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Abstract. In this particular paper, we investigate coefficient inequalities, clo-
sure theorems, convolution properties for the functions belonging to the class
Sm,r,sλ1,λ2

(η). Further, integral transforms of functions in the same class are also
discussed.
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1. INTRODUCTION

Let A be the class of analytic functions of the form

(1) f(z) = z +
∞∑
k=2

akz
k; z ∈ (U = {z ∈ C : |z| < 1})

and S be the subclass of A consisting of univalent functions, and S(α), C(α)
(0 < α ≤ 1) denote the subclasses of A consisting of functions that are starlike
of order α and convex of order α in U, respectively.

For two analytic functions f(z) = z+
∑∞

k=2 akz
k and g(z) = z+

∑∞
k=2 bkz

k

in the open unit disc U = {z ∈ C : |z| < 1}, the Hadamard product (or
convolution) f ∗ g of f and g is defined by

(2) f(z) ∗ g(z) = (f ∗ g)(z) = z +
∞∑
k=2

akbkz
k.

For complex parameters α1, ...αr and β1, ...βs (βj 6= 0,−1,−2, ...; j = 1...s),
Dziok and Srivastava [1] defined the generalized hypergeometric function

rFs(α1, ..., αr;β1, ..., βs; z)
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by

(3) rFs(α1, ..., αr;β1, ..., βs; z) =
∞∑
k=0

(α1)k...(αr)k
(β1)k,...,(βs)k

zk

k! ;

(4) (r ≤ s+ 1; r, s ∈ N0 = N ∪ 0; z ∈ U),

where (x)k is the Pochhammer symbol defined, in terms of Gamma function
Γ, by

(x)k = Γ(x+k)
Γ(x) =

{
1, if k = 0,

x(x+ 1)...(x+ k − 1), if k ∈ N.
Dziok and Srivastava [1] defined also the linear operator

(5) H(α1, ..., αr;β1, ..., βs)f(z) = z +
∞∑
k=2

Γkakz
k

where

(6) Γk =
(α1)k−1...(αr)k−1

(β1)k−1, ..., (βs)k−1(k − 1)!
.

Al-Abbadi and Darus [2] defined the analytic function

(7) Φm
λ1,λ2 = z +

∞∑
k=2

(1+λ1(k−1))m−1

(1+λ2(k−1))m zk,

where m ∈ N0 = {0, 1, 2, ....} and λ2 ≥ λ1 ≥ 0.
Using the Hadamard product (2), we can derive the generalized derivative

operator Km,r,sλ1,λ2
as follows

(8) Km,r,sλ1,λ2
f(z) = z +

∞∑
k=2

(1+λ1(k−1))m−1

(1+λ2(k−1))m Γkakz
k

where Γk is as given in (6).

Remark 1. When (λ1 = λ2 = 0), (λ1 = m = 0) or (λ2 = 0 and m = 1) we
get Dziok-Srivastava operator [1].

Also there are three cases to get the Hohlov operator [3], by giving (λ1 =
λ2 = 0, αi = 0, βj = 0), (λ1 = m = 0, αi = 0, βj = 0) or (λ2 = 0,m = 1, αi =
0, βj = 0) where (i = 1...r and j = 1...s).

Putting (λ1 = λ2 = 0, α2 = 1, α3 = ... = αr = 0, β2 = ... = βs = 0),
(λ1 = m = 0, α2 = 1, α3 = ... = αr = 0, β2 = ... = βs = 0) or (λ2 = 0,m =
1, α2 = 1, α3 = ... = αr = 0, β2 = ... = βs = 0), we obtain the Carlson-Shaffer
operator [4].

There are six cases to get the Ruscheweyh operator [5] as follows: (λ1 =
λ2 = 0, α2 = α3 = ... = αr = 0, β1 = β2 = ... = βs = 0), (λ1 = m = 0, α2 =
α3 = ... = αr = 0, β1 = β2 = ... = βs = 0), (λ2 = 0,m = 1, α2 = α3 = ... =
αr = 0, β1 = β2 = ... = βs = 0),(λ1 = λ2 = 0, α2 = α3 = ... = αr = 0, β2 =
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... = βs = 0), (λ1 = m = 0, α2 = α3 = ... = αr = 0, β2 = ... = βs = 0) or
(λ2 = 0,m = 1, α2 = α3 = ... = αr = 0, β2 = ... = βs = 0).

If(λ2 = 0,m = 2, α2 = α3 = ... = αr = 0, β1 = β2 = ... = βs = 0), we get
the generalized Ruscheweyh derivative operator as well [6] .

Moreover, if we put (α2 = α3 = ... = αr = 0, β1 = β2 = ... = βs = 0) or
(α2 = α3 = ... = αr = 0, β1 = β2 = ... = βs = 0), we can get operator given
by Al-Abbadi and Darus [2].

After that, if(λ2 = 0,m = m + 1, α2 = α3 = ... = αr = 0, β1 = β2 = ... =
βs = 0), we get the generalized derivative operator by Al-Shaqsi and Darus [7].

�

Definition 2. Let f ∈ A. Then f(z) ∈ Sm,r,sλ1,λ2
(η) if and only if

(9) <
{
z[Km,r,sλ1,λ2

f(z)]′

Km,r,sλ1,λ2
f(z)

}
> η, 0 ≤ η < 1, z ∈ U .

In this present paper, we obtain the coefficient inequalities, closure theo-
rems, convolution properties for the functions belonging to the class Sm,r,sλ1,λ2

(η).

Finally, the preserving integral operators of the form

(10) Gc(z) = c

∫ 1

0
uc−2f(uz)du; (c > 0)

for the class Sm,r,sλ1,λ2
(η) is considered. We employ techniques similar to those

used earlier by [8].

2. COEFFICIENT ESTIMATE FOR THE CLASS Sm,r,sλ1,λ2
(η)

Theorem 3. Let f(z) ∈ A. If

(11)
∞∑
k=2

(k − η)
[

(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk|ak| ≤ 1− η, 0 ≤ η ≤ 1

then f(z) ∈ Sm,r,sλ1,λ2
(η). The result (11) is sharp.

Proof. Suppose that (11) holds. Since

1− η ≥
∞∑
k=2

(k − η)
[

(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk|ak|

≥
∞∑
k=2

η
[

(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk|ak| −

∞∑
k=2

k
[

(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk|ak|

we deduce that

1+
∞∑
k=2

k
[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk|ak|

1+
∞∑
k=2

[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk|ak|

> η.
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Thus

<

{
z
[
Km,r,sλ1,λ2

f(z)
]′

Km,r,sλ1,λ2
f(z)

}
> η, 0 ≤ η < 1, z ∈ U . �

We note that the assertion (11) is sharp, moreover, the extremal function
can be given by

f(z) = z +

∞∑
k=2

(1−η)

(k−η)
[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk
zk.

Corollary 4. If the hypotheses of Theorem 3 is satisfied, then

(12) |ak| ≤ (1−η)

(k−η)
[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk
, ∀k ≥ 2.

3. CLOSURE THEOREMS

Let the functions fj(z) be defined by

(13) fj(z) = z +

∞∑
k=2

ak,jz
k; (ak,j ≥ 0, z ∈ U).

Theorem 5. Let the functions fj(z) defined by (13) be in the class Sm,r,sλ1,λ2
(η)

for every j = 1, 2, ..., l. Then the function G(z) defined by

G(z) = z +
∞∑
k=2

bkz
k; (bk ≥ 0, z ∈ U)

is a member of the class Sm,r,sλ1,λ2
(η), where

bk = 1
l

l∑
j=1

ak,j ; (k ≥ 2).

Proof. Since fj(z) ∈ Sm,r,sλ1,λ2
(η), from Theorem 3 we can write

∞∑
k=2

(k − η)
[

(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk|ak,j | ≤ 1− η, 0 ≤ η ≤ 1
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for every j = 1, 2, ..., l. Thus

∞∑
k=2

(k − η)
[

(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk|bk| =

=

∞∑
k=2

(k − η)
[

(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk

∣∣∣∣1l l∑
j=1

ak,j

∣∣∣∣
≤ 1

l

l∑
j=1

(∑
k=n

∞(k − η)
[

(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk|ak,j |

)

= 1
l

l∑
j=1

(1− η) = (1− η).

In view of Theorem 3, we conclude that G(z) ∈ Sm,r,sλ1,λ2
(η). �

Theorem 6. The class Sm,r,sλ1,λ2
(η) is closed under convex linear combination.

Proof. Let fj(z) defined by (13) be belonged to Sm,r,sλ1,λ2
(η) for every j =

1, 2, ..., l, it is sufficient to prove that the function

h(z) = µf1(z) + (1− µ)f2(z)

is also in the class Sm,r,sλ1,λ2
(η).

Let us write, for 0 ≤ µ ≤ 1,

h(z) = z +

∞∑
k=n

{µak,1 + (1− µ)ak,2}zk,

we note that
∞∑
k=n

(k − η)
[

(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk

∣∣∣µak,1 + (1− µ)ak,2

∣∣∣ =

≤
∞∑
k=n

(k − η)
[

(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk|µak,1|+

+
∞∑
k=n

(k − η)
[

(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk|(1− µ)ak,2|

= µ

∞∑
k=n

(k − η)
[

(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk|ak,1|

+ (1− µ)
∞∑
k=n

(k − η)
[

(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk|ak,2|

≤ µ(1− η) + (1− µ)(1− η) = (1− η).
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It follows from Theorem 3 that h(z) ∈ Sm,r,sλ1,λ2
(η), which completes the proof.

�

Theorem 7. Let

f0(z) = z

and

fk(z) = z + (1−η)

(k−η)
[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk
zk.

Then f(z) ∈ Sm,r,sλ1,λ2
(η) if and only if it can be expressed in the form

(14) f(z) =
∞∑
k=0

ρkfk(z)

where ρk ≥ 0 and
∑∞

k=0 ρk = 1.

Proof. Firstly, suppose that

(15) f(z) =

∞∑
k=0

ρkfk(z)

where ρk ≥ 0 and
∑∞

k=0 ρk = 1. Then

f(z) =
∞∑
k=0

ρkfk(z) = ρ0f0(z) +
∞∑
k=1

ρkfk(z)

= z + (1−η)

(k−η)
[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk
ρkz

k.

We observe that
∞∑
k=n

(k − η)
[

(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk ·

[
(1−η)

(k−η)
[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk

]
ρk =

= (1− η)
∞∑
k=1

ρk = (1− η)(1− ρ0) ≤ (1− η).

In view of Theorem 3, we conclude that f(z) ∈ Sm,r,sλ1,λ2
(η).

Conversely, let us suppose that f(z) ∈ Sm,r,sλ1,λ2
(η). Since

(16) ak ≤ (1−η)

(k−η)
[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk
, ∀k ≥ 2.

Then by Corollary 4, we set

ρk =
(k−η)

[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk

(1−η) ak,

and

ρ0 = 1−
∞∑
k=1

ρk.
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We thus conclude that f(z) =
∑∞

k=0 ρkfk(z). This completes the proof of the
theorem. �

4. CONVOLUTION PROPERTIES

For functions fj(z) ∈ A; (j = 1, 2, ...,m) given by

fj(z) = z +

∞∑
k=2

ak,jz
k; (z ∈ U),

the Hadamard product (or convolution) of f1(z), f2(z), ..., fm(z) is defined by

Gm(z) = (f1 ∗ f2 ∗ ... ∗ fm)(z) = z +

∞∑
k=2

( m∏
j=1

ak,jz
k
)
.

Theorem 8. If fj(z) ∈ Sm,r,sλ1,λ2
(η) for each (j = 1, 2, ...,m), then Gm(z) ∈

Sm,r,sλ1,λ2
(η) with

η∗ =

m∏
j=1

(1−ηj)

m∏
j=1

(2−ηj)
[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk−

m∏
j=1

(1−ηj)
.

Proof. We use the mathematical induction to get to the required result.
Firstly, we have to show that G2(z) ∈ Sm,r,sλ1,λ2

(η) for f1(z) and f2(z) belonging

to Sm,r,sλ1,λ2
(η1) , Sm,r,sλ1,λ2

(η1) respectively. We can write

∞∑
k=2

(k−ηj)
[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk

(1−ηj) |ak,j | ≤ 1; (j = 1, 2).

Applying the Schwarz inequality, we have the following inequality

∞∑
k=2

√
(k−η1)

[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk

(1−η1)

(k−η2)
[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk

(1−η2)

√
|ak,1| · |ak,2| ≤ 1.

Then, we will determine the largest η∗ such that

∞∑
k=2

(k−η∗)
[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk

(1−η∗) |ak,1| · |ak,2| ≤ 1.

That is
∞∑
k=2

(k−η∗)
[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk

(1−η∗) |ak,1| · |ak,2| ≤

≤
∞∑
k=2

√
(k−η1)

[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk

(1−η1)

(k−η2)
[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk

(1−η2)

√
|ak,1||ak,2|.
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Therefore, we need to find the largest η∗ such that

(k−η∗)
[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk

(1−η∗)

√
|ak,1| · |ak,2| ≤

≤

√
(k−η1)

[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk

(1−η1)

(k−η2)
[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk

(1−η2)

for all k ≥ 2. Thus we can write

(k−η∗)
[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk

(1−η∗) ≤

≤
{

(k−η1)
[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk

(1−η1)

}{
(k−η2)

[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk

(1−η2)

}
.

After some calculations, we get

η∗ ≤ 1− (k−1)(1−η1)(1−η2)

(k−η1)(k−η2)
[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk−(1−η1)(1−η2)

.

We note that the right hand side of the above inequality is an increasing
function for all k ≥ 2. This implies that

η∗ = min
k≥2

{
(k−1)(1−η1)(1−η2)

(k−η1)(k−η2)
[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk−(1−η1)(1−η2)

}
= (1−η1)(1−η2)

(2−η1)(2−η2)
[
(1+λ1)

m−1

(1+λ2)
m

]
Γ2−(1−η1)(1−η2)

.(17)

Thus G2(z) ∈ Sm,r,sλ1,λ2
(η). Therefore the theorem is true for m = 2. Now, we

suppose that Gm−1(z) ∈ Sm,r,sλ1,λ2
(η0) and fm(z) ∈ Sm,r,sλ1,λ2

(ηm), where

η0 =

m−1∏
j=1

(1−ηj)

m−1∏
j=1

(2−ηj)
[
(1+λ1(k−1))m−1

(1+λ2(k−1))m−1

]
Γk−

m−1∏
j=1

(1−ηj)
.

Replacing η1 by η0, and η2 by ηm in the inequality (17), we get

η∗ = (1−η0)(1−ηm)

(2−η0)(2−ηm)
[
(1+λ1)

m−1

(1+λ2)
m

]
Γ2−(1−η0)(1−ηm)

=

m∏
j=1

(1−ηj)

m∏
j=1

(2−ηj)
[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk−

m∏
j=1

(1−ηj)
.

For the integer m the theorem ia also true. By the mathematical induction,
the proof of the theorem is complete. �
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5. INTEGRAL OPERATOR

In this section we consider integral transforms of functions in the class
Sm,r,sλ1,λ2

(η).

Theorem 9. Let the function f(z) defined by (1) be in the class Sm,r,sλ1,λ2
(η).

Then the integral transforms

(18) Gc(z) = c

∫ 1

0
uc−2f(uz)du; (c > 0)

are in the class Sm,r,sλ1,λ2
(γ), where

(19) γ = 1− c(1−η)
(2−η)(c+1)−c(1−η) .

Proof. Let f(z) = z +
∑∞

k=2 akz
k. Then we have

(20) Gc(z) = c

∫ 1

0
uc−2f(uz)du = z +

∞∑
k=2

(
c

c+k−1

)
akz

k.

Since f(z) ∈ Sm,r,sλ1,λ2
(η), we have

(21)
∞∑
k=2

(k−η)
[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk

(1−η) |ak| ≤ 1.

In view of Theorem 3, we shall find the largest γ for which

(22)
∞∑
k=2

(k−γ)
[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk

(1−γ)
(

c
c+k−1

) |ak| ≤ 1.

Let us find the range of values of γ for which

(k−γ)
[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk

(1−γ)
(

c
c+k−1

) ≤
(k−η)

[
(1+λ1(k−1))m−1

(1+λ2(k−1))m

]
Γk

(1−η) , (k ≥ 2).

After some calculations, we obtain from the above inequality that

γ ≤ 1− c(k−1)(1−η)
(k−η)(c+k−1)−c(1−η) .

We note that the right hand side of the above inequality is an increasing
function for all k ≥ 2. This implies that

γ = min
k≥2

{
1− c(k−1)(1−η)

(k−η)(c+k−1)−c(1−η)

}
= 1− c(1−η)

(2−η)(c+1)−c(1−η) .

The proof is complete. �
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