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SOME PROPERTIES OF THE OPERATORS DEFINED BY LUPAŞ

AYŞEGÜL ERENÇIN∗, GÜLEN BAŞCANBAZ-TUNCA∗∗ and FATMA TAŞDELEN∗∗

Abstract. In the present paper, we show that a subclass of the operators de-
fined by Lupaş [12] preserve properties of the modulus of continuity function
and Lipschitz constant and the order of a Lipschitz continuous function. We
also concerned with the monotonicity of sequence of such operators for convex
functions.
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1. INTRODUCTION

By means of the identity

1
(1−a)α =

∞∑
k=0

(α)k
k! a

k, |a| < 1,

where (α)0 = 1, (α)k = α(α + 1) · · · (α + k − 1), k ≥ 1, Lupaş [12] proposed
the positive linear operators

Tn(f ;x) = (1− a)nx
∞∑
k=0

(nx)k
k! f

(
k
n

)
ak, x ≥ 0

for the functions f : [0,∞) → R and n ∈ N. After that Agratini [3], by
choosing a = 1

2 , for the operators

(1.1) Ln(f ;x) = 2−nx
∞∑
k=0

(nx)k
2kk!

f
(
k
n

)
obtained some estimates to the order of approximation on a finite interval
and proved a Voronovskaya type theorem. Furthermore, he again derived
the positive linear operators Ln via a probabilistic approach and presented
the Kantorovich and Durrmeyer variants of these operators. In [5], a better
error estimation and statistical Korovkin type approximation properties of the
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operators Ln were examined by Dirik. Jain and Pethe [9], as a generalization
of Szasz-Mirakjan operators, introduced the operators

Mn,α(f ;x) = (1 + nα)−
x
α

∞∑
ν=0

(
α+ 1

n

)−ν x(ν,−α)
ν! f

(
ν
n

)
, x ≥ 0

where x(0,−α) = 1, x(ν,−α) = x(x+α) · · · (x+(ν−1)α), 0 ≤ nα ≤ 1 and n ∈ N.
By setting c = cn = 1

nα such that c ≥ β for certain constant β > 0, Abel and
Ivan [1] expressed these operators in the equivalent form

Sn,c(f ;x) =

∞∑
ν=0

P [c]
n,ν(x)f

(
ν
n

)
, x ≥ 0

where P
[c]
n,ν(x) =

(
c

1+c

)ncx(ncx+ν−1
ν

)
(1 + c)−ν , and studied their local approxi-

mation properties and also obtained a complete asymptotic expansion formula.
We remark that when c = 1 the operators Sn,c reduce to the operators defined
by (1.1). In [6], Erençin and Taşdelen introduced the following generalization
of the operators Ln

L∗n(f ;x) = 2−anx
∞∑
k=0

(anx)k
2kk!

f
(
k
bn

)
, x ≥ 0

where (an), (bn) are increasing and unbounded sequences of positive numbers
such that

an
bn

= 1 +O
(

1
bn

)
, lim

n→∞
1
bn

= 0

and investigated their weighted approximation properties. Later, Erençin and
Taşdelen [7] estimated the rate of convergence for the Kantorovich type version
of the operators L∗n by means of the modulus of continuity, elements of local
Lipschitz class and Peetre’s K-functional. Recently, A-statistical convergence
properties of the operators Ln and their Kantorovich type modification were
studied by Tarabie in [14].

Note that from Lemma 1 in [3] we have

Ln(1;x) = 1,

Ln(t;x) = x.

In this paper, for the operators Ln defined by (1.1), we firstly show that
when f is a general function of modulus of continuity, then Ln(f ;x) := Ln(f)
is also a function of modulus of continuity with the help of the same technique
of Li [11]. Later, we also show that the operators Ln preserve the Lipschitz
constant and the order of a Lipschitz continuous function. Furthermore, we
discuss the monotonicity of the operators Ln for n under the convexity of
f . We note that in the literature there are a number of papers containing
preservation properties of positive linear operators. Some of them are [2], [4],
[8], [10] and [15].
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2. SOME PROPERTIES OF THE OPERATORS Ln

In order to give some properties of the operators defined by (1.1) let us
recall some definitions.

Let f be a real valued continuous function defined on [0,∞). Then f is said
to be Lipschitz continuous of order γ (0 < γ ≤ 1) on [0,∞), if there exists
M > 0 such that

|f(x)− f(y)| ≤M |x− y|γ

for all x, y ∈ [0,∞). The set of Lipschitz continuous functions of order γ with
Lipschitz constant M is denoted by LipM (γ).

A real valued continuous function f is said to be convex on [0,∞), if

f
( n∑
i=1

αiti

)
≤

n∑
i=1

αif(ti)

for all t1, t2, · · · , tn ∈ [0,∞) and for all non-negative numbers α1, α2, · · · , αn
such that α1 + α2 + · · ·+ αn = 1.

Also, a continuous and non-negative function ω defined on [0,∞) is called
the modulus of continuity function, if each of the following conditions is sat-
isfied:

a) ω(u+ v) ≤ ω(u) + ω(v) for u, v ∈ [0,∞), i.e., ω is subadditive,
b) ω(u) ≥ ω(v) for u ≥ v, i.e., ω is non-decreasing,
c) limu→0+ ω(u) = ω(0) = 0

(see p. 106 in [13]).

Theorem 1. If ω is a modulus of continuity function, then Ln(ω) is also a
modulus of continuity function.

Proof. Let x, y ∈ [0,∞) and x ≤ y. Then we have

Ln(f ; y) = 2−ny
∞∑
k=0

(ny)k
2kk!

f
(
k
n

)
= 2−ny

∞∑
k=0

(n(x+(y−x)))k
2kk!

f
(
k
n

)
.

Since

(n(x+ (y − x)))k =
k∑
i=0

(
k
i

)
(nx)i(n(y − x))k−i

one may write

Ln(f ; y) = 2−ny
∞∑
k=0

k∑
i=0

1
2kk!

(
k
i

)
(nx)i(n(y − x))k−if

(
k
n

)
.

Changing the order of the above summations and then taking k − i = j, we
reach to

(2.1) Ln(f ; y) = 2−ny
∞∑
i=0

∞∑
k=i

1
2kk!

(
k
i

)
(nx)i(n(y − x))k−if

(
k
n

)
=
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= 2−ny
∞∑
i=0

∞∑
j=0

(nx)i
2ii!

(n(y−x))j
2jj!

f
( i+j
n

)
.

On the other hand using the identity 2n(y−x) =
∑∞

j=0
(n(y−x))j

2jj!
, we get

Ln(f ;x) =2−nx
∞∑
i=0

(nx)i
2ii!

f
(
i
n

)
=2−ny2n(y−x)

∞∑
i=0

(nx)i
2ii!

f
(
i
n

)
=2−ny

∞∑
i=0

∞∑
j=0

(nx)i
2ii!

(n(y−x))j
2jj!

f
(
i
n

)
.

(2.2)

Hence from (2.1) and (2.2) it follows that

(2.3) Ln(f ; y)− Ln(f ;x) = 2−ny
∞∑
i=0

∞∑
j=0

(nx)i
2ii!

(n(y−x))j
2jj!

[
f
( i+j
n

)
− f

(
i
n

)]
.

Thus by means of the equality (2.3) and the subadditivity of ω, we can write

Ln(ω; y)− Ln(ω;x) =2−ny
∞∑
i=0

∞∑
j=0

(nx)i
2ii!

(n(y−x))j
2jj!

[
ω
( i+j
n

)
− ω

(
i
n

)]
≤2−ny

∞∑
i=0

∞∑
j=0

(nx)i
2ii!

(n(y−x))j
2jj!

ω
( j
n

)
=2−nx

∞∑
i=0

(nx)i
2ii!

2−n(y−x)
∞∑
j=0

(n(y−x))j
2jj!

ω
( j
n

)
=Ln(1;x)2−n(y−x)

∞∑
j=0

(n(y−x))j
2jj!

ω
( j
n

)
=2−n(y−x)

∞∑
j=0

(n(y−x))j
2jj!

ω
( j
n

)
=Ln(ω; y − x).

This shows the subadditivity of Ln(ω). We also infer from (2.3) that Ln(ω; y) ≥
Ln(ω;x) for y ≥ x which means that Ln(ω) is non-decreasing. Finally the
property Ln(ω; 0) = ω(0) = 0 is clear. Thus we may conclude that Ln(ω) is a
modulus of continuity function. �

Now we introduce the second result of this section with the following theo-
rem.

Theorem 2. If f ∈ LipM (γ), then Ln(f) ∈ LipM (γ).
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Proof. Suppose that x ≤ y. By using the facts f ∈ LipM (γ) and Ln(1, x) =
1 from (2.3) we can write

|Ln(f ; y)− Ln(f ;x)| ≤M2−ny
∞∑
i=0

∞∑
j=0

(nx)i
2ii!

(n(y−x))j
2jj!

( j
n

)γ
= M2−nx

∞∑
i=0

(nx)i
2ii!

2−n(y−x)
∞∑
j=0

(n(y−x))j
2jj!

( j
n

)γ
= MLn(1, x)2−n(y−x)

∞∑
j=0

(n(y−x))j
2jj!

( j
n

)γ
= M2−n(y−x)

∞∑
j=0

(n(y−x))j
2jj!

( j
n

)γ
.

Now applying Hölder’s inequality one gets

|Ln(f ; y)− Ln(f ;x)| ≤M
(

2−n(y−x)
∞∑
j=0

(n(y−x))j
2jj!

j
n

)γ
= M (Ln(t; y − x))γ .

Since Ln(t;x) = x the above inequality implies that

|Ln(f ; y)− Ln(f ;x)| ≤M(y − x)γ .

Similarly, it can be shown that when x > y our claim is valid. �

Now, we will study the monotonicity of the sequence of the operators
Ln(f ;x) defined by (1.1) when the function f is convex.

Theorem 3. If f is a convex function defined on [0,∞), then Ln(f ;x) is
strictly monotonically decreasing, unless f is the linear function (in which case
Ln(f ;x) = Ln+1(f ;x) for all n).

Proof. We have

Ln(f ;x)− Ln+1(f ;x) =

= 2−nx
∞∑
k=0

(nx)k
2kk!

f
(
k
n

)
− 2−(n+1)x

∞∑
k=0

((n+1)x)k
2kk!

f
(

k
n+1

)
= 2−(n+1)x

{
2x
∞∑
k=0

(nx)k
2kk!

f
(
k
n

)
−
∞∑
k=0

((n+1)x)k
2kk!

f
(

k
n+1

)}
.

Using the identity 2x =
∑∞

l=0
(x)l
2ll!

, one may write

Ln(f ;x)− Ln+1(f ;x) =(2.4)

= 2−(n+1)x

{ ∞∑
l=0

(x)l
2ll!

∞∑
k=0

(nx)k
2kk!

f
(
k
n

)
−
∞∑
k=0

((n+1)x)k
2kk!

f
(

k
n+1

)}
=
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= 2−(n+1)x

{ ∞∑
l=0

∞∑
k=l

(nx)k−l(x)l
2kl!(k−l)! f

(
k−l
n

)
−
∞∑
k=0

((n+1)x)k
2kk!

f
(

k
n+1

)}

= 2−(n+1)x

{ ∞∑
k=0

[
k∑
l=0

(nx)l(x)k−l
2kl!(k−l)! f

(
l
n

)
− ((n+1)x)k

2kk!
f
(

k
n+1

)]}
.

Now we only need to show that for all k = 0, 1, . . .,

(2.5) f
(

k
n+1

)
≤ 1

((n+1)x)k

k∑
l=0

(
k
l

)
(nx)l(x)k−lf

(
l
n

)
,

which is a direct result of convexity. In fact, set

αl =
(
k
l

) (nx)l(x)k−l
((n+1)x)k

≥ 0 and tl = l
n .

Therefore with the help of the identity ((n + 1)x)k =
∑k

l=0

(
k
l

)
(nx)l(x)k−l, it

is clear that
k∑
l=0

αl = 1
((n+1)x)k

k∑
l=0

(
k
l

)
(nx)l(x)k−l = 1.

On the other hand, we have

k∑
l=0

αltl = 1
((n+1)x)k

k∑
l=0

(
k
l

)
(nx)l(x)k−l

l
n

= 1
n((n+1)x)k

k∑
l=1

k!
(l−1)!(k−l)!(nx)l(x)k−l

= k
n((n+1)x)k

k−1∑
l=0

(
k−1
l

)
(nx)l+1(x)k−l−1.

Since

(nx)l+1 = nx(nx+ 1)l, ((n+ 1)x)k = (n+ 1)x((n+ 1)x+ 1)k−1

and

((n+ 1)x+ 1)k−1 =

k−1∑
l=0

(
k−1
l

)
(nx+ 1)l(x)k−l−1

one may write

k∑
l=0

αltl = k
(n+1)((n+1)x+1)k−1

k−1∑
l=0

(
k−1
l

)
(nx+ 1)l(x)k−l−1 = k

n+1

which, making use of the convexity of f , gives the inequality (2.5). Hence from
(2.4) we arrive at the desired result. Clearly Ln(f ;x) = Ln+1(f ;x) occurs only
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if

f
(

1
((n+1)x)k

k∑
l=0

(
k
l

)
(nx)l(x)k−l

l
n

)
=f
(

k
n+1

)
= 1

((n+1)x)k

k∑
l=0

(
k
l

)
(nx)l(x)k−lf

(
l
n

)
for all k = 0, 1, . . . This implies that f is linear in [0,∞). Thus the proof is
completed. �
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