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Abstract. We study analytically and empirically the rate of convergence of two
k-step fixed point iterative methods in the family of methods
(1) xn+1 = T (xi0+n−k+1, xi1+n−k+1, . . . , xik−1+n−k+1), n ≥ k − 1,

where T : Xk → X is a mapping satisfying some Prešić type contraction condi-
tions and (i0, i1, . . . , ik−1) is a permutation of (0, 1, . . . , k − 1).

We also consider the Picard iteration associated to the fixed point problem
x = T (x, . . . , x) and compare analytically and empirically the rate and speed of
convergence of three iterative methods. Our approach opens a new perspective
on the study of the rate of convergence / speed of convergence of fixed point
iterative methods and also illustrates the essential difference between them by
means of some concrete numerical experiments.
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1. INTRODUCTION

In the book [23] (see also [28]), I. Păvăloiu studied some multistep iterative
methods for solving the scalar equation

(2) x = ϕ(x)

where ϕ : I → I is a function and I ⊂ R is an interval. In order to solve (2), he
considers a function g : Is → I, where s ≥ 1 is an integer, and the restriction
of g to the diagonal of Is coincides with ϕ, that is,

(3) g(x, x, . . . , x) = ϕ(x), ∀x ∈ I.
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Then, by choosing x0, x1, . . . , xs−1 ∈ I, one constructs the s-point iterative
sequence {xn} defined by

(4) xs+p = g(xp, xp+1, . . . , xp+s−1), p = 0, 1, . . .

The convergence of the iterative method (4) is established in Theorem 4.2.1
in [23] (Theorem 5.3.1 in [28]), which essentially states that, if ϕ and g are
defined as above and there exist constants αi ∈ (0, 1), i = 1, 2, . . . , s satisfying

(5) α1 + α2 + · · ·+ αs < 1

such that

(6) |g(u0, . . . , us−1)− g(u1, . . . , us)| ≤ α1|u0 − u1|+ · · ·+ αs|us−1 − us|,

for all u0, u1, . . . , uk−1∈I, then the sequence {xn} given by (4) converges to x ∈
I, the unique solution of equation (2), for any initial values x0, x1, . . . , xs−1 ∈ I.

Subsequently, by considering the family of s! iterative methods

(7) xn+1 = g(xi0+n−s+1, xi1+n−s+1, . . . , xis−1+n−s+1), n ≥ s− 1,

where (i0, i1, . . . , is−1) is a permutation of (0, 1, . . . , s− 1), the authors in [23]
and [28] search for a certain iterative method in that family for which the best
error estimate is obtained (by means of Theorem 4.2.1 [23]).

The conclusion (see Theorem 5.3.3 in [28]) is that the optimal method in
this respect corresponds to the particular method obtained from (7) in case of
the permutation (i0, i1, . . . , is−1) of (0, 1, . . . , s− 1) for which one has

αi0 ≥ αi1 ≥ · · · ≥ αis−1 .

Starting from the fact that, in [23] and [28], no direct proof is given of the fact
that the methods in (7) are also convergent, our aim in this paper is quadruple:

• First, to give a different proof of Theorem 4.2.1 in [23] (Theorem 5.3.1
in [28]) in the more general case of mappings defined on a complete
metric space X;
• Second, to consider the one-point iterative method

(8) yn+1 = g(yn, yn, . . . , yn), n ≥ 0,

and prove that it converges to x, for any initial value y0;
• Third, to show analytically that all the three iterative methods men-

tioned above have linear rate of convergence;
• Fourth, to define a suitable concept of speed of convergence and to

show empirically that the rate of convergence and the speed of conver-
gence are distinct concepts and, additionally, to present some examples
that show that two methods having the same rate of convergence may
exhibit a different speed of convergence.
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2. PRELIMINARIES

We first note that Theorem 4.2.1 in [23] (Theorem 5.3.1 in [28]) is a partic-
ular case of Prešić fixed point theorem, established in the general setting of a
metric space [29].

Indeed, let (X, d) be a metric space and T : X → X a self mapping. Denote
by Fix (T ) := {x ∈ X : Tx = x} the set of fixed points of T .

If (X, d) is complete and T is a contraction, i.e., there exists a constant
α ∈ [0, 1) such that

(9) d(Tx, Ty) ≤ a d(x, y), for all x, y ∈ X,

then, by the well known Banach contraction mapping principle (see [4], for
example), we know that Fix (T ) = {p} and that, for any x0 ∈ X, the Picard
iteration, that is, the sequence defined by xn+1 = Txn, n = 0, 1, . . . , converges
to p, as n→∞.

The Banach contraction mapping principle has been extended by Prešić [29]
(see also [42]), to mappings f : Xk → X satisfying a contractive condition that
includes (9) in the particular case k = 1.

Theorem 2.1 (S. Prešić [29], 1965). Let (X, d) be a complete metric space,

k a positive integer, α1, α2, . . . , αk ∈ R+,
k∑
i=1
αi = α < 1 and f : Xk → X a

mapping satisfying

(10) d (f(x0, . . . , xk−1), f(x1, . . . , xk)) ≤ α1d(x0, x1) + · · ·+ αkd(xk−1, xk),

for all x0, . . . , xk ∈ X.
Then:

1) f has a unique fixed point x, that is, there exists a unique x∗ ∈ X such
that f(x∗, . . . , x∗) = x∗;

2) the sequence {xn}n≥0 defined by

(11) xn+1 = f(xn, . . . , xn−k+1), n = k − 1, k, k + 1, . . .

converges to x, for any x0, . . . , xk−1 ∈ X.

It is easy to see that, subject to a change of notation, Theorem 4.2.1 in [23]
is obtained from Theorem 2.1 for X = I ⊂ R and that, in the particular case
k = 1, from Theorem 2.1, we get exactly the well-known Banach contraction
mapping principle. In this case, the k-point iterative method (11) reduces to
Picard iterations:

(12) xn+1 = f(xn), n = 0, 1, 2, 3, . . . ,

Apart from applications in numerical analysis, Prešić fixed point theorem
has other important applications in the study of global asymptotic stability of
the equilibrium for nonlinear difference equations; see the paper [11] and the
monograph [18].
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On the other hand, some other Prešić type fixed point theorems have been
obtained in [12], [18], [19], [17], [21], [30], and for more general contractive
type conditions in [8], [9] and [11], with some applications to nonlinear cyclic
systems of equations and difference equations.

Theorem 2.1 and other similar results, like the ones in [12], [19], [17], [30],
have important applications in the iterative solution of nonlinear equations;
see [23] and [28], [9], [10], as well as [31]-[41].

Another important generalization of Theorem 2.1 was obtained by I.A. Rus
[30], for operators T fulfilling the more general condition
(13) d(T (x0, . . . , xk−1), T (x1, . . . , xk)) ≤ ϕ(d(x0, x1), . . . , d(xk−1, xk)),
for any x0, . . . , xk ∈ X, where ϕ : Rk+ → R+ satisfies certain appropriate
conditions.

Another important generalization of Prešić’s result was recently obtained
by L. Cirić and S. Prešić in [12], where, instead of (10) and its generalization
(13), the following contraction condition is considered:
(14) d(T (x0, . . . , xk−1), T (x1, . . . , xk)) ≤ λmax{d(x0, x1), . . . , d(xk−1, xk)},
for any x0, . . . , xk ∈ X, where λ ∈ (0, 1).

Other general Prešić type fixed point results have been very recently ob-
tained by the third author in [18]-[21] based on alternative contractive con-
ditions which are more general than (14), (13) and (10). For other related
results, we refer to [31]-[41].

The following lemmas will be useful in proving our main results in this
paper.

Lemma 1. ([29]) Let k ∈ N, k 6= 0 and α1, α2, . . . , αk ∈ R+ such that
k∑
i=1
αi = α < 1. If {∆n}n≥1 is a sequence of positive numbers satisfying

(15) ∆n+k ≤ α1∆n + α2∆n+1 + . . .+ αk∆n+k−1, n ≥ 1,
then there exist L > 0 and θ ∈ (0, 1) such that
(16) ∆n ≤ L · θn, for all n ≥ 1.

The next Lemma is due to Ostrowski ([16]) and can also be found in an
extended form in [4].

Lemma 2. Let {an}n≥0, {bn}n≥0 be two sequences of positive real numbers
and q ∈ (0, 1) such that:

i) an+1 ≤ q an + bn, n ≥ 0;
ii) bn → 0 as n→∞.

Then:
lim
n→∞

an = 0.

A more general form of the previous lemma has been obtained in [2].
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Lemma 3. Let {an}n≥0 be a sequence of positive real numbers and let
{bn}n≥0 be a sequence of non-negative real numbers for which there exist
q ∈ (0, 1) and an integer k ≥ 0 such that:

i) an+1 ≤ q an−k + bn, n ≥ k;
ii)

∑∞
n=1 bn < +∞.

Then:
∞∑
n=1

an < +∞.

Note that for k = 0, by Lemma 3, we actually get the conclusion of Lemma
2, i.e.,

lim
n→∞

an = 0.

3. MAIN RESULTS

Our first main result is an improved version of Prešić fixed point theorem
in [29] (Theorem 2.1); see also [18].

Theorem 3.1. Let (X, d) be a complete metric space, k a positive integer

and f : Xk → X a mapping for which there exist α1, α2, . . . , αk ∈ R+,
k∑
i=1
αi =

α < 1 such that

(17) d(f(x0, . . . , xk−1), f(x1, . . . , xk)) ≤
k∑
i=1
αid(xi−1, xi),

for all x0, . . . , xk ∈ X.
Then:

1) f has a unique fixed point x, i.e., f(x, . . . , x) = x;
2) the sequence {yn}n≥0, defined by

(18) yn+1 = f(yn, yn, . . . , yn), n ≥ 0,
converges to x, for any y0 ∈ X;

3) the sequence {xn}n≥0 defined by x0, . . . , xk−1 ∈ X and
(19) xn+1 = f(xn−k+1, xn−k, . . . , xn), n ≥ k − 1,

also converges to x, for all x0, . . . , xk−1 ∈ X.
4) the sequence {zn}n≥0 defined by z0, . . . , zk−1 ∈ X and

(20) zn+1 = f(zn, zn−1, . . . , xn−k+1), n ≥ k − 1,
converges to x, for all z0, . . . , zk−1 ∈ X.

5) The following estimates hold:

(21) d(yn, x) ≤ αn

1−α d(y1, y0) , n = 1, 2, . . . ;

(22) d(xn, x) ≤ L θn

1−θ , n = 1, 2, . . . ;
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where L > 0 and θ ∈ (0, 1) are some constants.

(23) d(zn, x) ≤ L1
θi

1
1−θ1

, n = 1, 2, . . . ;

where L1 > 0 and θ1 ∈ (0, 1) are some constants.

Proof. 1), 2) By considering the associate operator F : X → X,F (x) =
f(x, . . . , x), for any x ∈ X we have:

d(F (x), F (y)) = d(f(x, x, . . . , x), f(y, y, . . . , y)) ≤
≤ d(f(x, . . . , x), f(x, . . . , x, y)) + d(f(x, . . . , x, y), f(x, . . . , x, y, y)) +

+ . . .+
+d(f(x, x, y, . . . , y), f(x, y, . . . , y)) + d(f(x, y, . . . , y), f(y, . . . , y)).

By (17) we obtain:

d(F (x), F (y)) ≤ [α1d(x, x) + α2d(x, x) + . . .+ αk−1d(x, x) + αkd(x, y)] +
+ [α1d(x, x) + α2d(x, x) + . . .+ αk−1d(x, y) + αkd(y, y)] +
+ . . .+
+ [α1d(x, y) + α2d(y, y) + . . .+ αk−1d(y, y) + αkd(y, y)] ,

so

d(F (x), F (y)) ≤
k∑
i=1
αid(x, y) = αd(x, y),

for any x, y ∈ X, which shows that F is a Banach contraction with constant
α ∈ [0, 1).

Consequently, by Banach contraction mapping principle, F has a unique
fixed point x ∈ X that can be obtained by means of the Picard iterations
corresponding to F starting from any x0 ∈ X, which thus proves 1) and 2).

3) We prove now that the k-step iteration method {xn}n≥0, defined by (19)
converges to the unique fixed point x of f . For n ≥ k we have:

d(xn, xn+1) = d(f(xn−k, xn−k+1, . . . , xn−1), f(xn−k+1, xn−k+2, . . . , xn)) ≤
≤ α1d(xn−k, xn−k+1) + α2d(xn−k+1, xn−k+2) + . . .+ αkd(xn−1, xn).(24)

If
∆n = d(xn−1, xn), n ≥ 1,

then, by (24), we obtain that the sequence {∆n}n≥1 satisfies:

∆n+1 ≤ α1∆n−k+1 + α2∆n−k+2 + . . .+ αk∆n, n ≥ 1,

where α1, α2, . . . , αk > 0 and
k∑
i=1
αi = α < 1.

By Lemma 1, there exist L > 0 and θ ∈ (0, 1) such that ∆n ≤ Lθn, n ≥ 1,
that is,

(25) d(xn−1, xn) ≤ Lθn, n ≥ 1.
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For n ≥ 1 and p ≥ 1, by (25) we obtain:
d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + . . .+ d(xn+p−1, xn+p) ≤

≤ Lθn+1 + Lθn+2 + . . .+ Lθn+p =
= Lθn+1

(
1 + θ + θ2 + . . .+ θp−1

)
,

so

(26) d(xn, xn+p) ≤ Lθn+1 1− θp

1− θ , n ≥ 1, p ≥ 1.

Since θ ∈ (0, 1), it follows that {xn}n≥0 is a Cauchy sequence, which in the
complete metric space (X, d) is convergent.

We prove that {xn}n≥0 in fact converges to x, the unique fixed point of f .
Indeed, for n ≥ 0 we have:

d(xn+1, x) ≤ d(f(xn−k+1, xn−k+2, . . . , xn), f(x, x, . . . , x))
≤ d(f(xn−k+1, xn−k+2, . . . , xn), f(xn−k+2, xn−k+3, . . . , xn, x))+

+ d(f(xn−k+2, xn−k+3, . . . , xn, x), f(xn−k+3, xn−k+4, . . . , xn, x, x))+
+ . . .+ d(f(xn, x, . . . , x), f(x, x, . . . , x)),(27)

so by (10) we obtain:
d(xn+1, x) ≤ [α1d(xn−k+1, xn−k+2) + . . .+ αk−1d(xn−1, xn) + αkd(xn, x)] +

+[α1d(xn−k+2, xn−k+3) + . . .+ αk−1d(xn, x) + αkd(x, x)] +
+ . . .+
+[α1d(xn, x) + α2d(x, x) + . . .+ αkd(x, x)].

Now using (25) it follows that:

d(xn+1, x) ≤ [α1Lθ
n−k+2 + α2Lθ

n−k+3 + . . .+ αk−1Lθ
n + αkd(xn, x)] +

+[α1Lθ
n−k+3 + α2Lθ

n−k+4 + . . .+ αk−2Lθ
n + αk−1d(xn, x) + αk · 0] +

+ . . .

+[α1d(xn, x) + 0] =
= α1Lθ

n−k+2 + (α1 + α2)Lθn−k+3 + . . .+ (α1 + α2 + . . .+ αk−1)Lθn +
+(α1 + α2 + . . .+ αk)d(xn, x).

Finally we obtain that:
d(xn+1, x) ≤ αd(xn, x) + Lθn[α1θ

2−k + (α1 + α2)θ3−k + . . .+
+ (α1 + α2 + . . .+ αk−2)θ + (α1 + α2 + . . .+ αk−1)], n ≥ 1,

where θ ∈ (0, 1). This inequality shall lead to estimate
(28) d(xn+1, x) ≤ αd(xn, x) +M · θn, n ≥ 0,
where
M=L[α1θ

2−k+(α1+α2)θ3−k+. . .+(α1+α2+. . .+αk−2)θ+(α1+α2+. . .+αk−1)]
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is a fixed positive number (since k is fixed). Considering
an = d(xn, x),
q = α ∈ [0, 1)

bn = Mθn, n ≥ 1,
the conditions of Lemma 2 are fulfilled, so by its conclusion

d(xn, x)→ 0, n→∞.
Consequently, the sequence {xn}n≥0 converges to x, the unique fixed point

of f .
4) First, we observe that for

∆n = d(zn, zn−1), n ≥ 1,
proceeding as in the previous case, we obtain by Lemma 1, that there exist
L1 > 0 and θ1 ∈ (0, 1) such that ∆n ≤ L1θ

n
1 , n ≥ 1, that is,

(29) d(zn−1, zn) ≤ L1θ
n
1 , n ≥ 1.

Next, in a similar way to the case of {xn}n≥0 but by following slightly different
computations, we find that

d(zn+1, x) ≤ αd(zn−k+1, x) +M1 θ
n
1 ,

for a certain constant M1 > 0.
Now, simply use Lemma 3 to get the conclusion that the sequence {zn}n≥0

converges to x, too.
5) The error estimate (21) follows by the Banach contraction mapping prin-

ciple in the form given in [4], while the estimates (22) and (23) are obtained
by (26) and its version for {zn}n≥0, respectively, by letting p→∞. �

4. RATE OF CONVERGENCE VERSUS SPEED OF CONVERGENCE

As before, let {xn}n≥0 be a convergent sequence with limit x. If, for some
r, we have

lim
n→∞

d(x̄n+1,x̄∗)
[d(x̄n,x̄∗)]r = λ < +∞,

then r is called the rate of convergence of {xn}n≥0, while λ is termed as its
asymptotic error ; see [15] for more details.

If r = 1, we say that the convergence of {xn}n≥0 is linear, if r = 2, we
say that the convergence is quadratic, while, for 1 < r < 2, we say that the
convergence is superlinear.

Now, let {xn}n≥0 and {yn}n≥0 be two convergent sequences with the same
limit x. If

lim
n→∞

d(x̄n,x̄∗)
d(yn,x̄∗) = β < +∞,

exists and β = 0, then we say that {xn}n≥0 converges faster than {yn}n≥0 to
x, and if β 6= 0, we say that {xn}n≥0 and {yn}n≥0 have the same speed of
convergence.
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Clearly, if β = ∞, then {yn}n≥0 converges faster than {xn}n≥0 to x (for
more details see [1], [3], [4]).

This concept of convergence can be defined in a more general context, when
{xn}n≥0 and {yn}n≥0 are convergent sequences with different limits, x and y,
respectively; see [1] and [4].

Example 4.1. If we consider the sequences {an}n≥0, {bn}n≥0, {cn}n≥0 given
by

an = 1
n+1 , bn = 1

2n , cn = 2−2n
,

then, obviously, an → 0, bn → 0 and cn → 0, as n→∞, and since

a) lim
n→∞

an+1
an

= 1, b) lim
n→∞

bn+1
bn

= 1
2 , c) lim

n→∞
bn
an

= 0,

it follows that {an}n≥0 and {bn}n≥0 have the same rate of convergence (linear).
However, {bn}n≥0 converges faster than {an}n≥0 to 0.

Moreover, since
lim
n→∞

cn+1
(cn)2 = 1,

it follows that the sequence {cn}n≥0 has quadratic rate of convergence and, as
an immediate consequence, converges faster than both {an}n≥0 and {bn}n≥0.

If we now use the proof of Theorem 3.1 and the complete form of the Banach
contraction principle – see for example [4] – then we obtain for the sequences
{xn}n≥0 and {yn}n≥0 the following error estimates:

(30) d(yn+1, x) ≤ αd(yn, x), n ≥ 0;

(31) d(xn+1, x) ≤ αd(xn, x) +M · θn, n ≥ 0,

where M > 0 and θ ∈ (0, 1) are constant, and also

(32) d(zn+1, x) ≤ αd(zn, x) +M1 · θn1 , n ≥ 0.

Thus, the estimates (30)-(32) show that the sequences {xn}n≥0, {yn}n≥0 and
{zn}n≥0 have all linear rate of convergence, while the estimates (21)-(23) offer
information on the speed of convergence of these sequences.

In the proof of Lemma 1 in [29], we note that θ in (22) is the unique positive
root of the polynomial equation

tk − α1 t
k−1 − · · · − αk−1 t− αk = 0,

while θ1 in (23) is the unique positive root of the polynomial equation

tk − αk tk−1 − · · · − α2 t− α1 = 0.

Therefore, in view of the estimates (22)-(23), to compare the iterative meth-
ods {xn}n≥0, {yn}n≥0 and {zn}n≥0, it suffices to establish the order relation
between the constants

α, θ, θ1 ∈ (0, 1).
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5. EXAMPLES AND CONCLUDING REMARKS

The following example illustrates Theorem 3.1.

Example 5.1. Let X = R with the usual metric and f : X2 → X be defined
by

f(x, y) = x+2y
4 , ∀(x, y) ∈ X2.

It is easy to check that f satisfies condition (10) (with α1 = 1
4 , α2 = 1

2),
condition (13) (with ϕ(t1, t2) = 1

4 t1 + 1
2 t2), as well as condition (14) (with

λ = 3
4).

Consider the sequence {xn}

xn+1 = xn+2xn−1
4 , n ≥ 1,

corresponding to the identity permutation (0, 1). Then we have

xn = c1
(

1−
√

33
8

)n
+ c2

(
1+
√

33
8

)n
, n ≥ 1,

where c1 and c2 are some constants. Consider now the sequence {zn}

zn+1 = 2zn+zn−1
4 , n ≥ 1,

corresponding to the permutation (1, 0) of (0, 1). Similarly, we obtain

zn = a1
(

1−
√

5
4

)n
+ a2

(
1+
√

5
4

)n
, n ≥ 1,

where a1 and a2 are some constants. Now, considering the sequence {yn} given
by y0 ∈ X and

yn+1 = 3
4yn ≥ 0,

we get
yn =

(
3
4

)n
y0, n ≥ 0.

Since ∣∣∣1−√5
4

∣∣∣ < ∣∣∣1−√33
8

∣∣∣ < 3
4 <

1+
√

5
4 < 1+

√
33

8 ,

we have

lim
n→∞

xn
yn

= c1 · lim
n→∞

(
1−
√

33
6

)n
+ c2 · lim

n→∞

(
1+
√

33
6

)n
= +∞;

lim
n→∞

zn
yn

= a1 · lim
n→∞

(
1−
√

5
3

)n
+ a2 · lim

n→∞

(
1+
√

5
3

)n
= +∞;

and

lim
n→∞

xn
zn

= lim
n→∞

c1

(
1−
√

33
8

)n

+c2

(
1+
√

33
8

)n

a1

(
1−
√

5
4

)n

+a2

(
1+
√

5
4

)n

= c2
a2
· lim
n→∞

(
1+
√

33
2+2
√

5

)n
= +∞,

as c1, c2, a1, a2 6= 0.
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These calculations prove that the sequence {yn} converges faster than {zn}
to 0, {zn} converges faster than {xn}, and {yn} converges faster than {zn},
although all the three sequences have the same (linear) rate of convergence.

We thus can conclude that the above numerical tests confirm the theoretical
results obtained in Păvăloiu [23]. Indeed, amongst the k! iterative methods of
the form
(33) xn+1 = f(xi0+n−k+1, xi1+n−k+1, . . . , xik−1+n−k+1), n ≥ k − 1,

where (i0, i1, . . . , ik−1) is a permutation of (0, 1, . . . , k−1), the optimal method
is {zn}, which corresponds to the permutation (i0, i1, . . . , ik−1) of (0, 1, . . . , k−1)
for which one has

αi0 ≥ αi1 ≥ · · · ≥ αik−1 .

This also shows that, especially in the case of fixed point iteration proce-
dures, which have generally linear rate a convergence, in order to decide about
the fastest iterative method, we have to take into consideration the speed of
convergence, usually deduced from the error estimates of the form (21)-(23).

An interesting conclusion that follows from the above example, is that, in
this particular case, the one-point algorithm {yn} converges faster than the
two two-step algorithms {xn} and {zn}.

The problem is to study if this claim is valid in general. In view of (21)-(23),
it would be sufficiently to show that

0 < α < θ1 < θ < 1,
which is a result similar to that given by Theorem 5.3.2 in [28].

We invite the reader to carry out all the calculations for the function f in
the next example.

Example 5.2. Let X = R with the usual metric and f : X3 → X be defined
by

f(x, y, z) = x−2y+3z
7 , ∀(x, y, z) ∈ X3,

which obviously satisfies condition (10) with α1 = 1
7 , α2 = 2

7 and α3 = 3
7 .
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no. 1, pp. 149–162.

[21] M. Păcurar, Fixed points of almost Prešić operators by a k-step iterative method, An.
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