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GLOBAL SMOOTHNESS AND APPROXIMATION
BY GENERALIZED DISCRETE SINGULAR OPERATORS
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Abstract. In this article we continue with the study of generalized discrete sin-
gular operators over the real line regarding their simultaneous global smoothness
preservation property with respect to L, norm for 1 < p < oo, by involving higher
order moduli of smoothness. Additionally we study their simultaneous approx-
imation to the unit operator with rates involving the modulus of smoothness.
The Jackson type inequalities that produced in this article are almost sharp,
containing neat constants, and they reflect the high order of differentiability of
involved function.
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1. INTRODUCTION

This article is motivated mainly by [3], [6], Chapter 18, and [§], where J.
Favard in 1944 introduced the discrete version of Gauss-Weierstrass operator

[e.e]
(1) (Fuf) (@) = 2= 3 f(&)exp (-n(2—2)%),
V=—00
n € N, which has the property that (F,f) (z) converges to f(z) pointwise
for each x € R, and uniformly on any compact subinterval of R, for each
continuous function f (f € C(R)) that fulfills | f(t)] < AeB¥, t € R, where A,
B are positive constants.

We are also greatly motivated by [I] and [2].

Furthermore, we are inspired by [4] and [5] where the authors studied point-
wise, uniform, and L, p > 1, approximation properties of generalized discrete
singular operators of Picard, Gauss-Weierstrass, and Poisson-Cauchy type and
their non-unitary analogs.

In this article, we study the discrete operators mentioned above regarding
their global smoothness preservation properties, additionally we study their
simultaneous global smoothness and approximation properties in L, norm for
1<p< oo
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2. BACKGROUND

In [0], the authors studied the global smoothness preservation properties
and differentiability, also approximations, of smooth general singular integral
operators O, ¢(f;x), defined as follows.

Let £ > 0 and p¢ be Borel probability measures on R. For r € Nand n € Z
they defined

(=" ()i j=1,...,m
(2) Qj = 1_ i (_1)r—i (:)anj j =0,
i=1

that is ) a; = 1. Let f: R — R be Borel measurable, they defined for = € R,
§=0

3 Orclia) = [ (£ afla+ it))duele).
oo V=
They supposed O, ¢(f;x) € R, Vo € R.
Let f € C(R), for m € N the m-th modulus of smoothness for 1 < p < oo,
is given by

(4) win(f,h)p == sup [[AY f(2)l|p.a,
0<t<h
where
(5) AP f (@) =D (=1 () fa + jt),
j=0
see also [7, p. 44].
Denote
(6) wm(fvh)oo :wm(fvh)
Notice that
(7) w(cf, h)p = |c|wm(f, h)p

where c is a real constant.
They gave the main global smoothness preservation result in [6] as follows:

THEOREM 1. Let h >0, f € C(R).
i) Suppose ©,¢(f;x) €R, £ >0, Vo € R and wp,(f, h) < co. Then

T

®) wn(Orefsh) < (X lagl Jwm(f:h).

7=0
ii) Suppose f € (C(R)NLy(R)), p>1. Then

9) (@1 )y < (L I oo (£
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Next, in [6], the authors discussed about the derivatives of O, ¢ (f;x) and
their impact to simultaneous global smoothness preservation and convergence
of these operators.

In [6], they obtained also the next differentiation result

THEOREM 2. Let f € C"Y(R), such that f") ezists, n,r € N. Furthermore
assume that for each x € R the function f)(x+ jt) € Li(R, pe) as a function
of t, foralli=0,1,...,n—1; 5 =1,...,r. Suppose that there exist g; ; > 0,
i=1,...,n; 5 =1,...,r, with g;j € L1(R, pg) such that for each v € R we
have

(10) fD (@ + jt)] < gij(t),

for pe-almost allt € R, alli =1,...,n;5=1,2,...,r. Then fO(z+jt) defines
a pg-integrable function with respect to t for each x € R, all © = 1,...,n;
j=1,...,r, and

(1) (Ore (f;2) = O£ Vs 2),

forallx e R, alli=1,...,n.

On the other hand, in [4], the authors defined important special cases of
©,.¢ operators for discrete probability measures ji¢ as follows:

Let feC"(R),neZ",0<£(<1,zeR.

i) When

—lv|

3

(12) e(v) =

—lvl>

e
o0
> et
v=—o00

they defined the generalized discrete Picard operators as

=) T —lv]
> (Z a]-f(z—i-ju))e 3

(13) :,g (fafv) = jzooo =p
> e ¢
i1) When
2
(14) pe(v) = —=—,
> et

they defined the generalized discrete Gauss-Weierstrass operators as

_,2
> (z ajf<x+ju)>es
(15 ) = R
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iii) Let « € N, and 8 > é When
V2a+£2a)_f8

_§ (V2a+§2a)—ﬁ

(16) pe(v) =

)

they defined the generalized discrete Poisson-Cauchy operators as

ol ( > ot (W‘v)) (vPerg2e)™?
a7 Ot (i) im om0 : |
S (vReqg20)7h

V=—00

They observed that for ¢ constant they have
(18) Ple(cm) =W (gz) = Qe (o) = c.
They assumed that the operators P, (f;z), W (fiz), and Q. (f;z) € R,
for € R. This is the case when [|f|| g < oc.
iv) When

—lv|

e £
_1>
1+2¢e €

(19) e (V) = pe.p(v) =

they defined the generalized discrete non-unitary Picard operators as

0 r —Iv|
> (Z Oljf(fEJer))e ¢

(20) Prg (fia) = ="
1+2¢e ¢
Here p¢ p(v) has mass
o =
> et
(21) mep = 1
1+2¢e €
They observed that
—lv]
pep(v) _ €
(22) mep T Tl
> et

which is the probability measure defining the operators P;i ¢
v) When

2

—v

e &

\/ﬁ(lferf(%)>+17

(23) pe(v) = e (v) =

with erf(z) = % Iy et dt, erf(co) = 1, they defined the generalized discrete
non-unitary Gauss-Weierstrass operators as

—2
u:ij:oo <Ji:0 ajf(x+ju)>e 3
(24) Wie (f;z):= ﬁ(lferf(%>>+l
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Here pge w (v) has mass

(25) mew = == n >>+1.

They observed that

(26) pew (V) — e &

me,w

M8
o
m‘g

v=—o00

which is the probability measure defining the operators W’ ¢
The authors observed that P.¢ (f;x), Wy¢ (f;2) € R, for z € R.
We notice that

(27) Pre(fiz) = M (§) Pre (f2),

where

(28) A (§) = ——,
1+2e &

and

(29) Wie (f;z) = X () Wi (f52),

where

(30) M ()= —7—

ﬁ(l—ﬂ(%»ﬂ'
In [], for k = 1,...,n, the authors defined the ratios of sums

(31) Chg = =T

[

s

> o
(32) p?;,g =,

v=—00

and for a € N, g > %Ta“, they introduced

f Vk(y2a+é-2a)76
(33) Ghe = .
k& > (V2a+£2a)*3

v=—00
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Furthermore, they proved that these ratios of sums Cz,g, p*,;é, and q,’;,g are finite
for all £ € (0,1].
In [4], the authors also proved

(34) m&p:":_“ﬁ%l, as§—>0+
1+28e &
and
OO l/2
> e &
35 mew = y=— -1, as&—07.
(35) W= e (at( ) ¢
The authors introduced also
(36) =Y ajj*, k=1,...,neN
j=1
Additionally, in [4], the authors defined the following error quantities:
(37) Eop(f,z) = Pe(fiz) — f(2)
0o r —lv
E.(Feterin)e
= = _1 —f(l‘),
1+2€e €
(38) Eow(f,z) =Wy e(fiz) — f(2)
o) r —v?
£ (£ oysivei)e
et - f(@).
()
Furthermore, they introduced the errors (n € N):
) S
(39)  Enp(fi2)i=Prel(fin) = flo) = Y Igo=—=—
—1 142¢e” €
and
[e.e) V2

(40)  Enw(f,2) = We(fiz) — fl2) = 3 Lo —== T

Next, they obtained the inequalities
(41) |Eo.p(f,x)| <mep |Pie(fiz) = f(@)] + [f(@)] Ime,p — 1],

(42)  [Bow(f,2)] < mew [Wie(fi2) = f(2)] + £ (@) Imew — 1],



7 Global smoothness and approximation by generalized discrete singular operators 119

and

(43)  |Enp(f,2)] <

< mgp

. Y.
Pr,g(ﬁx)_f(x)_ L k!( )5kck,f —|—|f(a:)||m§’p—1|,

k=1

with
(44)  [Enw(f,z)| <

. YA
Wie(fiz) — f(z) - Z ! k;( )5kpk,§
k=1

< mew

+1f (@)l fmew — 1]
In [4], they first gave the following simultaneous approximation results for
unitary operators. They showed

THEOREM 3. Let f € C™(R) with f € Cu(R) (uniformly continuous
functions on R).

i) Forn e N,
Gl
(15) Pt - 1) - 30 B <
k=1 00,T
o r —lv]
wr(f(n>7€) <V:Z_:OOIV|"(1+|£> e & )
- n! 0o —|v )
1 Z . : |
and
. D0 () o .
(16) Wie i) - @) = Y e <
k=1 00,
2
> ir(1+14)"e ¢
w (n) v=—00 ¢
< it @( e )
> e &
ii) For n =0,
o =l
. 2 () e
(47) 1P (f32) = f(@)] o, < wr(f6) |
> et
and
2
. y:§w<l+% Te £
) Wi (i) —s@),, <@ ).
> e¢
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In the above inequalities f, the ratios of sums in their right hand sides
(R.H.S.) are uniformly bounded with respect to & € (0,1].

In [4], they had also

THEOREM 4. Let f € C™(R) with f € Cu(R), n €N, and g > "t
i) For n € N,

n

E (fi2) = f(z) — Z ng()fsqu,g
k=1
f |V‘n<1+M)T(V2a+£2a)*5
w (n) v—— o0 3
r(fn| £) ( _ )
: Z (V2a+£2a)*3

v=—00

(49) \ <

‘oo,x

<

ii) For n =0,

(50) |Qre (fsa) = f(@)]| o, S wr(£.6)

00, r

( > (1+g')r(u2a+£2“)6>

§ (1/20‘ +£2a)*ﬂ

v=—00

In the above inequalities f, the ratios of sums in their R.H.S. are
uniformly bounded with respect to £ € (0,1].

Next, they stated their results in [4] for the errors Ey p, Eow, En p, and
Ey.w. They had

COROLLARY 5. Let f € Cy(R). Then

i)
o —lvl
B wn(fhele €
(5]-) ‘E07p(f,27)| < ——= 1 +|f($)|‘m§7p—].|,
14+28e ¢
i)

2

S wr(flve €

(52)  |Bowl(fo)l < ( ;;;Zj_erf(;g)w) 1) e — 1],

In [], for E, p and E, w, the authors presented

THEOREM 6. Let f € C™(R) with f € C,(R), n € N,and ||f||oo,R < oo.
Then

i)
63)  Bup(i0)l, <

. I
vlr (1414 3
< wr(fM.) (U:Z_ml () e

] _1
" 14+2¢e” €

> 1 oo Ime.r =11,
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i)

_2

S in(1414) e e
T(f(n>7£) Vv=—o0 ¢ _
<= po ( Jﬁ(lferf<ﬁ))+l ) + Hf”oo,lR Imew — 1|

In the above inequalities f, the ratios of sums in their R.H.S. are
uniformly bounded with respect to £ € (0,1].

In [5], the authors represented simultaneous L, approximation results. They
started with

THEOREM 7. i) Let f € C™(R), with f™ € L,(R), n € N, pg > 1
% + é =1, and rest as above in this section. Then

* D) o .
) ’ ne (fi2) = f(@) = Z ! k!( )5k0k,§ <
k=1 p

= ! T T (M* )%gin(f(n) é‘)

T (=)) (-1 +) T ) PF +S)p
where

A (e e [T

(56) € = io: 7‘;'

which is uniformly bounded for all € € (0,1].
Additionally, as € — 0" we obtain that R.H.S. of goes to zero.
ii) Whenp =1, let fec C™R), f™ € Li(R), and n € N — {1}. Then

(57) ‘ s (o) - Fla) = 3 O s

k=1

< mM1 gfwr(f 75)1
holds where M is defined as in (56). Hence, as ¢ — 07, we obtain that
R.H.S. of . goes to zero.

iii) Whenn =0, let f € (C(R) N Ly(R)), p,q > 1 such that %—l—% =1 and
the rest as above in this section. Then

(58) 1B (f32) = f(@)], < (M) " wn(f,€)p

where

<

(59) 7;75 =

which is uniformly bounded for all £ € ( 1].
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Hence, as € — 07, we obtain that P*£ — unit operator I in the L, norm
forp>1.

iv) Whenn =0 andp =1, let f € (C(R)N L1(R)) and the rest as above
in this section. Then the inequality

(60) 1Bre (fi2) = f@)], < Migwn(f. 0
holds where M{‘é is defined as in (59). Furthermore, we get P:’g — I in the
L1 norm as € — 0.

Next, the authors presented their quantitative results for the Gauss-Weier-
strass operators, see [5]. They started with

THEOREM 8. i) Let f € C™(R), with f € L,(R), n € N, p,q > 1:
% + % =1, and the rest as above in this section. Then

(61) 'W;"g fiz) o -
P
= ! N* )P v, (f
T (1)) (q(n—1)+1)4 (rp+1) P ( Pvé")p fpw (", 0p
where
OO r ;’/2
B (e e
(62) D€ = o 2
> e ¢

which is uniformly bounded for all € € (0,1].
Additionally, as & — 0% we obtain that R.H.S. of goes to zero.
ii) Forp=1, let f € C™"(R), f™ € Li(R), and n € N — {1}. Then

N R (z
(63) HWTE fi7) Zf )55 e

<

< m]\ﬁ gfwr(f ), 6)1

holds where N* 18 defined as in Hence, as & — 07, we obtain that
R.H.S. of (63] . goes to zero.

iii) Forn =0, let f € (C(R)NL,(R)), p,q > 1 such that%—i—% =1 and
the rest as above in this section. Then

(64) Wi (f:2) = F@), < (Nie) P wn(£,€),

where

(65) Vo=

which is uniformly bounded for all § € (0,1].
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Hence, as & — 0T, we obtain that VV*5 — unit operator I in the L, norm
forp>1.

iv) Form=0andp =1, let f € (C(R)NL1(R)) and the rest as above in
this section. Then the inequality
(66) [Wre (f:2) - (w I, < N7 ewr(£,6)1

holds where Nf?g s defined as in . Furthermore, we get VV*£ — I in the
Ly norm as € — 07T,

For the Poisson-Cauchy operators, in [5], the authors showed

THEOREM 9. i) Let f € C™(R), with f e L,R), n € N, pg > 1
% + % =1,8> %, a € N, and the rest as above in this section. Then

) B (@) -
(67) HQr,g(f;w)—f(w)—ka,( Vgt <
k=1 P
1 1
< 1 * s - (n)
B ((n—l)!)((I(nfl)+1)%(errl)% (Spé)l’fpwr(f &)
where
(68) E ()™ e o)
68 Him
D€

§ (l,20<+£2o¢)*3

is uniformly bounded for all £ € (0,1].

Additionally, as & — 0%, we obtain that R.H.S. of @ goes to zero.

ii) Whenp =1, let fe C™*(R), f™ € Li(R), 8 > "L andn € N—{1}.
Then

(69) HQ:f,g (fiz)— f() = 3 190501
k=1

< G Stebwr (F™, 61

holds where S* is defined as in . Hence, as & — 0T, we obtain that
R.H.S. of . goes to zero.
iii) When n = 0, let f € (C(R)NLy(R)), p,q > 1 such that
,8 > p(r+2)+1
200

<

+1=1,

=
Q=

, and the rest as above in this section. Then

(70) Qe (f32) — @) < (Sie) P wr(f,6)p

where

p

= (141)" (o)

71 Q¥ = Y=o
( ) p7£ Z (V2a+§2a)—5

v=—00

which is uniformly bounded for all § € (0,1].
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Hence, as € — 0%, we obtain that Qjé — unit operator I in the L, norm
forp>1.

iv) Whenn =0 and p =1, let f € (C(R)NL1(R)), B > 2 and the rest
as above in this section. The inequality

(72) |Qre (f;2) = f(@)]|, < SFewr(fié0

holds where Si& is defined as in . Furthermore, we get Qj,g — I in the I
norm as & — 07T,

Next in [5], they stated their results for the errors Fy p, Eow, En p, and
E, w as follows

THEOREM 10. i) Let p,q > 1 such that % =+ % =1, n € N such that np # 1,
f € Ly(R), and the rest as above in this section. Then

(73)

v=—o00

1 AN
£Pwr(f(”),§)p< > e & )

| En,p(f,2)], < T T
P (n=1))(g(n—1)+1)T (rp+1)7

o] +1 —lvl
(£ (2 e
v=—o00

_1
14+2¢e &

> @), [me.p—1]

holds. Additionally, as & — 07, we obtain that R.H.S. of goes to zero.
ii) Whenp=1, let feC"R),fe Li(R), f e Li(R), and n € N— {1}.
Then

wr(F(M),
(74) 1Bnp (2l < Gy
jo ((1+|g‘>r+171)|y\"—16%
A -1 1 @)y [me.p — 1
142¢e €

holds. Additionally, as & — 07, we obtain that R.H.S. of goes to zero.
iii) When n = 0, let p,q > 1 such that % + é =1, f € Ly(R), and the rest
as above in this section. Then

=

ol —|v|\ ¢
(75) ||Eo,p<f,x>||p§wr<f,5>p< R ) |

oo o =\ 1/P
(2.0
+ £ (@), [me,p — 1

1
1+2¢e €

holds. Hence, as & — 0%, we obtain that R.H.S. of goes to zero.
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iv) When n =0 and p = 1, the inequality

_§ (1-‘,—‘2') ei%
(76) N Eop(f2)l, < | ==

wr(f, 1 + 1f @)y [me,p — 1]

1
1+2¢e ¢

holds. Hence, as & — 0", we obtain that R.H.S. of goes to zero.

Next in [5], the authors gave quantitative results for E, w(f, )
THEOREM 11. i) Let p,q > 1 such that % + % =1, n € N such that np # 1,
[ € L,(R), and the rest as above in this section. Then
(77)
1 S -2\ q
(.6, ( £ )

V=—00

[ En,w (f; )], < 1 T
((n=1H(g(n —=1) +1)a (rp+1)7

(L& (o))

— VR(e(R))n

> @), Imew =1

holds. Additionally, as & — 07, we obtain that R.H.S. of goes to zero.
ii) Forp=1, let fe C*R),f e Li(R), f™ € Li(R), and n € N — {1}.
Then

(78)

wr (f(V)
| Bnw (£, )], < s

5 ((1+ ‘”') H—l) \1/|n_1e_Ty2

— \/?g<1ferf<i€))+1

+IF @) [mew =11

holds. Additionally, as & — 07, we obtain that R.H.S. of ( . ) goes to zero.
iii) For n =0, let p,q > 1 such that * —|— = =1, f € Ly,(R), and the rest as
above in this section. Then

Q|
L~
~
=
+
m‘g
~—

3
b
[
i
)
\—/
3|

V=—0Q0

o e
(79) \\Eo,w(fax)!pﬁwr(ﬁf)p( Z et ) ' Ve (1-ert

+ @), [mew — 1]
holds. Hence, as & — 0", we obtain that R.H.S. of goes to zero.
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iv) For n =0 and p = 1, the inequality

80 B (£.)lh < | Ty | rlf O+ 7@ mew — 1

holds. Hence, as & — 0%, we obtain that R.H.S. of goes to zero.

3. MAIN RESULTS

We start with global smoothness preservation properties of the operators

P:?g, W:@ and @;E.

THEOREM 12. Let h >0 and 0 < £ < 1.
i) Suppose f € C(R), and P (f;2), W) (fi2), Q7 ¢ (f;2) € R for all
x €R, wn(f,h) < oco. Then

1) n(PLef 1) < (5 ool ().
(52) m(Wief,h) < (;0 sl Jom (1),
and
() wnl@ief ) < (£ loslJoutr:h
ii) Suppose f € (C(R)N L, (R)), p > 1. Then
(34) wom(Plef h)p < (jiorajr)wmm s
(35) Wil Wy < (35l o7y
and
(86) wm(Qiefs )y < (Eo |aj|)wm<f, o
Proof. By Theorem 0

For r =1, we get ag = 0 and a1 = 1. Hence, we obtain
o) v
2 flatv)e ©
(87) Pie(fiz) =P (fiz) = =—%—r—>
> e ¢

v=—00
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2

S flete €
(88) Wie(fix) =W (fiz) = —"f—0pm—,

S oeE

D

andforﬁ>é,oz€N

> flatn)(v2erg)
89 Qie(fix) =Qf (fiz) = = :
(89) Le (fiw) = Q¢ (fi2) Sa——"

v=—o00

Therefore, by Theorem [12], we have

THEOREM 13. Let h >0 and 0 < ¢ < 1.
i) Suppose f € C (R), and P (f;z), w¢ (f;z), Q¢ (f;z) €R forallz € R,
wm(f, h) < co. Then

(90) wi (P¢ f, h) < wi(f, ),
(91) wi (WE foh) < wm(f,h),
and

(92) QL 1) < wanl(f h).

Inequalities , , and are sharp, that is attained by f (x) = g (x) =

T

ii) Suppose f € (C(R)NLy(R)), p>1. Then

(93) wm (P¢ f, h)p < wm(f, h)p,
(94) win(We fh)p < wm(f, h)p,
and

(95) wm(QZf’ h)p < wm(f, h)p'

Proof. 1t suffices to show the attainability of the inequalities , ,
and . We notice that

(96) wm (g, h) = wm(z™, h) = m!h™.
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On the other hand, we have
(97) A (Peg) (x) = ZO(—l)m_j (") Peg(x + jt)
]:

o] [v]

S| E o) @rninm | €
p2

- T R .
szjw(ar(xw)m)e*%
B S
= m!tm.l/:oo
Thus, we get
(98) wm (g, h) = win (P g, h).
Similarly, we obtain
(99) win (g, h) = wm(W¢g, h),
and
(100) wm(g,h) = wm(Q¢g, ).

0

Next, we present the following theorem for the non-unitary operators P ¢
and W,

THEOREM 14. Let h > 0 and 0 < £ < 1.
i) Suppose that f € C(R), and P (f;x), W (f;z) € R for all z € R,
wm(f, h) < co. Then

(101) wom(Pref h) < (”2”5*”) ( 5 |aj|>wm<f, n).
7=0

142¢e €

-1

w 2 £ r ol |w )
(102) m(Wref h) < (1 + \/7?£<1—crf<}g))+1> <jzo| ]]) m(f,h)

ii) Suppose f € (C(R)N L, (R)), p>1. Then

(103) win(Pref,h)p < (1“”5*”) ( > |04j|>wm(f7 h)p,
=0

142¢e &

=1

e € - 1w
(104)  wn(Weef,h)p < (1 - mo_irf(l&))“) (j§)|aj|> m(fs h)p-
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Proof. By , , and Theorem we have
(105) n(Prcfo) < 20 (©) (£ Jogl Jam(£:1),

(106) m(Pr oy < 2 ( 5 Jogl om0
‘]:
and
(107) anWref 1) < 20(©) ol om0,
‘7:
(108) (Wi )y < 22(©) (£ laol om0
J:
Additionally, in [3], it was shown that
;1
(109) A () < B EHD
1+2¢e €
and
;1
110 Ao (&) <1+ 2e £ .
(110) 20 <1 e (3
Thus, by 7, we obtain the inequalities (101])—(104)). O

Now, we give our results for the derivatives of the unitary operators
P (f;z), W (f;x), and Q¢ (f;x) mentioned above. First, we get

THEOREM 15. Let f € C"1(R), such that f) exists, n,r € N, 0 < & < 1.
Additionally, suppose that for each = € R the function fO(z+ jv) € L1 (R, e )
as a function of v, for alli =0,1,...,n—1; j =1,...,r. Assume that there
exist g;j > 0,1 =1,...,n; j = 1,...,7r, with g;; € L1(R, pe) such that for
each x € R we have

(111) 1Oz + jv)| < gi5(v),

for p¢-almost all v € R, all i = 1,...,n; j = 1,2,...,7. Then, f(i)(x+j1/)
defines a pg-integrable function with respect to v for each x € R, all i =
1,...,n55=1,...,r.

i) When
—|v]
pe(v) = ———¢
> e
we get
(112) (P (£;2))" = Pre(£D: ),

forallx € R, and for alli=1,...,n.
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ii) When
2
pe(v) = —= : )
> et
we have
(113) (Wre (f;0) = W (£ ),

forallx € R, and for alli=1,...,n.
iii) Let « € N, and § > é When

(V2a+£2a)75

pe(v) = a—l
we obtain
(114) (Qre (Fi2)" = Qre(fs2),
forallx € R, and for allt=1,...,n.
Proof. By Theorem O

Next, we present our results for the derivatives of non-unitary operators
Poe(fix) and Wee (f52) .

PROPOSITION 16. Let the assumptions of the Theorem [15] be valid.
i) When

—lv|

pe(v) = —* 5;1
14+2¢e ¢
we get
(115) (Prc (f:2) = Pog (f:2)
forallx € R, and for alli=1,...,n.
ii) When
_,2
HE(V) - et 1
S T En)
we have
(116) (Wre (f:2)® = Wi (F9:2),

forallx € R, and for alli=1,...,n.
Proof. By and we have
(117) (Pre (F3) = X (&) (P (f32)"

and

(118) (Wre (F;2))D = Ao () (W (F;2)) .
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Thus by Theorem we get
(119) (Pre (f;0) = A (&) Pre(f@;2)
= Pr,{(f(Z)vx)

and
(120) (Weg (F52) = X (© Wie(fPsa)
= Woe(f¥;2).
O
We have the following application of the Theorem [15] for the case of r = 1.

PROPOSITION 17. Let f € C* 1(R), such that f™ exists, n € N, 0 < £ < 1.
Additionally, suppose that for each x € R the function fO(x +v) € L1 (R, e )

as a function of v, for alli =0,1,...,n — 1. Assume that there exist g; > 0,
i=1,...,n with g; € L1(R, p¢) such that for each v € R we have
(121) [fD (@ +v)] < gi(v),
for pe-almost all v € R, all i = 1,...,n. Then, Oz + v) defines a -
integrable function with respect to v for each x € R, and for alli=1,... n.
i) When
—lvl
pe(v) = ———p
> et
we get
(122) (B (f:2))" = Pe(s s,
forallx € R, and for alli=1,...,n.
ii) When
2
pe(v) = ———
> e ¢
we have
(123) (We (f32) " = W (£ ),

for allx € R, and for alli=1,...,n.
iii) Let « € N, and 8 > é When
(V2a+€2a)75
§ (V2a+£2a)*5 ’

Vv=—00

pe(v) =

we obtain

(124) (@t (F3) " = Qe(fDs),
for allx € R, and for allt=1,...,n.
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We obtain

THEOREM 18. Let h > 0 and the assumptions of the Theorem [15] be valid.
i) Suppose that wm(f(l),h) < o0, forallt=0,1,...,n. Then

(125) wm((PLef) O, h) < (; \aj\)wmw,h),
(126) (WD 1) < (£ fagl om0, ),
and

(127) (@)D 1) < < » |aj|>wm<f<i>,h>

ii) Assume f@ € (C(R)N L, (R)), i=0,1,...n, p>1. Then

(128) win(Pre )@, b, < <i0\aj\)wm(f<” h)p,
=
(129) wn(Wie)D,h), < (é\aﬂ)aum(f(’) h)p,
=
and
(130) (@) < (3l )79, 1)
=
Proof. By Theorems O

Next, we state our results for the non-unitary operators

THEOREM 19. Let h > 0 and the assumptions of the Theorem [15] be valid.
i) Suppose that wm(f(z)jh) < oo, foralli =0,1,...,n. Then

(131) wn(Pref)D 1) < (W@“)> < > |aj|>wm<f“>,h>,
j=0

142¢e €

and

ii) Assume f& € (C(R)NL,(R)),i=0,1,....n, p>1. Then

(133) win((Pre )™ h), < (“W) > |aj|>wm<f<i>,h>p,

1+2¢e €

and
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Proof. By , , , , and Theorem ]

For the case of r = 1 we have

PROPOSITION 20. Let h > 0 and the assumptions of the Proposition be
valid.
i) Assume that wm(f(i),h) < oo, foralli=0,1,...,n. Then

(135) wn(PEF)D,h) < wn (£, 1),
(136) win(WE )P, 1) < wn(£9, 1),
and
(137) wn(QE )V, h) < win (9, 1)
ii) Suppose that f) € (C(R)N L, (R)),i=0,1,...n, p>1. Then
(138) wn((PE 1), 1)y < wm (£, ),
(139) wn(WE D, 1)p < wm(fD, 1)y,
and
(140) wn(QEN ™, 1)y < win(fP, ).
Proof. By Theorem [I3] and Proposition O

Now, we demonstrate our simultaneous results for the operators P;i ¢ W;k ¢
and Qy ¢ We start with

THEOREM 21. Let f € C*"P(R), n € N, p € Zt and fO) € Cyu(R),
1=0,1,...,p, and 0 < £ < 1. We consider the assumptions of Theorem
valid for n = p there.

* i i Ntk (g «
a) ) - 0w - £ g <
[e @) T V2
i > (i) e e
g (Er0e8
. < 7
* i i (iR (g N
)| ) - 0w - B s <
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and
" i i N gtk (o "
@) - 1) - & g <
Wr(f(n+i),£) V:§m|l/|"(1+%)T(V2a+§2a)—ﬁ
- n! _ij: (V2a+§2a)*ﬁ
where [ > ”‘”H , e N.
Proof. By Theorems [3] [4 O

Next we have

THEOREM 22. Let f € C"P(R), with f"*) € L,(R), ne€N,i=0,1,...,
pEZLT. Letp,g>1: % + % = 1. We consider the assumptions of Theorem [13]
as valid for n = p there. Then

i)
* i i N p(itk) (g N
(144) H (Pr,g(ﬁﬂ?))()—f()(f’f)— Z ! kg( )5kck7§ <
- pa
11 ‘
S 1 T T ( p{)p gpwr (f(?’b-i-’b)’g)p,
((n=1)N(g(n=1)+1)9 (rp+1)P
ii)
i T pltR) (o *
ass) e ® - 10 - £ S5 a0 <
- v
11
< 1 | T (N;’E)p gpr (f(n+z) é‘) ,
(=)D (g(n—1)+1)4 (rp+1) P P
iii) for,B>M,oz€N
* ( i DR (o *
(146) H (@) = 1) - 3 L5 | <
- pa
11 .
< 1 I T (S;’g)p Erw, <f(n+z)’§) )
((n=1)")(g(n—1)+1) 4 (rp+1)P P
Proof. By Theorems [0 O

Now, we give our results for the special case of n = 0.

PROPOSITION 23. Let f) € (C(R)NL,(R)),i=0,1,...,p€Z*;p,qg>1
such that % +% = 1. We consider the assumptions of Theorem[I3] as valid for
n = p there. Then for allt=0,1,...,p, we have
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)
(147) |@retra)? = 1@ < 1) 7 (19, ),
ii)
9 ) @] < (WP en.8,
iii) for 8> 2T o e N
19 @) - 0@ < (507,00
Proof. By Theorems [7[0] 0

For the special case of p = 1, we obtain

THEOREM 24. Let f € C™tP(R), with ft) € L1 (R), n € N—{1}, i =
0,1,...,p € Z*. We consider the assumptions of Theorem [I5] as wvalid for
n = p there. Then for all 1 =0,1,...,p, we have

i)
| @) - 0w - E G| <
< G Migbwr(f ”*’), )1,
ii)
. i i N p(i4k) (o N
wsn s - 10w - $ s ] <
= 1,x
< G Viebwr (F7D, 01,
iii) for g > "‘”“, a €N
* i i N plitR) (g %
(152) \@mum»”—ﬂkm—g:fm<mwm <
=1 1,2
< i Stewr (F, 6.
Proof. By Theorems [7H9} O

For p =1 and n = 0, we give

PROPOSITION 25. Let f@ € (C(R)YNLy(R)), i =0,1,...,p € Z+. We
consider the assumptions of Theorem 13 as valid for n = p there. Then for all
1=0,1,...,p, we have

i)

(153) | Pretri2)? = 1O@)||, < 8 ewon (7D, 001,

1,x
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ii)
(154) |Wrersan® = 1O@)

1,x

iii) for 8> 2 a eN

(155) |(@retrsan® = 1O@)

Proof. By Theorems [7H9} O

Next, we state our simultaneous approximation results for the errors Ey p,
Eow, B, p, and E, . We obtain

COROLLARY 26. Let f) € C,(R), i =0,1,...,p, p€ ZT, and 0 < £ < 1.
We consider the assumptions of Theorem [13] as valid for n = p there. Then
foralli=0,1,...,p, we have

i)
s =
0 3 w(fOfvhe ¢ ,
(156)  |(Bor(fe)?| < (= |+ |10 @) Imep — 1.
1+2¢e €
ii)

2
3w fue € |
- + 9@ mew 1.

(@)
(157) ‘(Eo,w(fafﬁ)) ‘S e (1mert (%) )1

Proof. By (B1)), (52), also by (Eo p(f,))"=Eo,p(f@,z) and (Egw(f,2))"
= EO,W(f(Z)a:E)' U

THEOREM 27. Let f € C"P(R), n € N, p € Zt and f") € C,(R),
1=0,1,...,p,0< &< 1, and Hf(i)HOOR < 00. We consider the assumptions

of Theorem [15] valid for n = p. Then for all i =0,1,..., p, we have
i)

<

00,T

(158)  ||(Bnp(fia)®

- vl
> (1) e ¢

(n+1) v=—00 3
< wr(f — ) — + Hf(z)
14+28e ¢

—1
R ’mEJD | )

and
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ii)

<

00,T

(159)  ||(Buw (£.2)?

2

- S (1) e |
wr(f40.8) [ 2o ¢ (i) -
sttt Zarl S Y e -1

— n!

Proof. 133/ (3), (), also by (En p(f,2))V=E, p(f, z) and (B, w(f, z))?
= n’W(f Y x). O

THEOREM 28. i) Let f € C"P(R), with f"*) € L,(R), n € N, i =
0,1,...,p€Z". Letp,qg >1: %+% =1, np # 1. We consider the assumptions
of Theorem as valid for n = p there. Then for alli=0,1,...,p,

(160)

| (En,p(f.2)) |

p
1

fiwr<f<“+">,§>p< > é)

V=—00

<

(n— 1D (g(n— 1) + )i (rp+1)5 "
+ Hf(i)(x)Hp|m§7p Y

holds.

ii) Let f € C"tP(R), with f+) ¢ L (R), n € N={1},i=0,1,...,p €
Z+. We consider the assumptions of Theorem as valid for n = p there.
Then for all i =0,1,...,p,

3 r —|v|
‘ i S () )t
(161) || (Bup(Fa)® |, < Sl L )

T

1+2¢e €
+||r0@), Ime.r -1

holds.

iii) Let () ¢ (C(R)NL,(R)), i =0,1,...,p € Z"; p,q > 1 such that
%—i— é = 1. We consider the assumptions of Theorem [IHl as valid for n = p
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there. Then for all i =0,1,...,p,

(162)

[ Bartr- o0l <ontr® 0 (£ (£

+[fY @), Ime.p — 1]

holds.
iv) Let f® € (C(R)NLy(R)),i=0,1,...,p € Z*. We consider the as-
sumptions of Theorem[IHl as valid for n = p there. Then for alli=0,1,...,p,

(163)

, £ =)y .
[ (Eop(f,2)? |, < ("‘w%:é )wr(f@,f)l +[FO @I Ime.r =11
holds.

Proof. By Theoremand by (En.p(f,2))" = B, p(f®,2) forn e ZT. O

THEOREM 29. i) Let f € C"P(R), with f"*) € L,(R), n € N, i =
0,1,...,p€Z". Letp,q > 1: %—{—% =1, np # 1. We consider the assumptions
of Theorem as valid for n = p there. Then for alli=0,1,...,p,

(164)

5iwr<f<"+">,s>p( > e ) ( » ((1+g')“°“—1)|u|w1e‘s”2>

V=—00 v=—00

(n— DN (gn — 1) + 1)1 (rp+ 1)7 Vg (1-art (L)) +1

3=

<

+ IO @), Imew — 1]

holds.

ii) Let f € C"P(R), with f+) € L1 (R), n € N={1},i =10,1,...,p €
Z+. We consider the assumptions of Theorem as valid for n = p there.
Then for all 1 =0,1,...,p, we have



27  Global smoothness and approximation by generalized discrete singular operators 139

0o r+1 7,,2
5 ((1+'§') —1>|u|"1e ;
< Gallgy |

(165) || (B (£, ) ||, < S5 Vg (1-ert (Je ) ) +1

+ LA @) Imew =1
holds.
iii) Let f% € (C(R)NL,(R)), i =0,1,...,p € Z*; p,q > 1 such that
%—i— % = 1. We consider the assumptions of Theorem [IH as valid for n = p
there. Then for alli=0,1,...,p,

(166)
| (Eow (f,a)? |, <
' o] L2 ,11 :ij (14_%)”’6_52 P |
< w(fD,€), Vz_:ooe e | - <\/ﬁ(1erf<\}g))+l> +Hf(z)(x)}|p |mew—1]

holds.
iv) Let f® € (C(R)N Ly (R)),i=0,1,...,p € Zt. We consider the as-
sumptions of Theorem[IHl as valid for n = p there. Then for alli =0,1,...,p,

(167) | (Bow (£,2))7 |, <

- 2
< _z; (1—}-‘ l)Te

—v

e)et ) . .
< wr(fD.1 + (| FO @), Imew — 1
e 17960 e
holds.
Proof. By Theorem (11| and by (E, w(f, )N = E, w(f9, x) for n € ZF.

g
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