+1,zk

= (IX − Vk)−1 Γ−1
f ;xk+1,zk

∈ (Y,X)∗

and the relations:
(28) ‖Γ−1

f ;yk+1,zk
‖ ≤ ‖ (IX − Vk)−1 ‖ · ‖Γ−1

f ;xk+1,zk
‖ ≤ Bk

(1−uk)(1−vk) .

At the same time from the hypotheses we have yk+1 6= xk+1, so the mapping:

(29) Wk = Γ−1
f ;yk+1,zk

(
Γf ;yk+1,zk

− Γf ;yk+1,xk+1

)
∈ (X,X)∗

has a meaning.
Obviously we have:

(30) Γf ;yk+1,xk+1 = Γf ;yk+1,zk
(IX −Wk) .

As zk, yk+1, xk+1 ∈ S (x0, δ) ⊆ D we deduce that

‖Wk‖ ≤ ‖Γ−1
f ;yk+1,zk

‖ ·
∥∥∥Γf ;yk+1,zk

− Γf ;yk+1,xk+1

∥∥∥
≤ ‖Γ−1

f ;yk+1,zk
‖ · L ‖xk+1 − zk‖X

≤ L · Bk
(1−uk)(1−vk) · ‖Γ

−1
f ;yk+1,zk

‖ · ‖f (zk)‖qY

= LB2
k

(1−uk)(1−vk) ·K ‖f (xk)‖qY

= LK · B2
kR

q
k

(1−uk)(1−vk)

= wk <
α

1−α−α2 < 1,

therefore there exists the mapping (IX −Wk)−1 ∈ (X,X)∗ and we have the
inequality ‖ (IX −Wk)−1 ‖ ≤ 1

1−‖Wk‖ ≤
1

1−wk
.

Considering the existence of the mapping Γ−1
f ;yk+1,zk

∈ (Y,X)∗ from the
previous evaluation we deduce on the basis of the equality (30) the existence
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of the mapping Γ−1
f ;yk+1,xk+1

∈ (Y,X)∗ such that

Γ−1
f ;yk+1,xk+1

= (IX −Wk)−1 Γ−1
f ;yk+1,zk

and
‖Γ−1

f ;yk+1,xk+1
‖ ≤ ‖ (IX −Wk)−1 ‖ · ‖Γ−1

f ;yk+1,zk
‖

≤ Bk
(1−uk)(1−vk)(1−wk) .

Evidently yk+1 6= zk+1 therefore the mapping:

(31) Tk = Γ−1
f ;yk+1,xk+1

(
Γf ;yk+1,xk+1 − Γf ;yk+1,zk+1

)
∈ (X,X)∗

has a meaning.
From (31) we obviously have that:

(32) Γf ;yk+1,zk+1 = Γf ;yk+1,xk+1 (IX − Tk) .
As yk+1, xk+1, zk+1 ∈ S (x0, δ) ⊆ D we deduce that

‖Tk‖ ≤ ‖Γ−1
f ;yk+1,xk+1

‖ ·
∥∥∥Γf ;yk+1,xk+1 − Γf ;yk+1,zk+1

∥∥∥
≤ ‖Γ−1

f ;yk+1,xk+1
‖ · L ‖xk+1 − zk+1‖

≤ aLBk‖f(xk+1)‖Y
(1−uk)(1−vk)(1−wk)

= aLBkRk+1
(1−uk)(1−vk)(1−wk)

= aLBk
(1−uk)(1−vk)(1−wk)LK

2
B2
kR

p+q
k

= aL2K
2
B3

kR
p+q
k

(1−uk)(1−vk)(1−wk)

= tk <
α2

1−2α−α2 < 1.
Therefore, based on the same theorem of Banach, there exists the mapping

(IX − Tk)−1 ∈ (X,X)∗ and ‖ (IX − Tk)−1 ‖ ≤ 1
1−‖Tk‖ ≤

1
1−tk .

Adding to the last information the fact that there exists the mapping
Γ−1
f ;yk+1,xk+1

∈ (Y,X)∗ , we deduce on the basis of the equality (32) the ex-
istence of the mapping:

Γ−1
f ;yk+1,zk+1

= (IX − Tk)−1 Γ−1
f ;yk+1,xk+1

∈ (Y,X)∗

together with the inequality:
‖Γ−1

f ;yk+1,zk+1
‖ ≤ ‖ (IX − Tk)−1 ‖ · ‖Γ−1

f ;yk+1,xk+1
‖

≤ Bk
(1−uk)(1−vk)(1−wk)(1−tk) = Bk+1.

The existence of the mapping Γ−1
f ;yk+1,zk+1

∈ (Y,X)∗ and the inequality
‖Γ−1

f ;yk+1,zk+1
‖ ≤ Bk+1 express the fact that the proposition c) is true for

n = k + 1.
Therefore the propositions a) - c) are true for n = k + 1.
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On account of the principle of mathematical induction these relations are
true for any number n ∈ N.

We will now show that the sequence (xn)n∈N is a Cauchy sequence.
Taking into account of the inequality (23) we deduce that for any n, p ∈ N

we have the following inequality:

‖xn+p − xn‖X =
∥∥∥n+p−1∑

j=n
(xj+1 − xj)

∥∥∥
X

≤
n+p−1∑
j=n

‖xj+1 − xj‖X

≤ aα2

LB2
0

n+p−1∑
j=n

d2(p+q)j−1
+ α

LKB0

n+p−1∑
j=n

d(p+q)j

.

But, as p, q ≥ 1, we deduce that for any s ∈ N∪{0}

2 (p+ q)n−1+s − 2 (p+ q)n−1 = 2 (p+ q)n−1 [(p+ q)s − 1]
> 2s (p+ q)n−1 (p+ q − 1) ,

therefore as d < 1 we deduce that:
n+p−1∑
j=n

d2(p+q)j−1
< d2(p+q)n−1

p−1∑
s=0

[
d2(p+q)n−1(p+q−1)

]s
< d2(p+q)n−1

1−d2(p+q)n−1(p+q−1) .

Similarly
n+p−1∑
j=n

d(p+q)j

< d(p+q)n

1−d(p+q)n(p+q−1) ,

therefore

‖xn+p − xn‖X ≤
aα2

LB2
0
· d2(p+q)n−1

1−d2(p+q)n−1(p+q−1) + α
LKB0

· d(p+q)n

1−d(p+q)n(p+q−1) .(33)

From the fact that d < 1 we deduce that:

lim
n→∞

d2(p+q)n−1

1−d2(p+q)n−1(p+q−1) = lim
n→∞

d(p+q)n

1−d(p+q)n(p+q−1) = 0,

therefore lim
n→∞

unif
p∈N
‖xn+p − xn‖X = 0 and this equality expresses the fact that

(xn)n∈N ⊆ D ⊆ X is a Cauchy sequence.
From the quality of the linear normed space (X, ‖·‖X) of being a Banach

space we deduce that the sequence (xn)n∈N ⊆ X is a convergent sequence,
therefore there exists an element x ∈ X such that x = lim

n→∞
xn.

If in the inequality (33) we tend to the limit as p → ∞, we obtain the
inequality (20) form the conclusion of the theorem.
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From the inequality (20) with n = 0 we deduce that:
‖x− x0‖X ≤ ‖x− x1‖X + ‖x1 − x0‖X

≤ aα2

LB2
0
· d2

1−d2(p+q−1) + α
LKB0

· dp+q

1−d(p+q)(p+q−1) + aR0 + αd
LKB0

≤ δ,
and this inequality expresses the fact that x ∈ S (x0, δ) .

The existence of the mapping Γ−1
f ;yn,zn

∈ (Y,X)∗ allows for the expressions
of the element xn+1 under the forms (18).

Obviously, for any n ∈ N we have the inequalities:
‖yn − x‖X ≤ ‖yn − xn‖X + ‖xn − x‖X

≤ a ‖f (xn)‖Y + ‖xn − x‖X
≤ aRn + ‖xn − x‖X
≤ aα2

LB2
0
· d2(p+q)n−1

+ ‖xn − x‖X .(34)

We have a similar estimate for ‖zn − x‖X as well. We obtain in this way
the estimates (21). The inequality (21) expresses in fact that:

lim
n→∞

‖yn − x‖X = lim
n→∞

‖zn − x‖X = 0.

We still need to show that x ∈ D is the solution of the equation f (x) = θY .
We will first remark that from the fact that for any n ∈ N we have that

‖f (xn)‖Y ≤ Rn ≤ α2

LB2
0
· d2(p+q)n−1 and from d < 1 we deduce that

lim
n→∞

‖f (xn)‖Y = 0.
Let us consider a number n ∈ N arbitrarily. As f (yn) 6= θY we deduce that

yn 6= x, therefore as xn 6= yn we will have that:
0 ≤ ‖f (x)‖Y
≤ ‖f (yn)− f (x)‖Y + ‖f (yn)‖Y
≤ ‖Γf ;x,yn‖ · ‖yn − x‖X +K ‖f (xn)‖pY .

Here, we have:
‖Γf ;x,yn‖ ≤ ‖Γf ;x,yn − Γf ;x,y0‖+ ‖Γf ;x,y0‖

≤ L ‖yn − y0‖X + ‖Γf ;x,y0‖
≤ L (‖yn − x0‖X + ‖y0 − x0‖X) + ‖Γf ;x,y0‖
≤ L (δ + ‖y0 − x0‖X) + ‖Γf ;x,y0‖ ,

therefore
(35)
0 ≤ ‖f (x)‖Y ≤ [L (δ + ‖y0 − x0‖X) + ‖Γf ;x,y0‖] · ‖yn − x‖X +K ‖f (xn)‖pY .

As lim
n→∞

‖yn − x‖X = 0 = lim
n→∞

‖f (xn)‖Y and p > 1 we deduce that:

lim
n→∞

{[L (δ + ‖y0 − x0‖X) + ‖Γf ;x,y0‖] · ‖yn − x‖X +K ‖f (xn)‖pY } = 0,
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from where on account of the relation (35) we deduce that ‖f (x)‖Y = 0,
namely f (x) = θY .

With that the theorem is proven. �

3. REMARKS ON THE MARGIN OF THE MAIN RESULT

Remark 7. With the hypotheses of the Theorem 6 the sequence:

(‖Γ−1
f ;yn,zn

‖)n∈N ∗

is bounded, and for any n ∈ N∗ the following inequality takes place:

(36) ‖Γ−1
f ;yn,zn

‖ ≤ B0eG(d,α)

where:

G (d, α) = α(2−3α−α2)
(1−α)(1−2α−α2) ·

d
1−dp+q−1

+ α2(2−3α−3α2)
(1−α−α2)(1−2α−2α2) ·

d2

1−d2(p+q−1) .(37)

Also the sequence (‖Γf ;yn,zn‖)n∈N ∗ is bounded and for any n ∈ N∗ we have
the inequality:

(38) ‖Γf ;yn,zn‖ ≤ ‖Γf ;y0,z0‖+ 2α
(
K + aα

B2
0

)
· d

1−dp+q−1 . �

Indeed, from the recurrence relation of the sequence (Bn)n∈N∗ we deduce
that:

Bn ≤ B0
n−1∏
j=0

[(1−uj)(1−vj)(1−wj)(1−tj)]

.

Obviously
1

n−1∏
j=0

[(1−uj)(1−vj)(1−wj)(1−tj)]

≤

≤

 1
4n

n−1∑
j=0

(
1

1−uj
+ 1

1−vj
+ 1

1−wj
+ 1

1−tj

)4n

=

1 + 1
4n

n−1∑
j=0

(
uj

1−uj
+ vj

1−vj
+ wj

1−wj
+ tj

1−tj

)4n

≤

1+ 1
4n

Q1 (α)
n−1∑
j=0

uj +Q2 (α)
n−1∑
j=0

vj +Q3 (α)
n−1∑
j=0

wj +Q4 (α)
n−1∑
j=0

tj

4n

,
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where

Q1 (α) = 1
1−α ,

Q2 (α) = 1
1− α2

1−α
= 1−α

1−α−α2 ,

Q3 (α) = 1
1− α

1−α−α2
= 1−α−α2

1−2α−α2 ,

Q4 (α) = 1
1− α2

1−2α−α2

= 1−2α−α2

1−2α−2α2 .

It is obvious that
n−1∑
j=0

uj ≤ α
n−1∑
j=0

d(p+q)j

≤ αd
1−dp+q−1 ,

n−1∑
j=0

vj ≤ α2

1−α

n−1∑
j=0

d2(p+q)j

≤ α2d2

(1−α)(1−d2(p+q−1)) ,

n−1∑
j=0

wj ≤ α
1−α−α2

n−1∑
j=0

d(p+q)j

≤ αd
(1−α−α2)(1−dp+q−1) ,

n−1∑
j=0

tj ≤ α2

1−2α−α2

n−1∑
j=0

d2(p+q)j

≤ α2d2

(1−2α−α2)(1−d2(p+q−1)) .

Therefore

Q1 (α)
n−1∑
j=0

uj +Q2 (α)
n−1∑
j=0

vj +Q3 (α)
n−1∑
j=0

wj +Q4 (α)
n−1∑
j=0

tj ≤

≤ αd
(1−α)(1−dp+q−1) + α2d2

(1−α−α2)(1−d2(p+q−1))
+ αd

(1−2α−α2)(1−dp+q−1) + α2d2

(1−2α−2α2)(1−d2(p+q−1))
= G (d, α) .

As
Bn ≤ B0

[
1 + 1

4nG (d, α)
]4n
≤ B0eG(d,α),

the inequality (36) is proven.
In order to establish the inequality (38), we note that for any n ∈ N we

have:

Γf ;yn,zn = Γf ;y0,z0 +
n−1∑
j=0

(
Γf ;yj+1,zj+1 − Γf ;yj ,zj

)
,

from where:

‖Γf ;yn,zn‖ ≤ ‖Γf ;y0,z0‖+
n−1∑
j=0

∥∥∥Γf ;yj+1,zj+1 − Γf ;yj ,zj

∥∥∥ .
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For any j ∈ N we have∥∥∥Γf ;yj+1,zj+1−Γf ;yj ,zj

∥∥∥ ≤ ∥∥∥Γf ;yj+1,zj+1−Γf ;yj+1,zj

∥∥∥ +
∥∥∥Γf ;yj+1,zj

−Γf ;yj ,zj

∥∥∥
≤ L

(
‖yj+1 − yj‖X + ‖zj+1 − zj‖X

)
.

But

‖yj+1 − yj‖X ≤ ‖yj+1 − xj+1‖X + ‖xj+1 − yj‖X
≤ a ‖f (xj+1)‖Y +

∥∥∥Γ−1
f ;yj ,zj

∥∥∥ · ‖f (xj)‖pY
= aRj+1 +KBjR

p
j

≤ aα2

LB2
0
· d2(p+q)j

+ Kα
B0
· d(p+q)j

<
α(KB2

0+aα)
LB2

0
d(p+q)j

.

For ‖zj+1 − zj‖X we obtain the same estimate.
Therefore, for any n ∈ N we obtain:

‖Γf ;yn,zn‖ ≤ ‖Γf ;y0,z0‖+ 2α(KB2
0+aα)

LB2
0

n−1∑
j=0

d(p+q)j

,

from where the inequality (38) derives directly.

Remark 8. For any n ∈ N we have the following inequality:

(39) ‖xn − x‖X ≤
α

LB0[1−d2(p+q−1)] ·
(
α
B0

+ 1
K

)
d2(p+q)n−1

,

and this inequality show that the convergence order of the studied iterative
method is p+ q.

Indeed, from the fact that p, q ≥ 1 and d < 1, we deduce that (p+ q)n ≥
≥ 2 (p+ q)n−1 , therefore d(p+q)n

≤ d2(p+q)n−1 and

d(p+q)n(p+q−1) ≤ d2(p+q)n−1(p+q−1).

So
d(p+q)n

1−d(p+q)n(p+q−1) ≤ d2(p+q)n−1

1−d2(p+q)n−1(p+q−1) ,

therefore:

‖xn − x‖X ≤
α
LB0
·
(
α
B0

+ 1
K

)
· d2(p+q)n−1

1−d2(p+q)n−1(p+q−1) .

But K ≥ K, and as n ≥ 1 we have that d2(p+q)n−1(p+q−1) ≤ d2(p+q−1) and
in this way we obtain the inequality (39). �
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4. NOTICEABLE SPECIAL CASES

Remark 9. An important special case is that in which for any n ∈ N we
have xn = zn. This case is admitted from the hypotheses, and it is necessary
for the following conditions to hold:

f (xn) , f (yn) ∈ Y� {θY } , xn 6= yn, xn 6= yn+1

and:
Γf ;xn,yn (xn+1 − xn) + f (xn) = θY ,

using for this aim the property that is expressed by the equality (6).
For any n ∈ N there exists the mapping Γ−1

f ;xn,yn
∈ (Y,X)∗ , therefore the

recurrence relation of the sequence (xn)n∈N∗ will be:

xn+1 = xn − Γ−1
f ;xn,yn

f (xn) .

the inequality (39) in this case becomes:

(40) ‖xn − x‖X ≤
α

LB0(1−d2p) ·
(
α
B0

+ 1
K

)
· d2(p+1)n−1

,

therefore the convergence order of the method is p+ 1. �

One verifies the hypotheses of the Theorem 6 in the case of q = 1, therefore
we have the conclusions of this theorem in this case.

Remark 10. We will now consider an even more special case. Let be a
mapping U ∈ (X,Y )∗� {Θ} (Θ being the null mapping) and we will choose
the sequence (yn)n∈N∗ by the relation yn = xn − Uf (xn) for any n ∈ N∗. At
the same time we will choose zn = xn. This case comes in the framework of
the previous more general case.

Therefore the sequence (xn)n∈N∗ will be chosen such that for any n ∈ N∗
the following equality is verified:
(41) Γf ;xn,xn−Uf(xn) (xn+1 − xn) + f (xn) = θY ,

or if for any n ∈ N∗ there exists the mapping Γ−1
f ;xn,xn−Uf(xn) ∈ (Y,X)∗ we

have the equality:
(42) xn+1 = xn − Γ−1

f ;xn,xn−Uf(xn)f (xn) . �

For the convergence of the iterative method generated by the relation (41)
we have the following corollary:

Corollary 11. If the following hypotheses are fulfilled:
i) (X, ‖·‖X) is a Banach space;
ii) the mapping f : D → Y verifies the hypothesis ii) of the Theorem 6

with a constant L > 0 and there exists a number λ > 0 such that for
any x, y ∈ D the following inequality is true:

‖Γf ;x,y‖ ≤ λ;
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iii) the sequence (xn)n∈N∗ ⊆ D verifies for any n ∈ N∗ the equality (41)
with a mapping U ∈ (X,Y )∗� {Θ} ;

iv) the mapping Γf ;x0,x0−Uf(x0) ∈ (X,Y )∗ is invertible and Γ−1
f ;x0,x0−Uf(x0)∈

∈ (Y,X)∗ ;
v) denoting:

B0 = max
{
‖U‖ ,

∥∥Γ−1
f ;x0,x0−Uf(x0)

∥∥} ,
R0 = ‖f (x0)‖Y ,

d = LB2
0R0(1+λ‖U‖)2

α ,

δ = 2 ‖U‖R0 + α
LB0
·
(
α+ 2

1+λ‖U‖

)
· d

1−d

with α =
√

17−3
4 , the relations d < 1 and S (x0, δ) ⊆ D are true.

Then we have the following conclusions:
j) for any n ∈ N∗ we have that xn, xn − Uf (xn) ∈ S (x0, δ) , there exists

Γ−1
f ;xn,xn−Uf(xn) ∈ (Y,X)∗ and the equality (42) is true;

jj) the sequences (xn)n∈N∗ , (xn − Uf (xn))n∈N∗ are convergent to the same
limit x ∈ S (x0, δ) for which f (x) = θY ;

jjj) for any n ∈ N∗ the following inequalities are true:

(43) ‖xn+1 − xn‖X ≤
α
LB0

(
a
B0

+ α
1+λ‖U‖

)
d2n

,

(44) ‖xn − x‖X ≤
α
LB0

(
a
B0

+ α
1+λ‖U‖

)
d2n

1−d2n .

Proof. For any n ∈ N∗ we will note yn = xn − Uf (xn) , zn = xn.
For the verification of the hypothesis iii) of the Theorem 6 we have the

following relations:

‖yn − xn‖X ≤‖U‖ · ‖f (yn)‖Y ,
‖f (yn)‖Y ≤‖f (xn)‖Y + ‖f (yn)− f (xn)‖Y

≤‖f (xn)‖Y + ‖Γf ;xn,yn‖ · ‖yn − xn‖
≤ (1 + λ ‖U‖) ‖f (xn)‖Y ,

therefore the inequalities (8) will be verified with a = ‖U‖ , K = 1 +λ ‖U‖ , if
we take into account the conditions on the sequence (zn)n∈N∗ = (xn)n∈N∗ as
well.

Obviously, from p = q = 1 we deduce that K = K and the others constants
from the statement of Theorem 6, have the values from the present corollary.

By the application in this case of Theorem 6 we can deduce the conclusions
j)-jjj) from the previous statement. �

An other special case is the case in which we obtain the sequences (yn)n∈N∗ ,
(zn)n∈N∗ ⊆ D with the help of the iterative operators Q1, Q2 : X → X that
verify Qi (D) ⊆ D for any i ∈ {1, 2} . In this case we can choose yn = Q1 (xn)
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and zn = Q2 (xn) , obtaining the sequence (xn)n∈N∗ by the verification for any
n ∈ N∗ of the equality:
(45) Γf ;Q1(xn),Q2(xn) (xn+1 −Q1 (xn)) + f (Q1 (xn)) = θY .

In this equality the roles of the operators Q1 and Q2 can be inverted.
If for any n ∈ N∗ there exists the mapping Γ−1

f ;Q1(xn),Q2(xn) ∈ (Y,X)∗ the
relation (45) is equivalent to:

(46) xn+1 = Q1 (xn)− Γ−1
f ;Q1(xn),Q2(xn)f (Q1 (xn)) .

If for any x ∈ D and i ∈ {1, 2} we have the following relations:

(47)
{
‖f (Qi (x))‖Y ≤ K ‖f (x)‖pi

Y ,

‖Qi (x)− x‖X ≤ a ‖f (x)‖Y ,
for the sequences that are chosen in the manner showed the hypotheses of
the Theorem 6 are fulfilled, therefore we have the conclusions of this theorem.
One obtains the convergence order p1 + p2.

The convergence order can be increased if we replace the mapping Q2 with
the mapping Q2 ◦Q1 : X → X.

In this case:
‖f (Q2 ◦Q1) (x)‖Y = ‖f (Q2 (Q1 (x)))‖Y

≤ K ‖f (Q1 (x))‖p2
Y

≤ K1+p2 ‖f (x)‖p1+p2
Y ,

‖(Q2 ◦Q1) (x)− x‖X ≤ ‖Q2 (Q1 (x))−Q1 (x)‖X + ‖Q1 (x)− x‖X
≤ a ‖f (Q1 (x))‖Y + a ‖f (x)‖Y
≤ a (K ‖f (x)‖pY + ‖f (x)‖Y ) .

Usually we are interested in the set of points from around the solutions, for
which ‖f (x)‖Y ≤ 1, therefore as p ≥ 1 we have ‖f (x)‖pY ≤ ‖f (x)‖Y and so:

‖(Q2 ◦Q1) (x)− x‖X ≤ a (1 +K) ‖f (x)‖Y .
Therefore using the sequences (yn)n∈N∗ , (zn)n∈N∗ that are defined by yn =

Q1 (xn) , zn = (Q2 ◦Q1) (xn) for the main sequence (xn)n∈N∗ we obtain the
convergence order p1 + p1p2.
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résolution des équations opérationnelles obtenues par l’interpolation inverse (III),
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