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Abstract. In the papers [2], [3], [4], [6], [7] we indicated a method of extending
the notion of interpolation polynomial to the case of a non-linear mapping f :
X — Y where X and Y are linear spaces with special structures. This extension
offers the possibility to establish, in this general and abstract case as well, the
main properties known in the case of the interpolation of real functions.

To switch to the case using multiple nodes, case that compulsorily uses the
notion of Fréchet differential of the first order as well as of higher orders, we
will point out the definition and certain properties of these differentials. On this
basis we can present the manner of building an abstract interpolation polynomial
with multiple nodes.
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1. INTRODUCTION

The topic of the interpolation of the functions defined between linear spaces
or between linear normed spaces has been approached by Pavaloiu, I. in [9],
[10], [I1] Prenter, M. in [12], Argyros, I. K. [I], Makarov, V. L., Hlobistov, V.
V. [8] and by myself in [2], [3], [4], [6], [7].

We will recall the elements of the construction of the abstract interpolation
polynomial with simple nodes.

Let us consider X and Y two linear spaces and f : X — Y a non-linear
mapping.

We note by £ (X,Y) the set of the linear mappings from X to Y and by
(X,Y)" the subset of £ (X,Y) that contains linear and continuous mappings
from X to Y.

For n > 2 we introduce the set £, (X,Y) = L(X,L,-1(X,Y)) with

L1(X,Y) = L(X,Y) and similarly (X",Y)" = (X, (X"1,¥)")" with
(XLY) = (X,Y)*.
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For n = 2 the set L9 (X,Y) represents the set of the bi-linear mappings
from X x X toY.

Let 0x and 0y be the null elements of the space X and Y respectively. We
will note by ©,, the null element of the space £, (X,Y"). For n =1 we will use
the notation ©.

Let us consider now the bilinear mapping B € Lo (Y,Y) that verifies
B (u,v) = B(v,u) for any u,v € Y and B (B (u,v),w) = B(u, B (v,w))
for any u,v,w €Y.

We will now suppose the following properties:

1) there exists ug € Y the identity element of the semi-group (Y, B) and
as well Yo CY with uy € Yp so that (Yp, B) form a group.

2) there exists Xo C X and the linear and bijective mapping Uy : Xo —
Ys.

3) there exists the linear mapping U : X — Y so that Ul = Up.

Using the mappings U € L (X,Y) and B € L5 (Y,Y) we will introduce the
sequence (Ap), ey With Ay, : X™ =Y where A, € £, (X,Y) so that:

(1) Ai(y) =Uly), for y € X
An (Y15 4n) = B(Ap—1 (Y15 yn—1) .U (yn)), for yu,....yn € X.
We consider now the points xg, x1, ..., 2z, € Xo and the mapping:
(2) Won: X =Y, won(r)=Anp (@ —20,...,2 —zy)

and for any ¢ € {0,1,...,n} the mappings:
w6,n (xl) €L (X> Y) 5

/
wo , (Ti) h = Apy1 (T3 — 20, -+, T — Tim1, % — Tit1, .-+, Ti — Ty, h),

(3)

noting that wy , (x;) represents the Fréchet differential of the mapping defined
by , evidently in the case where X and Y are linear normed spaces.

A first result from [2], [7] shows that the restrictions to X of the mappings
have values in Yy and are bijective, so we can speak of

w67n (.%i)_l : Yg — XO

and this mapping can be prolonged through linearity to sp (Yp) and in the case
where Y has a topological structure (for example it is a linear normed space),
the prolongation can be extended to ¢l (sp (Yp)) .

If we denote by Y7 the maximal subspace from Y to which the introduced
mappings can be extended and we suppose that for any i € {0,1,...,n} we
have f (z;) € Y1 and we can define the mappings:

(4) L (zo,z1,....xn; f) : X = Y
L (.'13073?1, vy Ty f) (x) =

n
= ZAn+1(:C — X0y, T — Tim1, & — Tig 1y ooy & — T3 L),
=0
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where:
Zni = w,, (x:) " f (@)

and these mappings verify, for any i = 0, n, the equalities:

(5) L(JJ(),.’L'l,,[IJn,f) (wl) = f(xl)
Because A, 11 € L,41 (X,Y), there exists Dy € Y and for any k € {1,2,...,
n} the mappings Dy, : X* — Y so that:

k
Dyx® = Dy(z, ..., x),
k times

we will have:

(6)  L(x0,21,..,2n; f) (x) = Dpa™ + Dp_12" ' 4 ... 4+ Diz + Dy,.

The relation (6] is the expression of the character of an abstract polynomial
of the mapping (4)), so this relation together with the relation prove the fact
that this mapping can be denominated an abstract interpolation polynomial.

2. THE FRECHET DIFFERENTIAL OF A MAPPING. SPECIAL PROPERTIES

Let us consider the linear normed spaces (X, ||-||x) and (Y, ||-||y) . We con-
sider as well the nonlinear mapping f : X — Y with D C X. For = € D let be
the set:

Epy={heX:x+heD}.
First we will have the following:
DEFINITION 1. The mapping f : D — Y admits a Fréchet differential in

the point x € D, if there exists T € (X,Y)" and w : D x (Ep N\ A{0x}) =Y
so that:

f@+h)—f(z)=T()+|hlxw(@h)
and:
Jim [l (2, 1)y =0,
For the mapping T € (X,Y)" we have:

REMARK 2. We can easily prove that there exists at most a mapping T €
(X,Y)" that corresponds to the requirements of the Definition O

In this way Definition [1] is completed with:

DEFINITION 3. The mapping T € (X,Y)" from Deﬁm’tion that is attached
to the function f : D — Y and to the point x, is called the Fréchet differential
of this mapping at the point x, and is denoted through f’(x).

Now we have:



4 On the interpolation in linear normed spaces using multiple nodes 45

REMARK 4. Usually there exists a subset A C D so that for any u € A, the
function f : D — Y is Fréchet differentiable at every point u. In this case it is
possible to define the function:

df : A — (X, )", df (u) = f" (u).

The definition of the previous function allows for the introduction of differ-
entials with higher orders. O

Thus we have:

DEFINITION 5. Besides the data from Definition[1] let us consider a number
p e N.
If:
(i) there exists V' a neighborhood of the point x € D, so that for any
u € VN D there exists the differential of the order p—1 of the mapping
f:D =Y at the point u, denoted by fP=1) (u) € (XP=LY)" | so the
function:

(7) @ vaD = (x0LY) 5 (a7 () = £ (u)

is defined;

(ii) the function defined by is a differential (of the first order) at the
point x; then we can say that the mapping f : D — 'Y admits a differ-
ential with the order p at the point x and in this case:

1O (@) = (@) (@) = (1) @) e (X, (3771 Y)) = (xn, )"

In the paper [5], we have established certain properties of the Fréchet dif-
ferentials of higher orders, which are relevant for the statements below.

We will recall some of these properties.

I) Let us consider the bilinear and symmetrical mapping B € Lo (Y,Y)
together with the non-linear mappings f,g: D — Y with D C X.

With the aid of this mappings we consider:

(8) FiD—Y, F(z)=B(f(x),9(x)).
We have the following proposition:

PROPOSITION 6. If the non-linear mappings f,g : D — Y admit Fréchet
differential up to the order n, included, at the point x € D, then the mapping
introduced by admits a Fréchet differential up to the same order n, at the
same point x, and for any h1,...,h, € X we have:

(9)
FM (2) hyhy = o B(f™ () hiyohiy, g () iy by, L)
k=0 1<i1<..<ip<n

where, for a fixed i1,12,...,1 € N with 1 < i1 < ... < i < n, we will choose
{jl, ...,jn_k} S {1, ...,n}\{il, ,Zk} with 71 < oo < Jp—k-
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For the case hy = ... = h,, = h we have:
(10) FO () hm = 3" () B(F® (@) h¥, ") () i)
k=0

We can notice that the equation represents an extension of the well-
known Leibnitz derivation formula.

IT) It is necessary to generalize the property expressed by Proposition @

For this extension let us consider the sequence of mappings (@)
with Qp, € Ly, (X,Y) and:

Q2 (u1,u2) = B (u1,uz);
Qm (Ul, 7um) =B (Qm—l (ula ...,Um_l) 7um)7 m e N7 m 2 27

where by uq, ..., u,, we have denoted arbitrary elements of Y.
We will now consider the natural numbers p, s with s < p and the set of
distinct elements:

meN, m>2

(11)

H = {z1,22,...,2p} .
We introduce the set:
Cp75 (H) = {(a;il,...,a:is) EH 1< <ig<...<ig Sp}

and obviously:
p!
sl(p—s)!?
where |H| denotes the number of elements of the set H.
Let us now consider m € N and ay,...,a,;, € N so that a1 + ... + a, = n
and to start with we denote:

Hl :{172,771}, p1="n;
Gy = {(z‘gl), i e Y < < i&}f}.

Cp,s (H)| =

For a fixed (igl), ...,i(all)) € (G1 we choose:

Hy ={1,2,...,n}\ {igl), ...,i&ll)} D Py =n — aq;
{ Gy = {17, .,i%2) € Hg? i < . <)}
For k€N, k£ <m and a fixed
(Y, i)y € Gy, .y (Y, DY € Gy

) Y
we choose:
Hy, = {1,2, o mI Nt i) il Yl
pr=n— (o1 + ..+ ag_1);
Gp = {(ig'ﬂ, iy e mer il < < igf;?}.
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Finally, for a fixed (igl),...,igll)) € Gl,...,(igm_l) Z(()ZZ })) € Gp_1 we
choose:
H, ={1,2,.., n}\{z(l) . z((xll),...,igm_l),...,i&Tnj)};
Pm=n— (14 ...+ am-1);
G = {7 i) € B i) < < 10},

It is clear that for any k € N we have G}, € Cp, o, (Hy) and consequently:

‘G ’ —_ P! — [n—(ea+...+ag_1)]!
k lpr—ar)! — aglln—(a1+...+ak_1+ap)]!”

Let us denote by A,[{ll""’am] the set of all systems (G1,...,Gp,), where for

any @ € {1,2,...,m} the system of indexes G; obtained in the aforementioned
manner.
It is obvious that:
|A1[31,..‘,am]| = |G| ... |G| = H ™ pk ak)'
N !

_ [n—(o1+...+ap_1

- ozl' Qm, H —(a1+...Fag_1+ayg)]!

_ 1 n!

T oaplam! ' (TL (CY1+ +am))

But (n— (a1 + ... +ap))!=Mm—n)! =0 =1, so:
’Akll,...,am” — n!

arl...am!”

Let us consider now the non-linear mappings f; : A — Y, for i = 1,m
where A C X. Using these mappings and the n-linear mapping @, : Y — Y
introduced by consider the mapping:

(12) F:A=Y, F(x)=Qun(fi(x),...,fm(x)),

which represents a more general case of the mappings .
In this way we have the following extension of the Proposition [6]

PROPOSITION 7. If the mappings f; : A —Y; i =1,m and A C X admit
the Fréchet differentials of the n order at the point x € A, then the mapping
F: A—=Y defined by admits as well the Fréchet differential of the n
order at the same point x and for any hy,...,h, € X we have the equality:

13)  FM(2)hyh,= Y > TGy,...Gom>

al+...fFam=n (Gl Gm)E.A[al 77777 am]
where for Tq, .. q,, we have denoted the expression:

(14) Z Qm (f1(a1) () hi?)...higl), ce féf‘m) (x) higm)...higm)).

(i,..i)) eGr; k=Tom
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For the case hi = ... = h,, = h we have:
(15) FO (@ = > QA () b, fle) () hom).
al1+...+am=n
IIT) Let us consider now for a fixed a € X, the mapping:
(16) T : X =Y, Tn@) =Anlz—a,...,2—a)2 Ay, (x—a)™,
m times

where A, € L, (X,Y) is introduced by and the mappings B € L5 (Y,Y)
and U € L (X,Y) verify the specified conditions.
For these mappings we have:

PRrROPOSITION 8. The mappings defined by admit Fréchet differentials
of any order n € N and for any hy, ..., h, € X we have:

Oy, forn>m
(17)  Thyhy =S Ap (b, .. b)), form=n

('m#!n)!An (x —a)" " hy..hy, form <n.

IV) Taking into account the mappings (Am),,crn, With Ap € Ly, (X,Y)
introduced by , and if the numbers r1,...,r,, € N we can consider the
mapping:

(18) F:X—=Y, F@)=A 4 4+, (x—2)",. ... (x—20)™),

where x1,...,z, € X are arbitrary.
We have the following result:

PROPOSITION 9. The mappings defined by admit Fréchet differentials
up to the order n included, where n < ry+r9+ ...+ 1y at any point x € X
and:

(19)
F™ (2) hy...hy, =

=nl ) TG Ar v b ((95 —z)"T (@ )T hn)

a1+...+am=n i=1

V) We will also consider another extension of Leibnitz’ formula concerning
the derivative with the n order.

In this way let us consider X,Y, Z linear normed spaces and the mappings
[+ X =Y, Z) andg: X - Y.

Using the considered functions we consider the function:

(20) F:X =Y, F(z)=[f(2)]g(x)

and for this function we have:
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PROPOSITION 10. If the mappings f: X — (Y, Z)" and g : X — Y admit
Fréchet differentials of the order n, at the point x € X, then the mapping
defined by also admits the Fréchet differential of the same order at the

same point x and:

F" (2)hy...hy, =

(21) = f: ST [ (@) hiy by )9 (@) By, by,

k=0 1<ii<..<ix<n

where {jl,... ,jn_k} = {1,...,n}\{i1,. . .,ik} with 71 < g2 < eoo < Jn—k-

For the case where h1 = ...h, = h we have:
(22) FO (@) hm =37 () [F9) (2) hF] g0 (@) bt
k=0

VI) Let us consider now the mapping f : X — (X,Y)" supposing that
for every x € X the linear mapping f () : X — Y has an inverse mapping
f@) Y = X

Therefore we can consider the mapping:

(23) 9: X =¥, X)", g@)=[f()]".
We obtain the following result:

PROPOSITION 11. If the non-linear mapping f : X — (X,Y)* has a Fréchet
differential at the point x, then the mapping g : X — (Y, X)* introduced by
also has a Fréchet differential at the same point x, and:

(24) g @ h=—[f @I f@hlf @),
for every h €Y.

3. THE FRECHET DIFFERENTIAL OF CERTAIN ESSENTIAL MAPPINGS THAT
APPEAR IN THE INTERPOLATION WITH MULTIPLE NODES

We will consider the sequence of mappings (A;), .y Where A, : X™ — Y are
given by (1) and B € (Y2,Y)", U € (X,Y)* verify the assumptions specified
in the first paragraph of the present paper.

For x1,...,x2mym € X and p1,...,pm € N we consider the mapping:

w (ml,..., xm;a:> € (X, )",
P p
(25) (961 - m
w

- ;93) h=Ap 4. 4pnt1((@—2)P . o (@ —am)P™ h).
p1 Pm

It is clear that if x — z; € X for any i = 1, m, from the imposed hypotheses
it results that the mappings defined by are bijections from Xg to Yy. Thus
we can consider the inverse mapping defined on Yj, which can be extended
first by linearity to sp (Yp) and then by continuity to ¢l (sp (Yp)) .
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We can thus consider the mapping;:

@) g X lp0a), %), g = [ (T )]

Concerning this mapping we have:

ProroOSITION 12. If for any k = 1,m we have x — x, € Xo, then for any
n € N, the mapping defined by admits a Fréchet differential of the order
n. For any hy,...,hy, € X and t € cl (sp (Yp)) we have:

(27)
[g(”) (x) hl...hn} t=

=0 Y ﬁ (P Ay ([w(mﬂfm ey T m)} b m;

a1~+...4am=n i=1

Proof. Based on Proposition [11] we deduce that:

(28) g (@) h=—[P )] P (x)h[P ()],
where:
=w 1 xm'x .
Pla) = (pl’""pm’>

Taking into account Propositions [7] and [0] we deduce that:

m
X X
! PR " ; IE) hu = Zpkcz()lf,),pm (ZL', h? u) )
m k=1

(29) P (z) hu = o' <p1 »

for any h,u € X, where we denote by Cé’f?,,,,pm

ping Ap1+“_+pm+1 on the arguments:

(x, h,u) the value of the map-

(. — 21)P, .., (@ — gy PR ( YL (@ — 2 PR (= @n)P™, By

If we choose t € cl (sp (Yp)) and:

-1
T T
u:[w( 1,..., m,:r)} te X,
p1 Pm

after that for k € {1,2,...,m} it has been proved that:

k _ (k)
CE) @ o) = B(ES) o (@ h) U (),

T — T

(k) :
where B o pe—1ppi1spm (@ 1) s the value of Ay 4 4p, at the argu-
ments:

p Pk— pr—1 p Pmo p.
(x—z)P' (=) (2 — xp)PP 7 (2 — )R (e — )P S B
so:

k 1 Thk—1 Tk Tk+l €T
E;lv)"'vpkfl7pk717pk+17"'7pm ($7 h) =w ( ’ ’ 1, i ’ " ) x) h
P Pk—1 Pk — 1 Pkt Pm
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Thus:

Gt G )
w s s sz | h|w s ey ;T
P Pm 4! Pm

(30) )y (w (xl i L2 x’”x> h,U(u))
k=1

-1
t:

? e 9 ) 9
P Pk-1 Pk— 1 pry1 Pm
We now show the equality:

-1
U(u)=U [w (xl,..., xm,xﬂ t
b1 Pm

-1
T Tk—1 Tk Tl41 x
(31) =As | x — xy, {w( e , R m,:r)} t].
P1 Pk—1 Pk +1 Pry1 Pm

Because the extension from ¢t € Yy to ¢ € ¢l (sp (Yp)) is evident it is enough
to suppose that ¢t € Yy,

From the bijectivity of the mappings for t € Yy we deduce the existence
with a unique determination of the elements h,u € X so that:

(32) t=w (xl vees xm;x> h=uw (1:1 yeees xk_l, T , Tht1 ey xm;m) U.
P1 Pm pr Pe-1 Pt 1l prir Pm
The first member of this equality can be written as:
B (Apit.tpm (£ = 2)P ooy (2 — )P U (R))

and the second is the value of the mapping A,, 1. 4p,.4+2 at the arguments:

(x —x)P (v — 2p)PF (2 — xk)p’“ﬂ J(@— 2 )PP (= )P u
and this can be written as:

B(Apitotpm (= 20)P o (2 = 20)P™) A2 (2 — 21, 10))
consequently the equality becomes:

(33)
Byt (@ = s =20 U () = A (2 = i) ) = .

Because for every k € {1,2,...,m} we have x — z3, € Xo we deduce that:

Ap1+...+pm (($ - ml)pl URRAS) (l‘ - xm)pm) € Yo,
consequently the equality will be possible only if:
(34) U(h) = Ay (x — x,u).

But from the same relation it is clear that:

[ <$1 Tp—1 Tk Tkl Tm )} -1
U= |w s eens , , Sy T t
D1 Pk-1 Pk+ 1 Drt1 DPm

-1
x x
h= [w( 1,..., m;xﬂ t,
b1 Pm

and:
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after that replacing these values in , we obtain the relation .
Because of the relation we have the equality:

-1
W' (ml,..., xm;x) h [u) (wl,..., xm,xﬂ t=
b1 Pm D1 Pm

- k _
(35) = DB i im0 1) A2 (2 = 20 71))
k=1

where:

z Tk—1 Tk Th41 Tm,
Qk - (JJ 9 b) b MRS ;x M
P1 Pk—1 Pk + 1 pri1 DPm

So:
B(Ez(jlf?_..7pk_17pk_17pk+17_._7pm (z,h), Ay (:r: -z, q,;lt) ) =
= Ap 4. 4pmt2 ((x —z)P (= )P ,qglt, h)
= B (Apittpst ((z =2 o (= 2P g 't) U ()
).
consequently:

-1
W' <$1,..., :Em;z) h [w (wl,..., xm,x>] t=
b1 Pm b1 Pm

m x T, _
(36) = ZPkB (w (pi R ;a:) 4% U (h))
k=1

m

We remark that for any a € Yj it exists a 7 € Yy so that for any s € Y we
have:

(37) B (s, B(a,y)) = s,

this fact being evident, the element 7 € Yj is the symmetrical element of the
element a in the group (Yp, B) .
Because the fact that x — x, € Xy for any k£ = 1, m we can deduce that:

a=Ap s ip, (& —2)" o (2 —2m)P™) €Yo
from where, using the relation , we deduce that for any s € Y we have:
B (s, B (Apit..ctpm (@ —20)" o (2 — 2)"™) 7)) = 5,

from where through the properties of the bilinear mapping B € (Y2,Y)" we
have:

s=B (AP1+V.-+pm ((33 - ‘Tl)pl ey ($ - xm)pm) B (Sv@))
= B (At (2= 20", (= 20)P) U (UT'B (5,7)))

= Aptoctpnt (@ =2)" oo (2 = 2)" U™ B (5,7))
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consequently:

w <:171 eees :Em;:z) U™B (s,7) = s,
n Pm

from where:

B(s,y)=U [w (xl,..., xm;xﬂ_l s.

b1 Pm

For the beginning let be s = B (u,v) € Y with u,v € Y in the previous
relation, so we have:

U [w (””1 xm;x>]_lB(u,v) — B(B(u,v),7) = B (B (7u),v)

pI’ Pm
-1
=B U[w(wl,...,xm;xﬂ u,v | .
b1 Pm

Then in the previous relation we consider, with ¢ € Y, the elements:

(961 Tm ) [ <$1 Tp—1 Tk Tggl Tm ﬂl
U=w S enny T |w Sy , , S ey 3T t
P1 Pm P Pek—1 Pkt 1l Pet1 Pm

and:
v=U(h),
consequently:
€1 Ton -1
Ul (0 i) | B U ) =
p1 Pm
=B U[w <$1,...,xk_1, Tk ,ka,...,xm;xﬂ_lt,h
D1 Pr—1 Pk +1 pry1 DPm
= Ay {w (ﬁl,...,wk_l, Tk ,xkﬂ,...,xm;m)]_lt,h ,
P1 Pk—1 P+ 1 prya Pm
thus:
[g' (x)h] t =
_ - z1 Tp—1 Tk  Tk4l Tm .
- kz:lpkU Ay ([w(pl,...,pk1,pk+1,pk+l,...,pm,x)] t,h)

(38) =- Y ﬁ(m*;;1)U—1A2<[w(pjf;al,...,pmwfam;m)}‘lt,@

ar+...+am=1i=1

so the relation is true for n = 1.
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Let us suppose now that the relation is true for n = k, namely:
(39)

(9% () ho.. hk+1]t = (—1)" k!x
,—‘roc,—l —1 x Tm . -1
<Y T A ([0 o i) Bzt
oal+.+am=Fk i=1
and for hy € X as well:
(40)

(9% (@ + 1) ho.. by ]t :(—1)kk!><

x>y H prerhuTiA i o h)|hoyeh
k41 |:w(p1+0tl7' ) P+ Qm ,x'i_ 1):| 310250y ll+1

a1+ Fam=k i=1

From the relations and through substraction, member by member,
we obtain:

[(9(’“) (x4 h1) — g¥ (2) )hg...hkﬂ} =

@) =Dk Y [IEH U A (Z (@)t oy s i)
al+...4am=ki=1

T Tm -1
Z(x,h) = [w( N ;:U—i—hl)] -
p1+ Pm +
—1
— {w( e - m ,x)] e (Y, X)".
p1+ g Pm + Qm

At the same time:

—1Y/
1 Tm
42) Z(x,hy) = ey ; h hll x R (z, h1),
12) 2= {[o (7o, )] kR
where R (z,h1) € (Y, X)" and lim |[[R(z, /)] =0.

h1—>9X

Because Ap; : X**!1 — Y is a k 4 1 linear mapping, from the already
proved relation (38]) we obtain:

[(g(k) (z + hy) — g (2) )hz...hk+1] t=
k i o — s i QG+ D5 —
:(—1)+1k! Z Hp+ ) Z H(p+ﬂtﬁ 1)><
ar1+..fam=ki=1 ﬁl‘i"‘l’ﬁm:lzzl
x U Apia (UflAz (a1 481, s0m+Bm (@) t,h1) R,y hm) +
(43) + [[hillx - R (@5 ha,y hay ooy Bey1)
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where:
—1
I Tm %
Q e A-Bm X Z{W< ) een ,x)] e (Y, X
AL m + ( ) pl"’al“‘ﬁl pm‘{'am'{'ﬁm ( )
and:
R (x;h1, ha, ..y hig1) =
=D Y H (PFETYU T Apr (R (2, b)) £ hg, oy )
o +...Fam=ki=1
Therefore:

IR (@: b1 hgy o hes)lly < KLU gl elly - Whall o oml .
Y TIEEEY IR @b
al+...+am=ki=1

from where:
hm ”R(x h17 h27 seey hk“rl)HY = 0

h1—0x

If we denote v; = «; + B; for i = 1, m it evidently results that:
N+t ym = (a1 + et am) + (B + o+ Br) =k + 1

and:
(pi+§éii—1) . (pi+06i6-|i-,3i—1) — (Zz) . (pi-l—%i—l)’

so if we denote:

TortByoscmtfpm = U P Apin (U_lAz (Qa1 481, am+8m (T) t,h1) B,y ., hm) ,

we have:

Z H p1+a1_1) Z H pl+a1+l81 a1+:317 70‘m+ﬁm =

al+...+am=Fk i=1 B1+...+Bm=1 i=1
m
— Z H pz+’Yz ’YL ym . Z H (g )
Y1+ Fym=k+1 i=1 a1 +..+am=k i=1

=(k+1) Z H p2+%_1 Ty

We have used the identity:

> H =y =M =k 41
o +...Fam=k i=1
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In this way, because k! (k + 1) = (k + 1)!, we are able to write the relation:

(6™ (@ + h1) = g® (@) hooohyia | £ =

=DM R Y H ") Do

+ |1l x - R (x5 h1, b, oy higr) 5

whence we deduce that there exists the mapping ¢g**1) (z) € (YkH, X)
It is clear that:

Toon= U A a (U745 ([ (plajrlw,...,pmvam;x)rlt,hl),hg,...,hk+1)
= U Agyr (U7 A2 (W, (8) 1) B, i)
= UT'B(UU A (Way oy, (8) 1) A (h2y s k)
= U Apps Way oy, (8) B1 by e higt)

where we have denoted:
Wor,om = {W (
Therefore:
(9% (@) by | (8) = (DR (k4 1)!x

X Z H(pi+'z;i_1)U_1Ak+1 (W'Yl,m’Ym (t) 3 hl? h27 evey hk+1) )
Y1t ym=k+1i=1

z1 Tm

p1+7 Pt Ym

;x)]l e (Y, X)".

and so the equality is true for n = k + 1.

Based on the principle of mathematical induction the equality is true
for every n € N.

Proposition [I2is proved. O

4. THE CONSTRUCTION OF AN ABSTRACT INTERPOLATION POLYNOMIAL
WITH MULTIPLE NODES

Let us consider the linear normed spaces X and Y, the set D C X and the
function f: D — Y.

The general interpolation problem has the following setting.

Being given the distinct elements xg, z1, ..., Tn, € D, the numbers rg, 71, ...,
rm € N and the values fU) (z;) € (X7,Y)" with j = O0,r; — 1; i = 0,m,
determine a (U — B) polynomial P : X — Z with the minimum degree SO
that for any i = 0,m and j = 0,7; — 1 we have PUY) (z )—f ) (z;), the
equality being understood as one between the elements of (X7,Y)".
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To provide an answer to this problem let us suppose that the hypotheses
from the preliminaries are fulfilled. Then let us consider the mappings that

we have introduced by .
To simplify the writing we will introduce:

—1
Xi = (ZL‘l, vy Lj—1, Tj41, ,;L‘m) (= xm ,
-1
Rz’ == (7"1, ...,7“1',1,’/“1'+1,...,7“m) = Nm ,
-1
Jz’ == (061, ey QG 1, Q4 1, ...,am) (= Nm ,

|Jil =1 + oo+ i1+ ig1 + o+ €N

together with the mapping from (X,Y)* :
(44)
qulXZ’Ri’Ji) —w < e e il , Tit - tm ;xi> .
’ ry+ o Ti—1 + Q-1 Tig1 + Qip1 Tm + Qm

If 2; — x5 € Xo for any i,j € {1,2,...,m} then, based on what we have
established in the previous paragraph, the mapping is invertible on Yjp,
and it is possible to prolong the inverted mapping to ¢l (sp (Yp)) .

A
We denote this inverted mapping as [Wﬁfj’R“J’)} e (Y, X)".
As an answer to the aforementioned interpolation problem, we have the

following theorem:

THEOREM 13. If for everyi,j € {1,2,...,m} with i # j we have x;—x; € Xy
and f9) (z;) € (X, cl (sp(Yy)))", there exists a (U — B) polynomial with the
degreen = r1+...+ry—1 that fulfills the conditions of the general interpolation
problem. The expression of this (U — B) polynomial is:

m ri—1
(45) H, (“”” ”“”;f) 0)=3" 3 1; (/) (@),

1 m

i=1 j=0
where l;j (f) : X =Y has the form:
ri—j—1
(46) Lj (f)(x) =5 > (1" Quyiji (f;2)
k=0

*
where Qi ik (f;x) is the value of the mapping Ap_r,1k+2 € (X”*”*k”, Y)
at the arguments:

i

(x—x21)™ .y (w—2iq)" Y, (a:—xl)k (=) (=)™ Zngk (@)

with:

r. 7 11 ) .
47 Zogue@ = 3 TL (7 ™19 @) e - )
\Jil=k j=1, j#i
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Proof. To simplify the writing we will use the notation:
H, (ml,...,xm;f> —H,: X >V
1 T'm
The theorem is proved, if in the form the element I;; (f) (z) is under
the form with the specification .

AsH, : X — Y is an abstract interpolation polynomial it is necessary that:

(48) i (N (ws) = Gist; 1O ()
where 9,, is Kronecker’s symbol. In the equality we have the values
i,s € {1,2,...,m} and for a fixed i the indices j,t € {0,1,...,7_1} .

In order to fulfill the conditions we search the mappings l;; (f) : X = Y
under the form:

(49) lij (f) (x) = B(g: (), 55 (x); j=0,ri—1; 1=1,m;
where for any ¢ = 1, m we have:
(50) 9i(2) = Ap—rir1 (( —21)"™ ] (T —2)™)
here, (x —x1)"™ ,...|..., (x — z,)"™ is an abbreviation for:

(x—x)™ (@ —mim)" 7 (2 — i) s (T — )™
and:

(51) Sij (x) = B(A; (x — :ci)j hij(2)); =0, —1; i=1,m;

where h;; : X — Y is a mapping to be determined.
From the relations , and it is clear that:

1 (f) (x5) =0

for s # 4, but also in the situation where s =i and ¢ < j.
We will determine the mappings h;; : X — Y from so that:

(52) 1D (F) () = £9 (i), and 1) (f) (i) =0 for t > j.

The relations f indicate that for the abstract interpolation polyno-
mial to be determined, it is necessary to choose for h;; a (U — B) abstract
polynomial with the degree r; — 7 — 1.

We will now consider Taylor’s formula for the case of non-linear mappings
between linear normed spaces, formula which for a function F' : 2 — Y, where
Q) is an open and convex set of the linear normed space X, that admits Fréchet
differentials up to the n+1 Fréchet differential, included, is expressed through:
(53)

[P0 = Y (o )| < LG s P40 0 o= ) |

n !
k=0 () 6€[0,1]
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If F:Q — Y isa (U-— B) abstract polynomial with the degree < n then
using the proposition @ we deduce that F(+1) (y) = ©p41, therefore from the
inequality we deduce that in this case we will have:

n
(k)
(54) Fa) =Y 50 (g gg)*.
k=0
Because the mapping h;; : X — Y from the equality is a (U— B)
abstract polynomial with the degree r; — j — 1, we have:
S 10
k
k=0
From , and we deduce that:

ri—j—1
(56) Ly ()@ = > #B (9 @), B(Ay (@ =) b (@) (z — z:)*))
k=0

and this relation indicates that the problem is solved if the elements
hg-c) (x;) € (X k. Y)* are determined and the equalities are fulfilled.

Let us define for every z € X the mapping g; (z) € (Y,Y)" by g; ()t =
B (g;(z),t) fort €Y.

From this equality we deduce that:

(57) B(Aj (x— i) hij () = (G ()] 1 (f) ().
Considering the equality of the Fréchet differentials of the order j + k of

the mappings from the first and the second member of the equality and
using the relations and we obtain:

j+k

(58) SO B ([4) (@ — 2)? |70 b (2) 1) =
s=0
j+k ) .
=3 0@ @)D @ e

On the account of Proposition [§ and of the fact that:
lz(;) (f) (z) = 6559 (2s)
if in the equality we replace x = x; we obtain:
(59) B, RS (@) ) = {([5 @), F9 (@),

g r=x;
If we introduce:
= T Ti—1 Ti+1 Lm *
g; () :w( yeees , vees ;:z:) €(X,)Y)
1 Ti—1 Ti+1 Tm

it is obvious that g; (x)t = 51 () UL (1).
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On account of the Proposition [12| we deduce that:

(60) {([Ei <m>r1)('“) tk} u=

ke Z H 7"5+a5 1 1Ak+1 ([Wéf;i,RiyJi)]_lujtk>'
|Ji|=k s=1, s;éz

From g; (z) = Ez (x) U~ we have [g; (:E)]_l = U[?]l (:E)]_l therefore from
(60) we deduce that:

(61) {(ch- (x)]—l)(k’ tk} u=
ST e (] )

|J;|=k s=1, s#1
From and we immediately deduce that:

(A tj, hgj) (ﬂfz) tk k k' Z H rs+as 1

\J| k s=1, s#i
(62) X A ([wfnﬁ“&‘“’”} O @), tk)
Replacing now in t = x — x; we obtain:
B(A;: (= 2i) b)) (1) (o — 20)") =

m
k k' Z H T5+o¢5—1
\J,| ks=1, s#i
o1l ,
T ([Wﬁiﬁ’R”"”] P9 (@) 2 (2 — )
and from the relations and results the equality:
Ti—j—l
B @=h > (0f Y I e
k=0 |Ji|=k s=1, s#i
(64) X Af,(:i:] ky""z 1,7i4+15-- 77"m) (f)7
where Ag;’]’"k’” LTit1eTm) (f) is the value of the mapping A, _,,+x4+2 at the
arguments:
(x —x)™ o (x—xig)" 7 (v — xz)k (= i) L
(=) VS )} ) () (2 — )’ .
Because:

S OTL e ] ) ) (@ = a0 = Zuign (@)

|Ji|=k s=1, s#i
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evidently:
s ( )
rstas—1 T1s5Ti—1,T5415-T"'m _ .
Z H ( as )An,i,j,k (f) = Quijik (f;2)-
|Ji|=ks=1, s#i
This last equality indicates that the theorem is proved. ([l

(1]
2]

[10]
[11]

[12]
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