REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Rev. Anal. Numér. Théor. Approx., vol. 43 (2014) no. 2, pp. 103–112 ictp.acad.ro/jnaat

CERTAIN PROPERTIES FOR A CLASS OF ANALYTIC FUNCTIONS ASSOCIATED WITH HYPERGEOMETRIC FUNCTIONS

KHADEEJAH RASHEED ALHINDI* and MASLINA DARUS[†]

Abstract. In this particular paper, we investigate coefficient inequalities, closure theorems, convolution properties for the functions belonging to the class $S_{\lambda_1,\lambda_2}^{m,r,s}(\eta)$. Further, integral transforms of functions in the same class are also discussed.

MSC 2000. 30C45, 33D15, 05A30.

Keywords. Analytic function, coefficient inequalities, Schwarz inequality, closure theorems, Hadamard product, convolution properties, integral operator.

1. INTRODUCTION

Let \mathcal{A} be the class of analytic functions of the form

(1)
$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k; \quad z \in (\mathbb{U} = \{z \in C : |z| < 1\})$$

and \mathcal{S} be the subclass of \mathcal{A} consisting of univalent functions, and $\mathcal{S}(\alpha)$, $\mathcal{C}(\alpha)$ ($0 < \alpha \leq 1$) denote the subclasses of \mathcal{A} consisting of functions that are starlike of order α and convex of order α in \mathbb{U} , respectively.

For two analytic functions $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$ and $g(z) = z + \sum_{k=2}^{\infty} b_k z^k$ in the open unit disc $\mathbb{U} = \{z \in C : |z| < 1\}$, the Hadamard product (or convolution) f * g of f and g is defined by

(2)
$$f(z) * g(z) = (f * g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k.$$

For complex parameters $\alpha_1, ..., \alpha_r$ and $\beta_1, ..., \beta_s$ $(\beta_j \neq 0, -1, -2, ...; j = 1...s)$, Dziok and Srivastava [1] defined the generalized hypergeometric function

$$_{r}F_{s}(\alpha_{1},...,\alpha_{r};\beta_{1},...,\beta_{s};z)$$

^{*}School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, e-mail: m.kh83@yahoo.co.uk. The work of this author has been supported by Zamalah and GUP-2013-004.

[†]School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, e-mail: maslina@ukm.edu.my (Corresponding author). The work of this author has been supported by GUP-2013-004.

by

104

(3)
$${}_{r}F_{s}(\alpha_{1},...,\alpha_{r};\beta_{1},...,\beta_{s};z) = \sum_{k=0}^{\infty} \frac{(\alpha_{1})_{k}...(\alpha_{r})_{k}}{(\beta_{1})_{k},...,(\beta_{s})_{k}} \frac{z^{k}}{k!};$$

(4)
$$(r \le s+1; r, s \in \mathbb{N}_0 = \mathbb{N} \cup 0; z \in \mathcal{U}),$$

where $(x)_k$ is the Pochhammer symbol defined, in terms of Gamma function Γ , by

$$(x)_k = \frac{\Gamma(x+k)}{\Gamma(x)} = \begin{cases} 1, & \text{if } k = 0, \\ x(x+1)...(x+k-1), & \text{if } k \in \mathbb{N}. \end{cases}$$

Dziok and Srivastava [1] defined also the linear operator

(5)
$$H(\alpha_1, ..., \alpha_r; \beta_1, ..., \beta_s)f(z) = z + \sum_{k=2}^{\infty} \Gamma_k a_k z^k$$

where

(6)
$$\Gamma_k = \frac{(\alpha_1)_{k-1}...(\alpha_r)_{k-1}}{(\beta_1)_{k-1},...,(\beta_s)_{k-1}(k-1)!}$$

Al-Abbadi and Darus [2] defined the analytic function

(7)
$$\Phi_{\lambda_1,\lambda_2}^m = z + \sum_{k=2}^{\infty} \frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m} z^k,$$

where $m \in \mathbb{N}_0 = \{0, 1, 2, ...\}$ and $\lambda_2 \ge \lambda_1 \ge 0$.

Using the Hadamard product (2), we can derive the generalized derivative operator $\mathcal{K}^{m,r,s}_{\lambda_1,\lambda_2}$ as follows

(8)
$$\mathcal{K}_{\lambda_1,\lambda_2}^{m,r,s}f(z) = z + \sum_{k=2}^{\infty} \frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m} \Gamma_k a_k z^k$$

where Γ_k is as given in (6).

REMARK 1. When $(\lambda_1 = \lambda_2 = 0)$, $(\lambda_1 = m = 0)$ or $(\lambda_2 = 0 \text{ and } m = 1)$ we get Dziok-Srivastava operator [1].

Also there are three cases to get the Hohlov operator [3], by giving $(\lambda_1 = \lambda_2 = 0, \alpha_i = 0, \beta_j = 0)$, $(\lambda_1 = m = 0, \alpha_i = 0, \beta_j = 0)$ or $(\lambda_2 = 0, m = 1, \alpha_i = 0, \beta_j = 0)$ where (i = 1...r and j = 1...s).

Putting $(\lambda_1 = \lambda_2 = 0, \alpha_2 = 1, \alpha_3 = ... = \alpha_r = 0, \beta_2 = ... = \beta_s = 0),$ $(\lambda_1 = m = 0, \alpha_2 = 1, \alpha_3 = ... = \alpha_r = 0, \beta_2 = ... = \beta_s = 0)$ or $(\lambda_2 = 0, m = 1, \alpha_2 = 1, \alpha_3 = ... = \alpha_r = 0, \beta_2 = ... = \beta_s = 0),$ we obtain the Carlson-Shaffer operator [4].

There are six cases to get the Ruscheweyh operator [5] as follows: $(\lambda_1 = \lambda_2 = 0, \alpha_2 = \alpha_3 = \dots = \alpha_r = 0, \beta_1 = \beta_2 = \dots = \beta_s = 0), (\lambda_1 = m = 0, \alpha_2 = \alpha_3 = \dots = \alpha_r = 0, \beta_1 = \beta_2 = \dots = \beta_s = 0), (\lambda_2 = 0, m = 1, \alpha_2 = \alpha_3 = \dots = \alpha_r = 0, \beta_1 = \beta_2 = \dots = \beta_s = 0), (\lambda_1 = \lambda_2 = 0, \alpha_2 = \alpha_3 = \dots = \alpha_r = 0, \beta_2 = \alpha_s = 0)$

... = $\beta_s = 0$), ($\lambda_1 = m = 0, \alpha_2 = \alpha_3 = ... = \alpha_r = 0, \beta_2 = ... = \beta_s = 0$) or ($\lambda_2 = 0, m = 1, \alpha_2 = \alpha_3 = ... = \alpha_r = 0, \beta_2 = ... = \beta_s = 0$).

If $(\lambda_2 = 0, m = 2, \alpha_2 = \alpha_3 = \dots = \alpha_r = 0, \beta_1 = \beta_2 = \dots = \beta_s = 0)$, we get the generalized Ruscheweyh derivative operator as well [6].

Moreover, if we put $(\alpha_2 = \alpha_3 = ... = \alpha_r = 0, \beta_1 = \beta_2 = ... = \beta_s = 0)$ or $(\alpha_2 = \alpha_3 = ... = \alpha_r = 0, \beta_1 = \beta_2 = ... = \beta_s = 0)$, we can get operator given by Al-Abbadi and Darus [2].

After that, if $(\lambda_2 = 0, m = m + 1, \alpha_2 = \alpha_3 = ... = \alpha_r = 0, \beta_1 = \beta_2 = ... = \beta_s = 0)$, we get the generalized derivative operator by Al-Shaqsi and Darus [7].

DEFINITION 2. Let $f \in \mathcal{A}$. Then $f(z) \in \mathcal{S}_{\lambda_1,\lambda_2}^{m,r,s}(\eta)$ if and only if

(9)
$$\Re\left\{\frac{z[\mathcal{K}_{\lambda_1,\lambda_2}^{m,r,s}f(z)]'}{\mathcal{K}_{\lambda_1,\lambda_2}^{m,r,s}f(z)}\right\} > \eta, \quad 0 \le \eta < 1, z \in \mathcal{U}.$$

In this present paper, we obtain the coefficient inequalities, closure theorems, convolution properties for the functions belonging to the class $S_{\lambda_1,\lambda_2}^{m,r,s}(\eta)$. Finally, the preserving integral operators of the form

(10)
$$G_c(z) = c \int_0^1 u^{c-2} f(uz) du; \qquad (c > 0)$$

for the class $\mathcal{S}_{\lambda_1,\lambda_2}^{m,r,s}(\eta)$ is considered. We employ techniques similar to those used earlier by [8].

2. Coefficient estimate for the class $\mathcal{S}^{m,r,s}_{\lambda_1,\lambda_2}(\eta)$

THEOREM 3. Let $f(z) \in \mathcal{A}$. If

(11)
$$\sum_{k=2}^{\infty} (k-\eta) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m} \right] \Gamma_k |a_k| \le 1-\eta, \qquad 0 \le \eta \le 1$$

then $f(z) \in \mathcal{S}_{\lambda_1,\lambda_2}^{m,r,s}(\eta)$. The result (11) is sharp.

Proof. Suppose that (11) holds. Since

$$1 - \eta \geq \sum_{k=2}^{\infty} (k - \eta) \left[\frac{(1 + \lambda_1 (k - 1))^{m-1}}{(1 + \lambda_2 (k - 1))^m} \right] \Gamma_k |a_k|$$

$$\geq \sum_{k=2}^{\infty} \eta \left[\frac{(1 + \lambda_1 (k - 1))^{m-1}}{(1 + \lambda_2 (k - 1))^m} \right] \Gamma_k |a_k| - \sum_{k=2}^{\infty} k \left[\frac{(1 + \lambda_1 (k - 1))^{m-1}}{(1 + \lambda_2 (k - 1))^m} \right] \Gamma_k |a_k|$$

we deduce that

$$\frac{1+\sum_{k=2}^{\infty} k \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m} \right] \Gamma_k |a_k|}{1+\sum_{k=2}^{\infty} \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m} \right] \Gamma_k |a_k|} > \eta.$$

Thus

$$\Re\left\{\frac{z\big[\mathcal{K}^{m,r,s}_{\lambda_1,\lambda_2}f(z)\big]'}{\mathcal{K}^{m,r,s}_{\lambda_1,\lambda_2}f(z)}\right\} > \eta, \qquad 0 \le \eta < 1, z \in \mathcal{U}.$$

We note that the assertion (11) is sharp, moreover, the extremal function can be given by

$$f(z) = z + \sum_{k=2}^{\infty} \frac{(1-\eta)}{(k-\eta) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m}\right] \Gamma_k} z^k.$$

COROLLARY 4. If the hypotheses of Theorem 3 is satisfied, then

(12)
$$|a_k| \le \frac{(1-\eta)}{(k-\eta) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m}\right] \Gamma_k}, \quad \forall k \ge 2.$$

3. CLOSURE THEOREMS

Let the functions $f_j(z)$ be defined by

(13)
$$f_j(z) = z + \sum_{k=2}^{\infty} a_{k,j} z^k; \qquad (a_{k,j} \ge 0, z \in \mathcal{U}).$$

THEOREM 5. Let the functions $f_j(z)$ defined by (13) be in the class $\mathcal{S}_{\lambda_1,\lambda_2}^{m,r,s}(\eta)$ for every j = 1, 2, ..., l. Then the function G(z) defined by

$$G(z) = z + \sum_{k=2}^{\infty} b_k z^k; \qquad (b_k \ge 0, z \in \mathcal{U})$$

is a member of the class $\mathcal{S}^{m,r,s}_{\lambda_1,\lambda_2}(\eta),$ where

$$b_k = \frac{1}{l} \sum_{j=1}^{l} a_{k,j};$$
 $(k \ge 2).$

Proof. Since $f_j(z) \in \mathcal{S}^{m,r,s}_{\lambda_1,\lambda_2}(\eta)$, from Theorem 3 we can write

$$\sum_{k=2}^{\infty} (k-\eta) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m} \right] \Gamma_k |a_{k,j}| \le 1-\eta, \qquad 0 \le \eta \le 1$$

for every j = 1, 2, ..., l. Thus

$$\sum_{k=2}^{\infty} (k-\eta) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m} \right] \Gamma_k |b_k| =$$

$$= \sum_{k=2}^{\infty} (k-\eta) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m} \right] \Gamma_k \left| \frac{1}{l} \sum_{j=1}^l a_{k,j} \right|$$

$$\leq \frac{1}{l} \sum_{j=1}^l \left(\sum_{k=n}^l \infty (k-\eta) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m} \right] \Gamma_k |a_{k,j}| \right)$$

$$= \frac{1}{l} \sum_{j=1}^l (1-\eta) = (1-\eta).$$

In view of Theorem 3, we conclude that $G(z) \in \mathcal{S}^{m,r,s}_{\lambda_1,\lambda_2}(\eta)$.

THEOREM 6. The class $\mathcal{S}_{\lambda_1,\lambda_2}^{m,r,s}(\eta)$ is closed under convex linear combination.

Proof. Let $f_j(z)$ defined by (13) be belonged to $S^{m,r,s}_{\lambda_1,\lambda_2}(\eta)$ for every j = 1, 2, ..., l, it is sufficient to prove that the function

$$h(z) = \mu f_1(z) + (1 - \mu) f_2(z)$$

is also in the class $S_{\lambda_1,\lambda_2}^{m,r,s}(\eta)$. Let us write, for $0 \le \mu \le 1$,

$$h(z) = z + \sum_{k=n}^{\infty} \{\mu a_{k,1} + (1-\mu)a_{k,2}\} z^k,$$

we note that

$$\begin{split} &\sum_{k=n}^{\infty} (k-\eta) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m} \right] \Gamma_k \left| \mu a_{k,1} + (1-\mu) a_{k,2} \right| = \\ &\leq \sum_{k=n}^{\infty} (k-\eta) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m} \right] \Gamma_k \left| \mu a_{k,1} \right| + \\ &+ \sum_{k=n}^{\infty} (k-\eta) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m} \right] \Gamma_k \left| (1-\mu) a_{k,2} \right| \\ &= \mu \sum_{k=n}^{\infty} (k-\eta) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m} \right] \Gamma_k \left| a_{k,1} \right| \\ &+ (1-\mu) \sum_{k=n}^{\infty} (k-\eta) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m} \right] \Gamma_k \left| a_{k,2} \right| \\ &\leq \mu (1-\eta) + (1-\mu) (1-\eta) = (1-\eta). \end{split}$$

It follows from Theorem 3 that $h(z) \in \mathcal{S}^{m,r,s}_{\lambda_1,\lambda_2}(\eta)$, which completes the proof.

THEOREM 7. Let

$$f_0(z) = z$$

and

$$f_k(z) = z + \frac{(1-\eta)}{(k-\eta) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m} \right] \Gamma_k} z^k.$$

Then $f(z) \in S^{m,r,s}_{\lambda_1,\lambda_2}(\eta)$ if and only if it can be expressed in the form

(14)
$$f(z) = \sum_{k=0}^{\infty} \rho_k f_k(z)$$

where $\rho_k \ge 0$ and $\sum_{k=0}^{\infty} \rho_k = 1$.

Proof. Firstly, suppose that

(15)
$$f(z) = \sum_{k=0}^{\infty} \rho_k f_k(z)$$

where $\rho_k \ge 0$ and $\sum_{k=0}^{\infty} \rho_k = 1$. Then

$$f(z) = \sum_{k=0}^{\infty} \rho_k f_k(z) = \rho_0 f_0(z) + \sum_{k=1}^{\infty} \rho_k f_k(z)$$
$$= z + \frac{(1-\eta)}{(k-\eta) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m}\right] \Gamma_k} \rho_k z^k.$$

We observe that

$$\sum_{k=n}^{\infty} (k-\eta) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m} \right] \Gamma_k \cdot \left[\frac{(1-\eta)}{(k-\eta) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m} \right] \Gamma_k} \right] \rho_k = (1-\eta) \sum_{k=1}^{\infty} \rho_k = (1-\eta)(1-\rho_0) \le (1-\eta).$$

In view of Theorem 3, we conclude that $f(z) \in \mathcal{S}_{\lambda_1,\lambda_2}^{m,r,s}(\eta)$. Conversely, let us suppose that $f(z) \in \mathcal{S}_{\lambda_1,\lambda_2}^{m,r,s}(\eta)$. Since

(16)
$$a_k \leq \frac{(1-\eta)}{(k-\eta) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m}\right] \Gamma_k}, \quad \forall k \geq 2.$$

Then by Corollary 4, we set

$$\rho_k = \frac{(k-\eta) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m} \right] \Gamma_k}{(1-\eta)} a_k,$$

and

$$\rho_0 = 1 - \sum_{k=1}^{\infty} \rho_k.$$

We thus conclude that $f(z) = \sum_{k=0}^{\infty} \rho_k f_k(z)$. This completes the proof of the theorem.

4. CONVOLUTION PROPERTIES

For functions $f_j(z) \in \mathcal{A}; (j = 1, 2, ..., m)$ given by

$$f_j(z) = z + \sum_{k=2}^{\infty} a_{k,j} z^k; \qquad (z \in \mathcal{U}),$$

the Hadamard product (or convolution) of $f_1(z), f_2(z), ..., f_m(z)$ is defined by

$$G_m(z) = (f_1 * f_2 * \dots * f_m)(z) = z + \sum_{k=2}^{\infty} \left(\prod_{j=1}^m a_{k,j} z^k\right).$$

THEOREM 8. If $f_j(z) \in S^{m,r,s}_{\lambda_1,\lambda_2}(\eta)$ for each (j = 1, 2, ..., m), then $G_m(z) \in S^{m,r,s}_{\lambda_1,\lambda_2}(\eta)$ with

$$\eta^* = \frac{\prod_{j=1}^m (1-\eta_j)}{\prod_{j=1}^m (2-\eta_j) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m}\right] \Gamma_k - \prod_{j=1}^m (1-\eta_j)}$$

Proof. We use the mathematical induction to get to the required result. Firstly, we have to show that $G_2(z) \in \mathcal{S}_{\lambda_1,\lambda_2}^{m,r,s}(\eta)$ for $f_1(z)$ and $f_2(z)$ belonging to $\mathcal{S}_{\lambda_1,\lambda_2}^{m,r,s}(\eta_1)$, $\mathcal{S}_{\lambda_1,\lambda_2}^{m,r,s}(\eta_1)$ respectively. We can write

$$\sum_{k=2}^{\infty} \frac{(k-\eta_j) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m} \right] \Gamma_k}{(1-\eta_j)} |a_{k,j}| \le 1; \qquad (j=1,2).$$

Applying the Schwarz inequality, we have the following inequality

$$\sum_{k=2}^{\infty} \sqrt{\frac{(k-\eta_1) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m}\right] \Gamma_k}{(1-\eta_1)}} \frac{(k-\eta_2) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m}\right] \Gamma_k}{(1-\eta_2)} \sqrt{|a_{k,1}| \cdot |a_{k,2}|} \le 1.$$

Then, we will determine the largest η^* such that

$$\sum_{k=2}^{\infty} \frac{(k-\eta^*) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m} \right] \Gamma_k}{(1-\eta^*)} |a_{k,1}| \cdot |a_{k,2}| \le 1.$$

That is

$$\sum_{k=2}^{\infty} \frac{(k-\eta^*) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m}\right] \Gamma_k}{(1-\eta^*)} |a_{k,1}| \cdot |a_{k,2}| \le \\ \le \sum_{k=2}^{\infty} \sqrt{\frac{(k-\eta_1) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m}\right] \Gamma_k}{(1-\eta_1)}} \frac{(k-\eta_2) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m}\right] \Gamma_k}{(1-\eta_2)} \sqrt{|a_{k,1}||a_{k,2}|}.$$

Therefore, we need to find the largest η^* such that

$$\frac{(k-\eta^*)\left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m}\right]\Gamma_k}{(1-\eta^*)}\sqrt{|a_{k,1}|\cdot|a_{k,2}|} \le \sqrt{\frac{(k-\eta_1)\left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m}\right]\Gamma_k}{(1-\eta_1)}}\frac{(k-\eta_2)\left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m}\right]\Gamma_k}{(1-\eta_2)}$$

for all $k \geq 2$. Thus we can write

$$\frac{\frac{(k-\eta^*)\left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m}\right]\Gamma_k}{(1-\eta^*)} \leq \\ \leq \left\{\frac{(k-\eta_1)\left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m}\right]\Gamma_k}{(1-\eta_1)}\right\}\left\{\frac{(k-\eta_2)\left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m}\right]\Gamma_k}{(1-\eta_2)}\right\}$$

After some calculations, we get

$$\eta^* \le 1 - \frac{(k-1)(1-\eta_1)(1-\eta_2)}{(k-\eta_1)(k-\eta_2) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m}\right] \Gamma_k - (1-\eta_1)(1-\eta_2)}$$

We note that the right hand side of the above inequality is an increasing function for all $k \ge 2$. This implies that

(17)
$$\eta^* = \min_{k \ge 2} \left\{ \frac{(k-1)(1-\eta_1)(1-\eta_2)}{(k-\eta_1)(k-\eta_2) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m} \right] \Gamma_k - (1-\eta_1)(1-\eta_2)} \right\}$$
$$= \frac{(1-\eta_1)(1-\eta_2)}{(2-\eta_1)(2-\eta_2) \left[\frac{(1+\lambda_1)^{m-1}}{(1+\lambda_2)^m} \right] \Gamma_2 - (1-\eta_1)(1-\eta_2)}.$$

Thus $G_2(z) \in \mathcal{S}_{\lambda_1,\lambda_2}^{m,r,s}(\eta)$. Therefore the theorem is true for m = 2. Now, we suppose that $G_{m-1}(z) \in \mathcal{S}_{\lambda_1,\lambda_2}^{m,r,s}(\eta_0)$ and $f_m(z) \in \mathcal{S}_{\lambda_1,\lambda_2}^{m,r,s}(\eta_m)$, where

$$\eta_0 = \frac{\prod_{j=1}^{m-1} (1-\eta_j)}{\prod_{j=1}^{m-1} (2-\eta_j) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^{m-1}} \right] \Gamma_k - \prod_{j=1}^{m-1} (1-\eta_j)}.$$

Replacing η_1 by η_0 , and η_2 by η_m in the inequality (17), we get

$$\eta^* = \frac{(1-\eta_0)(1-\eta_m)}{(2-\eta_0)(2-\eta_m) \left[\frac{(1+\lambda_1)^{m-1}}{(1+\lambda_2)^m}\right] \Gamma_2 - (1-\eta_0)(1-\eta_m)}}$$
$$= \frac{\prod_{j=1}^m (1-\eta_j)}{\prod_{j=1}^m (2-\eta_j) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m}\right] \Gamma_k - \prod_{j=1}^m (1-\eta_j)}.$$

For the integer m the theorem is also true. By the mathematical induction, the proof of the theorem is complete.

5. INTEGRAL OPERATOR

In this section we consider integral transforms of functions in the class $S_{\lambda_1,\lambda_2}^{m,r,s}(\eta)$.

THEOREM 9. Let the function f(z) defined by (1) be in the class $\mathcal{S}_{\lambda_1,\lambda_2}^{m,r,s}(\eta)$. Then the integral transforms

(18)
$$G_c(z) = c \int_0^1 u^{c-2} f(uz) du; \qquad (c > 0)$$

are in the class $\mathcal{S}^{m,r,s}_{\lambda_1,\lambda_2}(\gamma)$, where

(19)
$$\gamma = 1 - \frac{c(1-\eta)}{(2-\eta)(c+1) - c(1-\eta)}.$$

Proof. Let $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$. Then we have

(20)
$$G_c(z) = c \int_0^1 u^{c-2} f(uz) du = z + \sum_{k=2}^\infty \left(\frac{c}{c+k-1}\right) a_k z^k.$$

Since $f(z) \in \mathcal{S}_{\lambda_1,\lambda_2}^{m,r,s}(\eta)$, we have

(21)
$$\sum_{k=2}^{\infty} \frac{(k-\eta) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m} \right] \Gamma_k}{(1-\eta)} |a_k| \le 1.$$

In view of Theorem 3, we shall find the largest γ for which

(22)
$$\sum_{k=2}^{\infty} \frac{(k-\gamma) \left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m} \right] \Gamma_k}{(1-\gamma) \left(\frac{c}{c+k-1} \right)} |a_k| \le 1.$$

Let us find the range of values of γ for which

$$\frac{(k-\gamma)\left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m}\right]\Gamma_k}{(1-\gamma)\left(\frac{c}{c+k-1}\right)} \le \frac{(k-\eta)\left[\frac{(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m}\right]\Gamma_k}{(1-\eta)}, \qquad (k\ge 2).$$

After some calculations, we obtain from the above inequality that

$$\gamma \le 1 - \frac{c(k-1)(1-\eta)}{(k-\eta)(c+k-1) - c(1-\eta)}$$

We note that the right hand side of the above inequality is an increasing function for all $k \ge 2$. This implies that

$$\gamma = \min_{k \ge 2} \left\{ 1 - \frac{c(k-1)(1-\eta)}{(k-\eta)(c+k-1) - c(1-\eta)} \right\}$$
$$= 1 - \frac{c(1-\eta)}{(2-\eta)(c+1) - c(1-\eta)}.$$

The proof is complete.

ACKNOWLEDGEMENTS. The authors wish to thank the referee for the comments to improve the contents of the manuscript.

9

REFERENCES

- [1] J. DZIOK and H. M. SRIVASTAVA, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., **103**(1) (1999), pp. 1–13. ^I
- [2] M. H. AL-ABBADI and M. DARUS, Differential subordination for new generalized derivative operator, Acta Univ. Apulensis, 20 (2009), pp. 265–280.
- [3] YU. E. HOHLOV, Operators and operations in the class of univalent functions, Izv. Vyssh. Uchebn. Zaved. Mat., 10(10) (1978), pp. 83–89.
- B. C. CARLSON and D. B. SHAFFER, Starlike and prestarlike hypergeometric function, SIAM J. Math. Anal., 15(4) (1984), pp. 737–745, 1984.
- [5] S. RUSCHEWEYH, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), pp. 109–115. III
- [6] K. AL-SHAQSI and M. DARUS, On univalent functions with respect to the k-symmetric points defined by a generalization Ruscheweyh derivative operators, Jour. Anal. Appl., 7(1) (2009), pp. 53–61.
- [7] K. AL-SHAQSI and M. DARUS, Differential Subordination with generalized derivative operator, Int. J. Comp. Math. Sci., 2(2) (2008), pp. 75–78.
- [8] J. NISHIWAKI and S. OWA, Convolutions for certain analytic functions, Gen. Math., 15 (2007), no. 2–3, pp. 38–51.

Received by the editors: February 24, 2014. Published online: January 23, 2015.