REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Rev. Anal. Numér. Théor. Approx., vol. 43 (2014) no. 2, pp. 168–174 ictp.acad.ro/jnaat

SOME PROPERTIES OF THE OPERATORS DEFINED BY LUPAS

AYŞEGÜL ERENÇIN*, GÜLEN BAŞCANBAZ-TUNCA** and FATMA TAŞDELEN**

Abstract. In the present paper, we show that a subclass of the operators defined by Lupaş [12] preserve properties of the modulus of continuity function and Lipschitz constant and the order of a Lipschitz continuous function. We also concerned with the monotonicity of sequence of such operators for convex functions.

MSC 2000. 41A25, 41A36.

Keywords. Modulus of continuity function, Lipschitz class, monotonicity.

1. INTRODUCTION

By means of the identity

$$\frac{1}{(1-a)^{\alpha}} = \sum_{k=0}^{\infty} \frac{(\alpha)_k}{k!} a^k, \quad |a| < 1,$$

where $(\alpha)_0 = 1$, $(\alpha)_k = \alpha(\alpha + 1) \cdots (\alpha + k - 1)$, $k \ge 1$, Lupaş [12] proposed the positive linear operators

$$T_n(f;x) = (1-a)^{nx} \sum_{k=0}^{\infty} \frac{(nx)_k}{k!} f\left(\frac{k}{n}\right) a^k, \quad x \ge 0$$

for the functions $f:[0,\infty)\to\mathbb{R}$ and $n\in\mathbb{N}$. After that Agratini [3], by choosing $a=\frac{1}{2}$, for the operators

(1.1)
$$L_n(f;x) = 2^{-nx} \sum_{k=0}^{\infty} \frac{(nx)_k}{2^k k!} f\left(\frac{k}{n}\right)$$

obtained some estimates to the order of approximation on a finite interval and proved a Voronovskaya type theorem. Furthermore, he again derived the positive linear operators L_n via a probabilistic approach and presented the Kantorovich and Durrmeyer variants of these operators. In [5], a better error estimation and statistical Korovkin type approximation properties of the

^{*} Abant Izzet Baysal University, Faculty of Arts and Science, Department of Mathematics, 14280, Bolu, Turkey, e-mail: erencina@hotmail.com.

^{**}Ankara University, Faculty of Science, Department of Mathematics, 06100, Tandoğan, Ankara, Turkey, e-mail: tunca@science.ankara.edu.tr, tasdelen@science.ankara.edu.tr.

Lupaş operators

operators L_n were examined by Dirik. Jain and Pethe [9], as a generalization of Szasz-Mirakjan operators, introduced the operators

$$M_{n,\alpha}(f;x) = (1+n\alpha)^{-\frac{x}{\alpha}} \sum_{\nu=0}^{\infty} \left(\alpha + \frac{1}{n}\right)^{-\nu} \frac{x^{(\nu,-\alpha)}}{\nu!} f\left(\frac{\nu}{n}\right), \quad x \ge 0$$

where $x^{(0,-\alpha)} = 1$, $x^{(\nu,-\alpha)} = x(x+\alpha)\cdots(x+(\nu-1)\alpha)$, $0 \le n\alpha \le 1$ and $n \in \mathbb{N}$. By setting $c = c_n = \frac{1}{n\alpha}$ such that $c \ge \beta$ for certain constant $\beta > 0$, Abel and Ivan [1] expressed these operators in the equivalent form

$$S_{n,c}(f;x) = \sum_{\nu=0}^{\infty} P_{n,\nu}^{[c]}(x) f\left(\frac{\nu}{n}\right), \quad x \ge 0$$

where $P_{n,\nu}^{[c]}(x) = \left(\frac{c}{1+c}\right)^{ncx} \binom{ncx+\nu-1}{\nu}(1+c)^{-\nu}$, and studied their local approximation properties and also obtained a complete asymptotic expansion formula. We remark that when c = 1 the operators $S_{n,c}$ reduce to the operators defined by (1.1). In [6], Erençin and Taşdelen introduced the following generalization of the operators L_n

$$L_n^*(f;x) = 2^{-a_n x} \sum_{k=0}^{\infty} \frac{(a_n x)_k}{2^k k!} f(\frac{k}{b_n}), \qquad x \ge 0$$

where (a_n) , (b_n) are increasing and unbounded sequences of positive numbers such that

$$\frac{a_n}{b_n} = 1 + \mathcal{O}\left(\frac{1}{b_n}\right), \quad \lim_{n \to \infty} \frac{1}{b_n} = 0$$

and investigated their weighted approximation properties. Later, Erençin and Taşdelen [7] estimated the rate of convergence for the Kantorovich type version of the operators L_n^* by means of the modulus of continuity, elements of local Lipschitz class and Peetre's K-functional. Recently, A-statistical convergence properties of the operators L_n and their Kantorovich type modification were studied by Tarabie in [14].

Note that from Lemma 1 in [3] we have

$$L_n(1;x) = 1,$$

$$L_n(t;x) = x.$$

In this paper, for the operators L_n defined by (1.1), we firstly show that when f is a general function of modulus of continuity, then $L_n(f;x) := L_n(f)$ is also a function of modulus of continuity with the help of the same technique of Li [11]. Later, we also show that the operators L_n preserve the Lipschitz constant and the order of a Lipschitz continuous function. Furthermore, we discuss the monotonicity of the operators L_n for n under the convexity of f. We note that in the literature there are a number of papers containing preservation properties of positive linear operators. Some of them are [2], [4], [8], [10] and [15].

2. Some properties of the operators L_n

In order to give some properties of the operators defined by (1.1) let us recall some definitions.

Let f be a real valued continuous function defined on $[0, \infty)$. Then f is said to be Lipschitz continuous of order γ $(0 < \gamma \leq 1)$ on $[0, \infty)$, if there exists M > 0 such that

$$|f(x) - f(y)| \le M |x - y|^{\gamma}$$

for all $x, y \in [0, \infty)$. The set of Lipschitz continuous functions of order γ with Lipschitz constant M is denoted by $\operatorname{Lip}_M(\gamma)$.

A real valued continuous function f is said to be convex on $[0, \infty)$, if

$$f\left(\sum_{i=1}^{n} \alpha_i t_i\right) \le \sum_{i=1}^{n} \alpha_i f(t_i)$$

for all $t_1, t_2, \dots, t_n \in [0, \infty)$ and for all non-negative numbers $\alpha_1, \alpha_2, \dots, \alpha_n$ such that $\alpha_1 + \alpha_2 + \dots + \alpha_n = 1$.

Also, a continuous and non-negative function ω defined on $[0, \infty)$ is called the modulus of continuity function, if each of the following conditions is satisfied:

- a) $\omega(u+v) \leq \omega(u) + \omega(v)$ for $u, v \in [0, \infty)$, i.e., ω is subadditive,
- b) $\omega(u) \ge \omega(v)$ for $u \ge v$, i.e., ω is non-decreasing,
- c) $\lim_{u\to 0^+} \omega(u) = \omega(0) = 0$

(see p. 106 in [13]).

THEOREM 1. If ω is a modulus of continuity function, then $L_n(\omega)$ is also a modulus of continuity function.

Proof. Let $x, y \in [0, \infty)$ and $x \leq y$. Then we have

$$L_n(f;y) = 2^{-ny} \sum_{k=0}^{\infty} \frac{(ny)_k}{2^k k!} f\left(\frac{k}{n}\right) = 2^{-ny} \sum_{k=0}^{\infty} \frac{(n(x+(y-x)))_k}{2^k k!} f\left(\frac{k}{n}\right).$$

Since

$$(n(x + (y - x)))_k = \sum_{i=0}^k {\binom{k}{i}} (nx)_i (n(y - x))_{k-i}$$

one may write

$$L_n(f;y) = 2^{-ny} \sum_{k=0}^{\infty} \sum_{i=0}^k \frac{1}{2^k k!} {\binom{k}{i}} (nx)_i (n(y-x))_{k-i} f\left(\frac{k}{n}\right).$$

Changing the order of the above summations and then taking k - i = j, we reach to

(2.1)
$$L_n(f;y) = 2^{-ny} \sum_{i=0}^{\infty} \sum_{k=i}^{\infty} \frac{1}{2^k k!} {k \choose i} (nx)_i (n(y-x))_{k-i} f\left(\frac{k}{n}\right) =$$

$$=2^{-ny}\sum_{i=0}^{\infty}\sum_{j=0}^{\infty}\frac{(nx)_i}{2^i i!}\frac{(n(y-x))_j}{2^j j!}f(\frac{i+j}{n}).$$

On the other hand using the identity $2^{n(y-x)} = \sum_{j=0}^{\infty} \frac{(n(y-x))_j}{2^j j!}$, we get

(2.2)
$$L_{n}(f;x) = 2^{-nx} \sum_{i=0}^{\infty} \frac{(nx)_{i}}{2^{i}i!} f\left(\frac{i}{n}\right)$$
$$= 2^{-ny} 2^{n(y-x)} \sum_{i=0}^{\infty} \frac{(nx)_{i}}{2^{i}i!} f\left(\frac{i}{n}\right)$$
$$= 2^{-ny} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{(nx)_{i}}{2^{i}i!} \frac{(n(y-x))_{j}}{2^{j}j!} f\left(\frac{i}{n}\right)$$

Hence from (2.1) and (2.2) it follows that

(2.3)
$$L_n(f;y) - L_n(f;x) = 2^{-ny} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{(nx)_i}{2^i i!} \frac{(n(y-x))_j}{2^j j!} \left[f\left(\frac{i+j}{n}\right) - f\left(\frac{i}{n}\right) \right].$$

Thus by means of the equality (2.3) and the subadditivity of ω , we can write

$$\begin{split} L_n(\omega; y) - L_n(\omega; x) &= 2^{-ny} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{(nx)_i}{2^{i}i!} \frac{(n(y-x))_j}{2^{j}j!} \left[\omega(\frac{i+j}{n}) - \omega(\frac{i}{n}) \right] \\ &\leq 2^{-ny} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{(nx)_i}{2^{i}i!} \frac{(n(y-x))_j}{2^{j}j!} \omega(\frac{j}{n}) \\ &= 2^{-nx} \sum_{i=0}^{\infty} \frac{(nx)_i}{2^{i}i!} 2^{-n(y-x)} \sum_{j=0}^{\infty} \frac{(n(y-x))_j}{2^{j}j!} \omega(\frac{j}{n}) \\ &= L_n(1; x) 2^{-n(y-x)} \sum_{j=0}^{\infty} \frac{(n(y-x))_j}{2^{j}j!} \omega(\frac{j}{n}) \\ &= 2^{-n(y-x)} \sum_{j=0}^{\infty} \frac{(n(y-x))_j}{2^{j}j!} \omega(\frac{j}{n}) \\ &= L_n(\omega; y - x). \end{split}$$

This shows the subadditivity of $L_n(\omega)$. We also infer from (2.3) that $L_n(\omega; y) \geq L_n(\omega; x)$ for $y \geq x$ which means that $L_n(\omega)$ is non-decreasing. Finally the property $L_n(\omega; 0) = \omega(0) = 0$ is clear. Thus we may conclude that $L_n(\omega)$ is a modulus of continuity function.

Now we introduce the second result of this section with the following theorem.

THEOREM 2. If $f \in \operatorname{Lip}_M(\gamma)$, then $L_n(f) \in \operatorname{Lip}_M(\gamma)$.

Proof. Suppose that $x \leq y$. By using the facts $f \in \text{Lip}_M(\gamma)$ and $L_n(1, x) = 1$ from (2.3) we can write

$$|L_n(f;y) - L_n(f;x)| \le M2^{-ny} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{(nx)_i}{2^i i!} \frac{(n(y-x))_j}{2^j j!} \left(\frac{j}{n}\right)^{\gamma}$$

= $M2^{-nx} \sum_{i=0}^{\infty} \frac{(nx)_i}{2^i i!} 2^{-n(y-x)} \sum_{j=0}^{\infty} \frac{(n(y-x))_j}{2^j j!} \left(\frac{j}{n}\right)^{\gamma}$
= $ML_n(1,x) 2^{-n(y-x)} \sum_{j=0}^{\infty} \frac{(n(y-x))_j}{2^j j!} \left(\frac{j}{n}\right)^{\gamma}$
= $M2^{-n(y-x)} \sum_{j=0}^{\infty} \frac{(n(y-x))_j}{2^j j!} \left(\frac{j}{n}\right)^{\gamma}$.

Now applying Hölder's inequality one gets

$$|L_n(f;y) - L_n(f;x)| \le M \left(2^{-n(y-x)} \sum_{j=0}^{\infty} \frac{(n(y-x))_j}{2^j j!} \frac{j}{n} \right)^{\gamma} = M \left(L_n(t;y-x) \right)^{\gamma}.$$

Since $L_n(t; x) = x$ the above inequality implies that

$$|L_n(f;y) - L_n(f;x)| \le M(y-x)^{\gamma}.$$

Similarly, it can be shown that when x > y our claim is valid.

Now, we will study the monotonicity of the sequence of the operators $L_n(f;x)$ defined by (1.1) when the function f is convex.

THEOREM 3. If f is a convex function defined on $[0, \infty)$, then $L_n(f; x)$ is strictly monotonically decreasing, unless f is the linear function (in which case $L_n(f; x) = L_{n+1}(f; x)$ for all n).

Proof. We have

$$L_n(f;x) - L_{n+1}(f;x) =$$

$$= 2^{-nx} \sum_{k=0}^{\infty} \frac{(nx)_k}{2^k k!} f\left(\frac{k}{n}\right) - 2^{-(n+1)x} \sum_{k=0}^{\infty} \frac{((n+1)x)_k}{2^k k!} f\left(\frac{k}{n+1}\right)$$

$$= 2^{-(n+1)x} \left\{ 2^x \sum_{k=0}^{\infty} \frac{(nx)_k}{2^k k!} f\left(\frac{k}{n}\right) - \sum_{k=0}^{\infty} \frac{((n+1)x)_k}{2^k k!} f\left(\frac{k}{n+1}\right) \right\}.$$

Using the identity $2^x = \sum_{l=0}^{\infty} \frac{(x)_l}{2^l l!}$, one may write

(2.4)
$$L_n(f;x) - L_{n+1}(f;x) =$$
$$= 2^{-(n+1)x} \left\{ \sum_{l=0}^{\infty} \frac{(x)_l}{2^l l!} \sum_{k=0}^{\infty} \frac{(nx)_k}{2^k k!} f\left(\frac{k}{n}\right) - \sum_{k=0}^{\infty} \frac{((n+1)x)_k}{2^k k!} f\left(\frac{k}{n+1}\right) \right\} =$$

Lupaş operators

$$= 2^{-(n+1)x} \left\{ \sum_{l=0}^{\infty} \sum_{k=l}^{\infty} \frac{(nx)_{k-l}(x)_l}{2^k l! (k-l)!} f\left(\frac{k-l}{n}\right) - \sum_{k=0}^{\infty} \frac{((n+1)x)_k}{2^k k!} f\left(\frac{k}{n+1}\right) \right\}$$
$$= 2^{-(n+1)x} \left\{ \sum_{k=0}^{\infty} \left[\sum_{l=0}^{k} \frac{(nx)_l(x)_{k-l}}{2^k l! (k-l)!} f\left(\frac{l}{n}\right) - \frac{((n+1)x)_k}{2^k k!} f\left(\frac{k}{n+1}\right) \right] \right\}.$$

Now we only need to show that for all k = 0, 1, ...,

(2.5)
$$f\left(\frac{k}{n+1}\right) \le \frac{1}{((n+1)x)_k} \sum_{l=0}^k {\binom{k}{l}(nx)_l(x)_{k-l}f\left(\frac{l}{n}\right)},$$

which is a direct result of convexity. In fact, set

$$\alpha_l = \binom{k}{l} \frac{(nx)_l(x)_{k-l}}{((n+1)x)_k} \ge 0 \quad \text{and} \quad t_l = \frac{l}{n}.$$

Therefore with the help of the identity $((n+1)x)_k = \sum_{l=0}^k \binom{k}{l} (nx)_l (x)_{k-l}$, it is clear that

$$\sum_{l=0}^{k} \alpha_l = \frac{1}{((n+1)x)_k} \sum_{l=0}^{k} {\binom{k}{l}} (nx)_l (x)_{k-l} = 1.$$

On the other hand, we have

$$\sum_{l=0}^{k} \alpha_{l} t_{l} = \frac{1}{((n+1)x)_{k}} \sum_{l=0}^{k} {\binom{k}{l}} (nx)_{l} (x)_{k-l} \frac{l}{n}$$
$$= \frac{1}{n((n+1)x)_{k}} \sum_{l=1}^{k} \frac{k!}{(l-1)!(k-l)!} (nx)_{l} (x)_{k-l}$$
$$= \frac{k}{n((n+1)x)_{k}} \sum_{l=0}^{k-1} {\binom{k-1}{l}} (nx)_{l+1} (x)_{k-l-1}.$$

Since

$$(nx)_{l+1} = nx(nx+1)_l, \quad ((n+1)x)_k = (n+1)x((n+1)x+1)_{k-1}$$

and

$$((n+1)x+1)_{k-1} = \sum_{l=0}^{k-1} {\binom{k-1}{l}(nx+1)_l(x)_{k-l-1}}$$

one may write

$$\sum_{l=0}^{k} \alpha_l t_l = \frac{k}{(n+1)((n+1)x+1)_{k-1}} \sum_{l=0}^{k-1} {\binom{k-1}{l}(nx+1)_l(x)_{k-l-1}} = \frac{k}{n+1}$$

which, making use of the convexity of f, gives the inequality (2.5). Hence from (2.4) we arrive at the desired result. Clearly $L_n(f;x) = L_{n+1}(f;x)$ occurs only

7

174

$$f\left(\frac{1}{((n+1)x)_{k}}\sum_{l=0}^{k}{\binom{k}{l}(nx)_{l}(x)_{k-l}\frac{l}{n}}\right) = f\left(\frac{k}{n+1}\right)$$
$$= \frac{1}{((n+1)x)_{k}}\sum_{l=0}^{k}{\binom{k}{l}(nx)_{l}(x)_{k-l}f\left(\frac{l}{n}\right)}$$

for all k = 0, 1, ... This implies that f is linear in $[0, \infty)$. Thus the proof is completed.

REFERENCES

- U. ABEL and M. IVAN, On a generalization of an approximation operator defined by A. Lupaş, Gen. Math., 15 (2007) no. 1, pp. 21–34.
- [2] T. ACAR and A. ARAL, Approximation properties of two dimensional Bernstein-Stancu-Chlodowsky operators, Matematiche (Catania), 68 (2013) no. 2, pp. 15–31.
- [3] O. AGRATINI, On a sequence of linear positive operators, Facta Univ. Ser. Math. Inform., 14 (1999), pp. 41–48.
- [4] B. M. BROWN, D. ELLIOTT and D.F. PAGET, Lipschitz constants for the Bernstein polynomials of a Lipschitz continuous function, J. Approx. Theory, 49 (1987) no. 2, pp. 196–199.
- [5] F. DIRIK, Statistical convergence and rate of convergence of a sequence of positive linear operators, Math. Commun., 12 (2007) no. 2, pp. 147–153.
- [6] A. ERENÇIN and F. TAŞDELEN, On a family of linear and positive operators in weighted spaces, JIPAM. J. Inequal. Pure Appl. Math., 8 (2007) no. 2, Article 39, 6 pp.
- [7] A. ERENÇIN and F. TAŞDELEN, On certain Kantorovich type operators, Fasc. Math., (2009) no. 41, pp. 65–71.
- [8] A. ERENÇIN, G. BAŞCANBAZ-TUNCA and F. TAŞDELEN, Some preservation properties of MKZ-Stancu type operators, Sarajevo J. Math., 10 (22) (2014) no. 1, pp. 93–102.
- [9] G.C. JAIN and S. PETHE, On the generalizations of Bernstein and Szasz-Mirakjan operators, Nanta Math., 10 (1977) no. 2, pp. 185–193.
- [10] M. K. KHAN and M. A. PETERS, Lipschitz constants for some approximation operators of a Lipschitz continuous function, J. Approx. Theory, **59** (1989) no. 3, pp. 307–315.
- ZHONGKAI LI, Bernstein polynomials and modulus of continuity, J. Approx. Theory, 102 (2000) no. 1, pp. 171–174.
- [12] A. LUPAŞ, The approximation by some positive linear operators, In: Proceedings of the International Dortmund Meeting on Approximation Theory (M.W. Müller et al., eds.), Akademie Verlag, Berlin, (1995), pp. 201–229.
- [13] H. N. MHASKAR and D. V. PAI, Fundamentals of approximation theory, CRC Press, Boca Raton, FL; Narosa Publishing House, New Delhi, 2000.
- [14] S. TARABIE, On some A-statistical approximation processes, Int. J. Pure Appl. Math., 76 (2012) no. 3, pp. 327–332.
- [15] T. TRIF, An elementary proof of the preservation of Lipschitz constants by the Meyer-König and Zeller operators, JIPAM. J. Inequal. Pure Appl. Math., 4 (2003) no. 5, Article 90, 3 pp.

Received by the editors: August 14, 2014. Published online: January 23, 2015.