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Abstract. In the papers [2], [3], [4], [6], [7] we indicated a method of extending
the notion of interpolation polynomial to the case of a non-linear mapping f :
X → Y where X and Y are linear spaces with special structures. This extension
offers the possibility to establish, in this general and abstract case as well, the
main properties known in the case of the interpolation of real functions.

To switch to the case using multiple nodes, case that compulsorily uses the
notion of Fréchet differential of the first order as well as of higher orders, we
will point out the definition and certain properties of these differentials. On this
basis we can present the manner of building an abstract interpolation polynomial
with multiple nodes.
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1. INTRODUCTION

The topic of the interpolation of the functions defined between linear spaces
or between linear normed spaces has been approached by Păvăloiu, I. in [9],
[10], [11] Prenter, M. in [12], Argyros, I. K. [1], Makarov, V. L., Hlobistov, V.
V. [8] and by myself in [2], [3], [4], [6], [7].

We will recall the elements of the construction of the abstract interpolation
polynomial with simple nodes.

Let us consider X and Y two linear spaces and f : X → Y a non-linear
mapping.

We note by L (X,Y ) the set of the linear mappings from X to Y and by
(X,Y )∗ the subset of L (X,Y ) that contains linear and continuous mappings
from X to Y.

For n ≥ 2 we introduce the set Ln (X,Y ) = L (X,Ln−1 (X,Y )) with
L1 (X,Y ) = L (X,Y ) and similarly (Xn, Y )∗ =

(
X,
(
Xn−1, Y

)∗)∗ with(
X1, Y

)∗ = (X,Y )∗ .
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For n = 2 the set L2 (X,Y ) represents the set of the bi-linear mappings
from X ×X to Y.

Let θX and θY be the null elements of the space X and Y respectively. We
will note by Θn the null element of the space Ln (X,Y ) . For n = 1 we will use
the notation Θ.

Let us consider now the bilinear mapping B ∈ L2 (Y, Y ) that verifies
B (u, v) = B (v, u) for any u, v ∈ Y and B (B (u, v) , w) = B (u,B (v, w))
for any u, v, w ∈ Y.

We will now suppose the following properties:
1) there exists u0 ∈ Y the identity element of the semi-group (Y,B) and

as well Y0 ⊆ Y with u0 ∈ Y0 so that (Y0, B) form a group.
2) there exists X0 ⊆ X and the linear and bijective mapping U0 : X0 →

Y0.
3) there exists the linear mapping U : X → Y so that U |X0

= U0.

Using the mappings U ∈ L (X,Y ) and B ∈ L2 (Y, Y ) we will introduce the
sequence (An)n∈N with An : Xn → Y where An ∈ Ln (X,Y ) so that:

(1)
A1 (y) = U (y) , for y ∈ X;
An (y1, . . . , yn) = B (An−1 (y1, . . . , yn−1) , U (yn)) , for y1, . . . , yn ∈ X.

We consider now the points x0, x1, . . . , xn ∈ X0 and the mapping:
(2) w0,n : X → Y, w0,n (x) = An+1 (x− x0, . . . , x− xn)
and for any i ∈ {0, 1, . . . , n} the mappings:

(3)
w′0,n (xi) ∈ L (X,Y ) ,

w′0,n (xi)h = An+1 (xi − x0, . . . , xi − xi−1, xi − xi+1, . . . , xi − xn, h) ,
noting that w′0,n (xi) represents the Fréchet differential of the mapping defined
by (2) , evidently in the case where X and Y are linear normed spaces.

A first result from [2], [7] shows that the restrictions to X0 of the mappings
(3) have values in Y0 and are bijective, so we can speak of

w′0,n (xi)−1 : Y0 → X0

and this mapping can be prolonged through linearity to sp (Y0) and in the case
where Y has a topological structure (for example it is a linear normed space),
the prolongation can be extended to cl (sp (Y0)) .

If we denote by Y1 the maximal subspace from Y to which the introduced
mappings can be extended and we suppose that for any i ∈ {0, 1, ..., n} we
have f (xi) ∈ Y1 and we can define the mappings:

L (x0, x1, ..., xn; f) : X → Y ;(4)
L (x0, x1, ..., xn; f) (x) =

=
n∑
i=0
An+1(x− x0, ..., x− xi−1, x− xi+1, ..., x− xn;Zn,i),
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where:
Zn,i = w′0,n (xi)−1 f (xi)

and these mappings verify, for any i = 0, n, the equalities:

(5) L (x0, x1, ..., xn; f) (xi) = f (xi) .

Because An+1 ∈ Ln+1 (X,Y ) , there exists D0 ∈ Y and for any k ∈ {1, 2, . . . ,
n} the mappings Dk : Xk → Y so that:

Dkx
k = Dk(x, . . . , x︸ ︷︷ ︸

k times

),

we will have:

(6) L (x0, x1, . . . , xn; f) (x) = Dnx
n +Dn−1x

n−1 + . . .+D1x+D0.

The relation (6) is the expression of the character of an abstract polynomial
of the mapping (4), so this relation together with the relation (5) prove the fact
that this mapping can be denominated an abstract interpolation polynomial.

2. THE FRÉCHET DIFFERENTIAL OF A MAPPING. SPECIAL PROPERTIES

Let us consider the linear normed spaces (X, ‖·‖X) and (Y, ‖·‖Y ) . We con-
sider as well the nonlinear mapping f : X → Y with D ⊆ X. For x ∈ D let be
the set:

ED,x = {h ∈ X : x+ h ∈ D} .
First we will have the following:

Definition 1. The mapping f : D → Y admits a Fréchet differential in
the point x ∈ D, if there exists T ∈ (X,Y )∗ and ω : D × (ED,x� {θX}) → Y
so that:

f (x+ h)− f (x) = T (h) + ‖h‖X ω (x, h)
and:

lim
h→θX

‖ω (x, h)‖Y = 0.

For the mapping T ∈ (X,Y )∗ we have:

Remark 2. We can easily prove that there exists at most a mapping T ∈
(X,Y )∗ that corresponds to the requirements of the Definition 1. �

In this way Definition 1 is completed with:

Definition 3. The mapping T ∈ (X,Y )∗ from Definition 1 that is attached
to the function f : D → Y and to the point x, is called the Fréchet differential
of this mapping at the point x, and is denoted through f ′ (x) .

Now we have:
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Remark 4. Usually there exists a subset A ⊆ D so that for any u ∈ A, the
function f : D → Y is Fréchet differentiable at every point u. In this case it is
possible to define the function:

df : A→ (X,Y )∗ , df (u) = f ′ (u) .
The definition of the previous function allows for the introduction of differ-

entials with higher orders. �

Thus we have:

Definition 5. Besides the data from Definition 1 let us consider a number
p ∈ N.

If:
(i) there exists V a neighborhood of the point x ∈ D, so that for any

u ∈ V ∩D there exists the differential of the order p−1 of the mapping
f : D → Y at the point u, denoted by f (p−1) (u) ∈

(
Xp−1, Y

)∗
, so the

function:

(7) dp−1f : V ∩D →
(
Xp−1, Y

)∗
;
(
dp−1f

)
(u) = f (p−1) (u)

is defined;
(ii) the function defined by (7) is a differential (of the first order) at the

point x; then we can say that the mapping f : D → Y admits a differ-
ential with the order p at the point x and in this case:

f (p) (x) :=
(
dp−1f

)′
(x) =

(
f (p−1)

)′
(x) ∈

(
X,
(
Xp−1, Y

)∗)∗
= (Xp, Y )∗ .

In the paper [5], we have established certain properties of the Fréchet dif-
ferentials of higher orders, which are relevant for the statements below.

We will recall some of these properties.
I) Let us consider the bilinear and symmetrical mapping B ∈ L2 (Y, Y )

together with the non-linear mappings f, g : D → Y with D ⊆ X.
With the aid of this mappings we consider:

(8) F : D → Y, F (x) = B (f (x) , g (x)) .
We have the following proposition:

Proposition 6. If the non-linear mappings f, g : D → Y admit Fréchet
differential up to the order n, included, at the point x ∈ D, then the mapping
introduced by (8) admits a Fréchet differential up to the same order n, at the
same point x, and for any h1, . . . , hn ∈ X we have:
(9)

F (n) (x)h1...hn =
n∑
k=0

∑
1≤i1<...<ik≤n

B
(
f (k) (x)hi1 ...hik , g

(n−k) (x)hj1 ...hjn−k

)
where, for a fixed i1, i2, ..., ik ∈ N with 1 ≤ i1 < ... < ik ≤ n, we will choose
{j1, ..., jn−k} ∈ {1, ..., n}� {i1, ..., ik} with j1 < ... < jn−k.
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For the case h1 = ... = hn = h we have:

(10) F (n) (x)hn =
n∑
k=0

(n
k

)
B
(
f (k) (x)hk, g(n−k) (x)hn−k

)
We can notice that the equation (10) represents an extension of the well-

known Leibnitz derivation formula.
II) It is necessary to generalize the property expressed by Proposition 6.
For this extension let us consider the sequence of mappings (Qm)m∈N, m≥2

with Qm ∈ Lm (X,Y ) and:

(11)
Q2 (u1, u2) = B (u1, u2) ;
Qm (u1, ..., um) = B (Qm−1 (u1, ..., um−1) , um) , m ∈ N, m ≥ 2,

where by u1, ..., um we have denoted arbitrary elements of Y.
We will now consider the natural numbers p, s with s ≤ p and the set of

distinct elements:
H = {x1, x2, ..., xp} .

We introduce the set:

Cp,s (H) = {(xi1 , ..., xis) ∈ Hs : 1 ≤ i1 < i2 < ... < is ≤ p}

and obviously:
|Cp,s (H)| = p!

s!(p−s)! ,

where |H| denotes the number of elements of the set H.
Let us now consider m ∈ N and α1, ..., αm ∈ N so that α1 + ... + αm = n

and to start with we denote:
H1 = {1, 2, ..., n} ; p1 = n;

G1 =
{(
i
(1)
1 , ..., i

(1)
α1

)
∈ Hα1

1 : i(1)
1 < ... < i

(1)
α1

}
.

For a fixed
(
i
(1)
1 , ..., i

(1)
α1

)
∈ G1 we choose: H2 = {1, 2, ..., n}�

{
i
(1)
1 , ..., i

(1)
α1

}
; p2 = n− α1;

G2 =
{(
i
(2)
1 , ..., i

(2)
α2

)
∈ Hα2

2 : i(2)
1 < ... < i

(2)
α2

}
.

For k ∈ N, k ≤ m and a fixed(
i
(1)
1 , ..., i(1)

α1

)
∈ G1, ...,

(
i
(k−1)
1 , ..., i(k−1)

αk−1

)
∈ Gk−1

we choose:
Hk = {1, 2, ..., n}�

{
i
(1)
1 , ..., i

(1)
α1 , ..., i

(k−1)
1 , ..., i

(k−1)
αk−1

}
;

pk = n− (α1 + ...+ αk−1) ;

Gk =
{(
i
(k)
1 , ..., i

(k)
αk

)
∈ Hαk

k : i(k)
1 < ... < i

(k)
αk

}
.
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Finally, for a fixed
(
i
(1)
1 , ..., i

(1)
α1

)
∈ G1, ...,

(
i
(m−1)
1 , ..., i

(m−1)
αm−1

)
∈ Gm−1 we

choose: 
Hm = {1, 2, ..., n}�

{
i
(1)
1 , ..., i

(1)
α1 , ..., i

(m−1)
1 , ..., i

(m−1)
αm−1

}
;

pm = n− (α1 + ...+ αm−1) ;

Gm =
{(
i
(m)
1 , ..., i

(m)
αm

)
∈ Hαm

m : i(m)
1 < ... < i

(m)
αm

}
.

It is clear that for any k ∈ N we have Gk ∈ Cpk,αk (Hk) and consequently:

|Gk| = pk!
αk!(pk−αk)! = [n−(α1+...+αk−1)]!

αk![n−(α1+...+αk−1+αk)]! .

Let us denote by A[α1,...,αm]
n the set of all systems (G1, . . . , Gm) , where for

any i ∈ {1, 2, . . . ,m} the system of indexes Gi obtained in the aforementioned
manner.

It is obvious that:∣∣A[α1,...,αm]
n

∣∣ = |G1| · ... · |Gm| =
m∏
k=1

pk!
αk!(pk−αk)!

= 1
α1!...αm!

m∏
k=1

[n−(α1+...+αk−1)]!
[n−(α1+...+αk−1+αk)]!

= 1
α1!...αm! ·

n!
(n−(α1+...+αm))! .

But (n− (α1 + . . .+ αm))! = (n− n)! = 0! = 1, so:∣∣A[α1,...,αm]
n

∣∣ = n!
α1!...αm! .

Let us consider now the non-linear mappings fi : A → Y, for i = 1,m
where A ⊆ X. Using these mappings and the n-linear mapping Qm : Y m → Y
introduced by (11) consider the mapping:

(12) F : A→ Y, F (x) = Qm (f1 (x) , . . . , fm (x)) ,

which represents a more general case of the mappings (8) .
In this way we have the following extension of the Proposition 6.

Proposition 7. If the mappings fi : A → Y ; i = 1,m and A ⊆ X admit
the Fréchet differentials of the n order at the point x ∈ A, then the mapping
F : A → Y defined by (12) admits as well the Fréchet differential of the n
order at the same point x and for any h1, . . . , hn ∈ X we have the equality:

(13) F (n) (x)h1...hn =
∑

α1+...+αm=n

∑
(G1,...,Gm)∈A[α1,...,αm]

n

TG1,...,Gm ,

where for TG1,...,Gm we have denoted the expression:

(14)
∑(

i
(k)
1 ,...,i

(k)
αk

)
∈Gk; k=1,m

Qm
(
f

(α1)
1 (x)h

i
(1)
1
...h

i
(1)
α1
, . . . , f (αm)

m (x)h
i
(m)
1
...h

i
(m)
αm

)
.
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For the case h1 = ... = hm = h we have:

(15) F (n) (x)hn =
∑

α1+...+αm=n

n!
α1!...αm!Qm

(
f

(α1)
1 (x)hα1 , . . . , f (αm)

m (x)hαm
)
.

III) Let us consider now for a fixed a ∈ X, the mapping:

(16) Tm : X → Y, Tm (x) = Am(x− a, . . . , x− a︸ ︷︷ ︸)
m times

not= Am (x− a)m ,

where Am ∈ Lm (X,Y ) is introduced by (1) and the mappings B ∈ L2 (Y, Y )
and U ∈ L (X,Y ) verify the specified conditions.

For these mappings we have:

Proposition 8. The mappings defined by (16) admit Fréchet differentials
of any order n ∈ N and for any h1, ..., hn ∈ X we have:

(17) T (n)
m h1...hn =


θY , for n > m

Am (h1, . . . , hm) , for m = n
m!

(m−n)!An (x− a)m−n h1...hn, for m < n.

IV) Taking into account the mappings (Am)m∈N , with Am ∈ Lm (X,Y )
introduced by (1) , and if the numbers r1, . . . , rm ∈ N we can consider the
mapping:

(18) F : X → Y, F (x) = Ar1+...+rm ((x− x1)r1 , . . . , (x− xm)rm) ,

where x1, . . . , xm ∈ X are arbitrary.
We have the following result:

Proposition 9. The mappings defined by (18) admit Fréchet differentials
up to the order n included, where n ≤ r1 + r2 + . . . + rm at any point x ∈ X
and:

F (n) (x)h1...hn =

(19)

=n!
∑

α1+...+αm=n

m∏
i=1

(ri
αi

)
Ar1+...+rm

(
(x− x1)r1−α1, . . . , (x− xm)rm−αm, h1, . . . , hn

)
V) We will also consider another extension of Leibnitz’ formula concerning

the derivative with the n order.
In this way let us consider X,Y, Z linear normed spaces and the mappings

f : X → (Y,Z)∗ and g : X → Y.
Using the considered functions we consider the function:

(20) F : X → Y, F (x) = [f (x)] g (x)

and for this function we have:
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Proposition 10. If the mappings f : X → (Y,Z)∗ and g : X → Y admit
Fréchet differentials of the order n, at the point x ∈ X, then the mapping
defined by (20) also admits the Fréchet differential of the same order at the
same point x and:

F (n) (x)h1...hn =

=
n∑
k=0

∑
1≤i1<...<ik≤n

[
f (k) (x)hi1 ...hik

]
g(n−k) (x)hj1 ...hjn−k(21)

where {j1, . . . , jn−k} = {1, . . . , n}� {i1, . . . , ik} with j1 < j2 < ... < jn−k.
For the case where h1 = ...hn = h we have:

(22) F (n) (x)hn =
n∑
k=0

(n
k

) [
f (k) (x)hk

]
g(n−k) (x)hn−k.

VI) Let us consider now the mapping f : X → (X,Y )∗ supposing that
for every x ∈ X the linear mapping f (x) : X → Y has an inverse mapping
[f (x)]−1 : Y → X.

Therefore we can consider the mapping:

(23) g : X → (Y,X)∗ , g (x) = [f (x)]−1 .

We obtain the following result:

Proposition 11. If the non-linear mapping f : X → (X,Y )∗ has a Fréchet
differential at the point x, then the mapping g : X → (Y,X)∗ introduced by
(23) also has a Fréchet differential at the same point x, and:

(24) g′ (x)h = − [f (x)]−1 f ′ (x)h [f (x)]−1 ,

for every h ∈ Y.

3. THE FRÉCHET DIFFERENTIAL OF CERTAIN ESSENTIAL MAPPINGS THAT

APPEAR IN THE INTERPOLATION WITH MULTIPLE NODES

We will consider the sequence of mappings (An)n∈N where An :Xn → Y are
given by (1) and B ∈

(
Y 2, Y

)∗
, U ∈ (X,Y )∗ verify the assumptions specified

in the first paragraph of the present paper.
For x1, . . . , xm ∈ X and p1, . . . , pm ∈ N we consider the mapping:

(25)
ω

(
x1
p1
, ...,

xm
pm

;x
)
∈ (X,Y )∗ ,

ω

(
x1
p1
, ...,

xm
pm

;x
)
h = Ap1+...+pm+1 ((x− x1)p1 , . . . , (x− xm)pm , h) .

It is clear that if x−xi ∈ X0 for any i = 1,m, from the imposed hypotheses
it results that the mappings defined by (25) are bijections from X0 to Y0. Thus
we can consider the inverse mapping defined on Y0, which can be extended
first by linearity to sp (Y0) and then by continuity to cl (sp (Y0)) .
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We can thus consider the mapping:

(26) g : X → (cl (sp (Y0)) , X)∗ , g (x) =
[
ω

(
x1
p1
, ...,

xm
pm

;x
)]−1

.

Concerning this mapping we have:

Proposition 12. If for any k = 1,m we have x − xk ∈ X0, then for any
n ∈ N, the mapping defined by (26) admits a Fréchet differential of the order
n. For any h1, ..., hn ∈ X and t ∈ cl (sp (Y0)) we have:

[
g(n) (x)h1...hn

]
t =

(27)

=(−1)n n!
∑

α1+...+αm=n

m∏
i=1

(pi+αi−1
αi

)
An+1

([
ω
(

x1
p1+α1

, ..., xm
pm+αm ;x

)]−1
t,h1, ..., hn

)
Proof. Based on Proposition 11 we deduce that:

(28) g′ (x)h = − [P (x)]−1 P ′ (x)h [P (x)]−1 ,

where:
P (x) = ω

(
x1
p1
, ...,

xm
pm

;x
)
.

Taking into account Propositions 7 and 9 we deduce that:

(29) P ′ (x)hu = ω′
(
x1
p1
, ...,

xm
pm

;x
)
hu =

m∑
k=1

pkC
(k)
p1,...,pm (x, h, u) ,

for any h, u ∈ X, where we denote by C(k)
p1,...,pm (x, h, u) the value of the map-

ping Ap1+...+pm+1 on the arguments:

(x− x1)p1, ..., (x− xk−1)pk−1, (x− xk)pk−1 , (x− xk+1)pk+1, ..., (x− xm)pm, h, u.
If we choose t ∈ cl (sp (Y0)) and:

u =
[
ω

(
x1
p1
, ...,

xm
pm

;x
)]−1

t ∈ X,

after that for k ∈ {1, 2, ...,m} it has been proved that:

C(k)
p1,...,pm (x, h, u) = B

(
E

(k)
p1,...,pk−1,pk−1,pk+1,...,pm

(x, h) , U (u)
)
,

where E
(k)
p1,...,pk−1,pk−1,pk+1,...,pm

(x, h) is the value of Ap1+...+pm at the argu-
ments:
(x−x1)p1 , ..., (x−xk−1)pk−1 , (x− xk)pk−1 , (x− xk+1)pk+1 , ..., (x− xm)pm , h;
so:

E
(k)
p1,...,pk−1,pk−1,pk+1,...,pm

(x, h) = ω

(
x1
p1
, ...,

xk−1
pk−1

,
xk

pk − 1 ,
xk+1
pk+1

, ...,
xm
pm

;x
)
h.
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Thus:

ω′
(
x1
p1
, ...,

xm
pm

;x
)
h

[
ω

(
x1
p1
, ...,

xm
pm

;x
)]−1

t =

=
m∑
k=1

pkB

(
ω

(
x1
p1
, ...,

xk−1
pk−1

,
xk

pk − 1 ,
xk+1
pk+1

, ...,
xm
pm

;x
)
h, U (u)

)
(30)

We now show the equality:

U (u) = U

[
ω

(
x1
p1
, ...,

xm
pm

;x
)]−1

t

= A2

(
x− xk,

[
ω

(
x1
p1
, ...,

xk−1
pk−1

,
xk

pk + 1 ,
xk+1
pk+1

, ...,
xm
pm

;x
)]−1

t

)
.(31)

Because the extension from t ∈ Y0 to t ∈ cl (sp (Y0)) is evident it is enough
to suppose that t ∈ Y0.

From the bijectivity of the mappings (25) for t ∈ Y0 we deduce the existence
with a unique determination of the elements h, u ∈ X0 so that:

(32) t = ω

(
x1
p1
, ...,

xm
pm

;x
)
h = ω

(
x1
p1
, ...,

xk−1
pk−1

,
xk

pk + 1 ,
xk+1
pk+1

, ...,
xm
pm

;x
)
u.

The first member of this equality can be written as:
B (Ap1+...+pm ((x− x1)p1 , ..., (x− xm)pm) , U (h))

and the second is the value of the mapping Ap1+...+pm+2 at the arguments:

(x− x1)p1 , ..., (x− xk−1)pk−1 , (x− xk)pk+1 , (x− xk+1)pk+1 , ..., (x− xm)pm , u
and this can be written as:

B (Ap1+...+pm ((x− x1)p1 , ..., (x− xm)pm) , A2 (x− xk, u)) ,
consequently the equality (32) becomes:
(33)
B
(
Ap1+...+pm ((x− x1)p1 , ..., (x− xm)pm) , U (h)−A2 (x− xk, u)

)
= θY .

Because for every k ∈ {1, 2, ...,m} we have x− xk ∈ X0 we deduce that:
Ap1+...+pm ((x− x1)p1 , ..., (x− xm)pm) ∈ Y0,

consequently the equality (33) will be possible only if:
(34) U (h) = A2 (x− xk, u) .

But from the same relation (32) it is clear that:

u =
[
ω

(
x1
p1
, ...,

xk−1
pk−1

,
xk

pk + 1 ,
xk+1
pk+1

, ...,
xm
pm

;x
)]−1

t

and:
h =

[
ω

(
x1
p1
, ...,

xm
pm

;x
)]−1

t,
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after that replacing these values in (34) , we obtain the relation (31) .
Because of the relation (30) we have the equality:

ω′
(
x1
p1
, ...,

xm
pm

;x
)
h

[
ω

(
x1
p1
, ...,

xm
pm

;x
)]−1

t =

=
m∑
k=1

pkB
(
E

(k)
p1,...,pk−1,pk−1,pk+1,...,pm

(x, h) , A2
(
x− xk, q−1

k t
) )

(35)

where:
qk = ω

(
x1
p1
, ...,

xk−1
pk−1

,
xk

pk + 1 ,
xk+1
pk+1

, ...,
xm
pm

;x
)
.

So:
B
(
E

(k)
p1,...,pk−1,pk−1,pk+1,...,pm

(x, h) , A2
(
x− xk, q−1

k t
) )

=

= Ap1+...+pm+2
(
(x− x1)p1 , ..., (x− xm)pm , q−1

k t, h
)

= B
(
Ap1+...+pm+1

(
(x− x1)p1 , ..., (x− xm)pm , q−1

k t
)
, U (h)

)
= B

(
ω

(
x1
p1
, ...,

xm
pm

;x
)
q−1
k t, U (h)

)
,

consequently:

ω′
(
x1
p1
, ...,

xm
pm

;x
)
h

[
ω

(
x1
p1
, ...,

xm
pm

;x
)]−1

t =

=
m∑
k=1

pkB

(
ω

(
x1
p1
, ...,

xm
pm

;x
)
q−1
k t, U (h)

)
(36)

We remark that for any a ∈ Y0 it exists a y ∈ Y0 so that for any s ∈ Y we
have:
(37) B (s,B (a, y)) = s,

this fact being evident, the element y ∈ Y0 is the symmetrical element of the
element a in the group (Y0, B) .

Because the fact that x− xk ∈ X0 for any k = 1,m we can deduce that:
a = Ap1+...+pm ((x− x1)p1 , ..., (x− xm)pm) ∈ Y0

from where, using the relation (37) , we deduce that for any s ∈ Y we have:
B (s,B (Ap1+...+pm ((x− x1)p1 , ..., (x− xm)pm) , y)) = s,

from where through the properties of the bilinear mapping B ∈
(
Y 2, Y

)∗ we
have:

s = B (Ap1+...+pm ((x− x1)p1 , ..., (x− xm)pm) , B (s, y))

= B
(
Ap1+...+pm ((x− x1)p1 , ..., (x− xm)pm) , U

(
U−1B (s, y)

))
= Ap1+...+pm+1

(
(x− x1)p1 , ..., (x− xm)pm , U−1B (s, y)

)
;
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consequently:

ω

(
x1
p1
, ...,

xm
pm

;x
)
U−1B (s, y) = s,

from where:

B (s, y) = U

[
ω

(
x1
p1
, ...,

xm
pm

;x
)]−1

s.

For the beginning let be s = B (u, v) ∈ Y with u, v ∈ Y in the previous
relation, so we have:

U

[
ω

(
x1
p1
, ...,

xm
pm

;x
)]−1

B (u, v) = B (B (u, v) , y) = B (B (yu) , v)

= B

(
U

[
ω

(
x1
p1
, ...,

xm
pm

;x
)]−1

u, v

)
.

Then in the previous relation we consider, with t ∈ Y, the elements:

u = ω

(
x1
p1
, ...,

xm
pm

;x
)[

ω

(
x1
p1
, ...,

xk−1
pk−1

,
xk

pk + 1 ,
xk+1
pk+1

, ...,
xm
pm

;x
)]−1

t

and:

v = U (h) ,

consequently:

U

[
ω

(
x1
p1
, ...,

xm
pm

;x
)]−1

B (u, U (h)) =

= B

(
U

[
ω

(
x1
p1
, ...,

xk−1
pk−1

,
xk

pk + 1 ,
xk+1
pk+1

, ...,
xm
pm

;x
)]−1

t, h

)

= A2

([
ω

(
x1
p1
, ...,

xk−1
pk−1

,
xk

pk + 1 ,
xk+1
pk+1

, ...,
xm
pm

;x
)]−1

t, h

)
,

thus: [
g′ (x)h

]
t =

= −
m∑
k=1

pkU
−1A2

([
ω
(
x1
p1
, ..., xk−1

pk−1
, xk
pk+1 ,

xk+1
pk+1

, ..., xmpm ;x
)]−1

t, h

)

= −
∑

α1+...+αm=1

m∏
i=1

(pi+αi−1
αi

)
U−1A2

([
ω
(

x1
p1+α1

, ..., xm
pm+αm ;x

)]−1
t, h

)
(38)

so the relation (27) is true for n = 1.
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Let us suppose now that the relation (27) is true for n = k, namely:

[
g(k) (x)h2...hk+1

]
t = (−1)k k!×

(39)

×
∑

α1+...+αm=k

m∏
i=1

(pi+αi−1
αi

)
U−1Ak+1

([
ω
(

x1
p1+α1

, ..., xm
pm+αm;x

)]−1
t,h2, ...,hk+1

)
and for h1 ∈ X as well:

[
g(k) (x+ h1)h2...hk+1

]
t = (−1)k k!×

(40)

×
∑

α1+...+αm=k

m∏
i=1

(pi+αi−1
αi

)
U−1Ak+1

([
ω
(

x1
p1+α1

, ..., xm
pm+αm ;x+h1

)]−1
t,h2,...,hk+1

)
From the relations (39) and (40) through substraction, member by member,

we obtain:[(
g(k) (x+ h1)− g(k) (x)

)
h2...hk+1

]
t =

= (−1)k k!
∑

α1+...+αm=k

m∏
i=1

(pi+αi−1
αi

)
U−1Ak+1 (Z (x, h1) t, h2, ..., hk+1) ,(41)

where:

Z (x, h1) =
[
ω

(
x1

p1 + α1
, ...,

xm
pm + αm

;x+ h1

)]−1
−

−
[
ω

(
x1

p1 + α1
, ...,

xm
pm + αm

;x
)]−1

∈ (Y,X)∗ .

At the same time:

(42) Z (x, h1) =
{[
ω

(
x1

p1 + α1
, ...,

xm
pm + αm

;x
)]−1

}′
h1 + ‖h1‖X R (x, h1) ,

where R (x, h1) ∈ (Y,X)∗ and lim
h1→θX

‖R (x, h1)‖ = 0.

Because Ak+1 : Xk+1 → Y is a k + 1 linear mapping, from the already
proved relation (38) we obtain:[(

g(k) (x+ h1)− g(k) (x)
)
h2...hk+1

]
t =

= (−1)k+1 k!
∑

α1+...+αm=k

m∏
i=1

(pi+αi−1
αi

) ∑
β1+...+βm=1

m∏
i=1

(pi+αi+βi−1
βi

)
×

× U−1Ak+1
(
U−1A2 (Ωα1+β1,...,αm+βm (x) t, h1) , h2, ..., hm

)
+

+ ‖h1‖X · R (x;h1, h2, ..., hk+1)(43)
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where:

Ωα1+β1,...,αm+βm (x) =
[
ω

(
x1

p1 + α1 + β1
, ...,

xm
pm + αm + βm

;x
)]−1

∈ (Y,X)∗

and:

R (x;h1, h2, ..., hk+1) =

= (−1)k k!
∑

α1+...+αm=k

m∏
i=1

(pi+αi−1
αi

)
U−1Ak+1 (R (x, h1) t, h2, ..., hm) .

Therefore:

‖R (x;h1, h2, ..., hk+1)‖Y ≤ k!
∥∥∥U−1

∥∥∥ · ‖Ak+1‖ · ‖t‖Y · ‖h2‖X ... ‖hm‖X ×

×
∑

α1+...+αm=k

m∏
i=1

(pi+αi−1
αi

)
‖R (x, h)‖X ,

from where:
lim

h1→θX
‖R (x;h1, h2, ..., hk+1)‖Y = 0.

If we denote γi = αi + βi for i = 1,m it evidently results that:

γ1 + ...+ γm = (α1 + ...+ αm) + (β1 + ...+ βm) = k + 1

and: (pi+αi−1
αi

)
·
(pi+αi+βi−1

βi

)
=
(γi
αi

)
·
(pi+γi−1

γi

)
,

so if we denote:

Tα1+β1,...,αm+βm = U−1Ak+1
(
U−1A2 (Ωα1+β1,...,αm+βm (x) t, h1) , h2, ..., hm

)
,

we have:∑
α1+...+αm=k

m∏
i=1

(pi+αi−1
αi

) ∑
β1+...+βm=1

m∏
i=1

(pi+αi+βi−1
βi

)
Tα1+β1,...,αm+βm =

=
∑

γ1+...+γm=k+1

m∏
i=1

(pi+γi−1
γi

)
Tγ1,...,γm ·

∑
α1+...+αm=k

m∏
i=1

(γi
αi

)
= (k + 1)

∑
γ1+...+γm=k+1

m∏
i=1

(pi+γi−1
γi

)
Tγ1,...,γm .

We have used the identity:

∑
α1+...+αm=k

m∏
i=1

(γi
αi

)
=
(γ1+...+γm
α1+...+αm

)
=
(k+1
k

)
= k + 1.
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In this way, because k! (k + 1) = (k + 1)!, we are able to write the relation:[(
g(k) (x+ h1)− g(k) (x)

)
h2...hk+1

]
t =

= (−1)k+1 (k + 1)!
∑

γ1+...+γm=k+1

m∏
i=1

(pi+γi−1
γi

)
Tγ1,...,γm

+ ‖h1‖X · R (x;h1, h2, ..., hk+1) ;

whence we deduce that there exists the mapping g(k+1) (x) ∈
(
Y k+1, X

)∗
.

It is clear that:

Tγ1,...,γm= U−1Ak+1
(
U−1A2

([
ω
(

x1
p1+γ1

, . . . , xm
pm+γm ;x

) ]−1
t, h1

)
, h2, . . . , hk+1

)
= U−1Ak+1

(
U−1A2 (Wγ1,...γm (t) , h1) , h2, ..., hk+1

)
= U−1B

(
UU−1A2 (Wγ1,...γm (t) , h1) , Ak (h2, ..., hk+1)

)
= U−1Ak+1 (Wγ1,...γm (t) , h1, h2, ..., hk+1) ,

where we have denoted:

Wγ1,...γm =
[
ω

(
x1

p1 + γ1
, ...,

xm
pm + γm

;x
)]−1

∈ (Y,X)∗ .

Therefore:[
g(k+1) (x)h1...hk+1

]
(t) = (−1)k+1 (k + 1)!×

×
∑

γ1+...+γm=k+1

m∏
i=1

(pi+γi−1
γi

)
U−1Ak+1 (Wγ1,...γm (t) , h1, h2, ..., hk+1) ,

and so the equality (27) is true for n = k + 1.
Based on the principle of mathematical induction the equality (27) is true

for every n ∈ N.
Proposition 12 is proved. �

4. THE CONSTRUCTION OF AN ABSTRACT INTERPOLATION POLYNOMIAL

WITH MULTIPLE NODES

Let us consider the linear normed spaces X and Y, the set D ⊆ X and the
function f : D → Y.

The general interpolation problem has the following setting.
Being given the distinct elements x0, x1, ..., xm ∈ D, the numbers r0, r1, ...,

rm ∈ N and the values f (j) (xi) ∈
(
Xj , Y

)∗ with j = 0, ri − 1; i = 0,m,
determine a (U −B) polynomial P : X → Z with the minimum degree so
that for any i = 0,m and j = 0, ri − 1 we have P (j) (xi) = f (j) (xi) , the
equality being understood as one between the elements of

(
Xj , Y

)∗
.
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To provide an answer to this problem let us suppose that the hypotheses
from the preliminaries are fulfilled. Then let us consider the mappings that
we have introduced by (26) .

To simplify the writing we will introduce:

Xi = (x1, ..., xi−1, xi+1, ..., xm) ∈ Xm−1,

Ri = (r1, ..., ri−1, ri+1, ..., rm) ∈ Nm−1,

Ji = (α1, ..., αi−1, αi+1, ..., αm) ∈ Nm−1,

|Ji| = α1 + ...+ αi−1 + αi+1 + ...+ αm ∈ N.

together with the mapping from (X,Y )∗ :
(44)
W(Xi,Ri,Ji)
m,i = ω

(
x1

r1 + α1
, ...,

xi−1
ri−1 + αi−1

,
xi+1

ri+1 + αi+1
, ...,

xm
rm + αm

;xi
)
.

If xi − xj ∈ X0 for any i, j ∈ {1, 2, ...,m} then, based on what we have
established in the previous paragraph, the mapping (44) is invertible on Y0,
and it is possible to prolong the inverted mapping to cl (sp (Y0)) .

We denote this inverted mapping as
[
W(Xi,Ri,Ji)
m,i

]−1
∈ (Y,X)∗ .

As an answer to the aforementioned interpolation problem, we have the
following theorem:

Theorem 13. If for every i, j ∈ {1, 2, ...,m} with i 6= j we have xi−xj ∈ X0
and f (j) (xi) ∈ (X, cl (sp (Y0)))∗ , there exists a (U −B) polynomial with the
degree n = r1+...+rm−1 that fulfills the conditions of the general interpolation
problem. The expression of this (U −B) polynomial is:

(45) Hn

(
x1
r1
, ...,

xm
rm

; f
)

(x) =
m∑
i=1

ri−1∑
j=0

lij (f) (x) ,

where lij (f) : X → Y has the form:

(46) lij (f) (x) = 1
j!

ri−j−1∑
k=0

(−1)k Qn,i,j,k (f ;x)

where Qn,i,j,k (f ;x) is the value of the mapping An−ri+k+2 ∈
(
Xn−ri+k+2, Y

)∗
at the arguments:

(x−x1)r1 , ..., (x−xi−1)ri−1 , (x−xi)k , (x−xi+1)ri+1 , ..., (x−xm)rm ; Zn,i,j,k (x)

with:

(47) Zn,i,j,k (x) =
∑
|Ji|=k

m∏
j=1, j 6=i

(rj+αj−1
αj

) [
W(Xi,Ri,Ji)
m,i

]−1
f (j) (xi) (x− xi)j .
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Proof. To simplify the writing we will use the notation:

Hn

(
x1
r1
, ...,

xm
rm

; f
)

= Hn : X → Y.

The theorem is proved, if in the form (45) the element lij (f) (x) is under
the form (46) with the specification (47) .

As Hn : X → Y is an abstract interpolation polynomial it is necessary that:

(48) [lij (f)](t) (xs) = δisδtjf
(j) (xi)

where δpq is Kronecker’s symbol. In the equality (48) we have the values
i, s ∈ {1, 2, ...,m} and for a fixed i the indices j, t ∈ {0, 1, ..., ri−1} .

In order to fulfill the conditions (48) we search the mappings lij (f) : X → Y
under the form:

(49) lij (f) (x) = B (gi (x) , Sij (x)) ; j = 0, ri − 1; i = 1,m;

where for any i = 1,m we have:

(50) gi (x) = An−ri+1
(

(x− x1)r1 , ...|
i
..., (x− xm)rm

)
here, (x− x1)r1 , ...|

i
..., (x− xm)rm is an abbreviation for:

(x− x1)r1 , ..., (x− xi−1)ri−1 , (x− xi+1)ri+1 , ..., (x− xm)rm

and:

(51) Sij (x) = B
(
Aj (x− xi)j , hij (x)

)
; j = 0, ri − 1; i = 1,m;

where hij : X → Y is a mapping to be determined.
From the relations (49) , (50) and (51) it is clear that:

l
(t)
ij (f) (xs) = 0

for s 6= i, but also in the situation where s = i and t < j.
We will determine the mappings hij : X → Y from (51) so that:

(52) l
(j)
ij (f) (xi) = f (j) (xi) , and l

(t)
ij (f) (xi) = 0 for t > j.

The relations (49)–(51) indicate that for the abstract interpolation polyno-
mial to be determined, it is necessary to choose for hij a (U −B) abstract
polynomial with the degree ri − j − 1.

We will now consider Taylor’s formula for the case of non-linear mappings
between linear normed spaces, formula which for a function F : Ω→ Y, where
Ω is an open and convex set of the linear normed space X, that admits Fréchet
differentials up to the n+1 Fréchet differential, included, is expressed through:
(53)∥∥∥F (x)−

n∑
k=0

F (k)(x0)
k! (x− x0)k

∥∥∥
Y
≤ ‖x−x0‖n+1

X
(n+1)! sup

θ∈[0,1]

∥∥F (n+1) (x0 + θ (x− x0))
∥∥.
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If F : Ω → Y is a (U −B) abstract polynomial with the degree ≤ n then
using the proposition 8 we deduce that F (n+1) (y) = Θn+1, therefore from the
inequality (53) we deduce that in this case we will have:

(54) F (x) =
n∑
k=0

F (k)(x0)
k! (x− x0)k .

Because the mapping hij : X → Y from the equality (51) is a (U −B)
abstract polynomial with the degree ri − j − 1, we have:

(55) hij (x) =
ri−j−1∑
k=0

1
k!h

(k)
ij (xi) (x− xi)k .

From (49) , (51) and (55) we deduce that:

(56) lij (f) (x) =
ri−j−1∑
k=0

1
k!B

(
gi (x) , B

(
Aij (x− xi)j , h(k)

ij (xi) (x− xi)k
))

and this relation indicates that the problem is solved if the elements
h

(k)
ij (xi) ∈

(
Xk, Y

)∗
are determined and the equalities (52) are fulfilled.

Let us define for every x ∈ X the mapping g̃i (x) ∈ (Y, Y )∗ by g̃i (x) t =
B (gi (x) , t) for t ∈ Y.

From this equality we deduce that:

(57) B
(
Aj (x− xi)j , hij (x)

)
= [g̃i (x)]−1 lij (f) (x) .

Considering the equality of the Fréchet differentials of the order j + k of
the mappings from the first and the second member of the equality (57) and
using the relations (10) and (22) we obtain:

j+k∑
s=0

(j+k
s

)
B
([
Aj (x− xi)j

](j+k−s)
tj+k−s, h

(s)
ij (x) ts

)
=(58)

=
j+k∑
s=0

(j+k
s

) {(
[g̃i (x)]−1 )(j+k−s)tj+k−s} l(s)ij (x) ts.

On the account of Proposition 8 and of the fact that:

l
(s)
ij (f) (xi) = δsjf

(j) (xi) ,

if in the equality (58) we replace x = xi we obtain:

(59) j!B
(
Ajt

j , h
(k)
ij (xi) tk

)
=
{(

[g̃i (x)]−1 )(k)
x=xi

tk
}
f (j) (xi) tj .

If we introduce:˜̃gi (x) = ω

(
x1
r1
, ...,

xi−1
ri−1

,
xi+1
ri+1

, ...,
xm
rm

;x
)
∈ (X,Y )∗

it is obvious that g̃i (x) t = ˜̃gi (x)U−1 (t) .
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On account of the Proposition 12 we deduce that:{([˜̃gi (x)
]−1)(k)

tk
}
u =(60)

= (−1)k k!
∑
|Ji|=k

m∏
s=1, s 6=i

(rs+αs−1
αs

)
U−1Ak+1

([
W(Xi,Ri,Ji)
m,i

]−1
u, tk

)
.

From g̃i (x) = ˜̃gi (x)U−1 we have [g̃i (x)]−1 = U
[˜̃gi (x)

]−1 therefore from
(60) we deduce that:{(

[g̃i (x)]−1
)(k)

tk
}
u =(61)

= (−1)k k!
∑
|Ji|=k

m∏
s=1, s 6=i

(rs+αs−1
αs

)
Ak+1

([
W(Xi,Ri,Ji)
m,i

]−1
u, tk

)
From (59) and (61) we immediately deduce that:

B
(
Ajt

j , h
(k)
ij (xi) tk

)
= (−1)k k!

j!
∑
|Ji|=k

m∏
s=1, s 6=i

(rs+αs−1
αs

)
×

×Ak+1

([
W(Xi,Ri,Ji)
m,i

]−1
f (j) (xi) tj , tk

)
(62)

Replacing now in (62) t = x− xi we obtain:

B
(
Ajj (x− xi) , h(k)

ij (xi) (x− xi)k
)

=

= (−1)k k!
j!
∑
|Ji|=k

m∏
s=1, s 6=i

(rs+αs−1
αs

)
×

×Ak+1

([
W(Xi,Ri,Ji)
m,i

]−1
f (j) (xi) (x− xi)j , (x− xi)k

)
(63)

and from the relations (56) and (63) results the equality:

lij (f) (x) = 1
j!

ri−j−1∑
k=0

(−1)k
∑
|Ji|=k

m∏
s=1, s 6=i

(rs+αs−1
αs

)
×

×∆(r1,...,ri−1,ri+1,...,rm)
n,i,j,k (f) ,(64)

where ∆(r1,...,ri−1,ri+1,...,rm)
n,i,j,k (f) is the value of the mapping An−ri+k+2 at the

arguments:
(x− x1)r1 , ..., (x− xi−1)ri−1 , (x− xi)k , (x− xi+1)ri+1 , ...

..., (x− xm)rm ,
[
W(Xi,Ri,Ji)
m,i

]−1
f (j) (xi) (x− xi)j .

Because:∑
|Ji|=k

m∏
s=1, s 6=i

(rs+αs−1
αs

) [
W(Xi,Ri,Ji)
m,i

]−1
f (j) (xi) (x− xi)j = Zn,i,j,k (x)
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evidently:∑
|Ji|=k

m∏
s=1, s 6=i

(rs+αs−1
αs

)
∆(r1,...,ri−1,ri+1,...,rm)
n,i,j,k (f) = Qn,i,j,k (f ;x) .

This last equality indicates that the theorem is proved. �
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