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Dedicated to prof. Ion Păvăloiu on the occasion of his 75th anniversary

Abstract. Weighted quadrature formulas on the half line (a,+∞), a > 0, for
non-exponentially decreasing integrands are developed. Such n-point quadrature
rules are exact for all functions of the form x 7→ x−2P (x−1), where P is an
arbitrary algebraic polynomial of degree at most 2n−1. In particular, quadrature
formulas with respect to the weight function x 7→ w(x) = xβ logm x (0 ≤ β < 1,
m ∈ N0) are considered and several numerical examples are included.
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1. INTRODUCTION

In this paper we consider weighted quadrature formulae on the half line
(a,+∞),

(1.1)
∫ +∞

a
w(x)f(x) dx =

n∑
k=1

Akf(xk) +Rn(f),

where a is a finite real number and x 7→ w(x) is a given weight function. Such
a quadrature formula for a = 0 and w(x) = xαe−x, α > −1, is the well known
generalized Gauss-Laguerre quadrature rule (cf. [10, p. 325]), which is exact
for all algebraic polynomials of degree at most 2n− 1, i.e., when f ∈ P2n−1.

Error analysis and convergence of such Gaussian formulas on unbounded
intervals (with the classical measures of Laguerre and Hermite) was given in
1928 by Uspensky [17]. Otherwise, the corresponding problems for quadrature
rules on finite intervals was studied much earlier by [15], Markov [8], Stieltjes
[16], etc. On some new results in this directions see books [5] and [10], in-
cluding the so-called truncated quadrature rules obtained by ignoring the last
part of its nodes (see Mastroianni and Monegato [9]).
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Very recently Gautschi [6] has constructed a special logarithmically weighted
quadrature formula on (0,+∞), when x 7→ (x − 1 − log x)e−x. Also, Xu and
Milovanović [18] have developed generalized Gaussian quadrature rules of the
form (1.1), with x 7→ w(x) = e−x on (0,+∞), which are exact on the set of
basis functions {1, log x, x, x log x, . . . , xn−1, xn−1 log x}. In the other words,
these rules are exact for each f(x) = p(x) + q(x) log x, where p, q ∈ Pn−1,
so that they can calculate integrals with a sufficient accuracy, regardless of
whether their integrands contain a logarithmic singularity, or they do not.
For a similar approach for integrals on the finite intervals see [12] and [14].

On the other side, a large number of integrals of the form
∫+∞
a F (x) dx

which appear in applications do not have exponentially decreasing integrands
F (x), and in such cases Gauss-Laguerre quadrature rules are notoriously poor
(see Evans [2]). As a starting simple example, Evans [2] has considered F (x) =
1/(x2 +0.25), where the convergence of the corresponding integral depends on
the 1/x2 term for large x. He has proposed a quadrature method based on the
set of basis functions {1/xk} and demonstrated its effectiveness on a series of
numerical examples.

In this paper we develop a general approach for constructing a class of n-
point generalized quadrature rules (1.1) of Gaussian type on (a,+∞), a > 0,
which are exact for all functions of the form x 7→ x−2P (x−1), where P is an
arbitrary algebraic polynomial of degree at most 2n − 1. In particular, we
consider quadrature formulas with respect to the weight function x 7→ w(x) =
xβ logm x (0 ≤ β < 1, m ∈ N0), which reduces to the constant weight for β = 0
and m = 0. In order to show the efficiency of the obtained quadrature rules
we present a few numerical examples.

2. GENERALIZED WEIGHTED GAUSSIAN RULES

Suppose a > 0, as well as that the weight function x 7→ w(x) on (a,+∞) is
such that

(2.1) 0 <
∫ +∞

a

w(x)
x2 dx < +∞.

Following Evans [2], we develop a general approach for constructing generalized
Gaussian quadrature formulas of the form (1.1). In the cases of integrals on
(α,+∞), when α < a, we simply take∫ +∞

α
w(x)f(x) dx =

∫ a

α
w(x)f(x) dx+

∫ +∞

a
w(x)f(x) dx

and apply to first integral on the right hand side some of rules for calculating
integrals on the finite intervals. Also, we mention here that a faster conver-
gence of the corresponding quadrature process can be achieved by taking a
greater value of a.
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Thus, the basic idea is to construct a quadrature formula of the form (1.1),
which is exact for all functions of the form

x 7→ 1
x2Pm

(1
x

)
, m = 0, 1, . . . , 2n− 1,

where Pm(t) are arbitrary selected algebraic polynomials in t of degree m, i.e.,

(2.2)
∫ +∞

a
w(x) 1

x2Pm
(1
x

)
dx =

n∑
k=1

Ak
x2
k

Pm
( 1
xk

)
, m = 0, 1, . . . , 2n− 1.

Remark. Because of linearity, it is easy to see that this system of 2n non-
linear equations in xk and Ak, k = 1, . . . , n, is equivalent to the corresponding
system with monomials, i.e., when Pm(x) = xm, m = 0, 1, . . . , 2n− 1. �

On the other side we consider the Gauss-Christoffel quadrature formula
with respect to the weight function t 7→ w(1/t) on (0, 1/a), i.e.,

(2.3)
∫ 1/a

0
w
(1
t

)
g(t) dt =

n∑
k=1

Bkg(τk) +RGn (g),

where τk and Bk are its nodes and Christoffel numbers, respectively, and RGn (g)
is the corresponding remainder term. According to (2.1), such quadrature
formulas exist uniquely, because the all moments µk =

∫ 1/a
0 w(1/t)tk dt, k ≥ 0,

exist and µ0 > 0.
It is known that the nodes τk in (2.3) are eigenvalues of the following sym-

metric tridiagonal Jacobi matrix (cf. [10, pp. 325–328])

(2.4) Jn =



α0
√
β1 O

√
β1 α1

√
β2

√
β2 α2

. . .
. . . . . .

√
βn−1

O
√
βn−1 αn−1


,

where αk and βk are coefficients in the three-term recurrence relation
πk+1(t) = (t− αk)πk(t)− βkπk−1(t), k = 0, 1, . . . ,(2.5)

π0(t) = 1, π−1(t) = 0,
for the (monic) polynomials {πk}k∈N0 orthogonal with respect to the inner
product

(2.6) (p, q) =
∫ 1/a

0
w
(1
t

)
p(t)q(t) dt.

In fact, πn(t) = (t− τ1) · · · (t− τn).
The weight coefficients Bk in (2.3) are given by

Bk = β0v
2
k,1, k = 1, . . . , n,
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where vk,1 is the first component of the eigenvector vk (= [vk,1 . . . vk,n]T)
corresponding to the eigenvalue τk and normalized such that vT

k vk = 1, and
β0 = µ0 =

∫ 1/a
0 w(1/t) dt.

The most popular method for solving this eigenvalue problem is the Golub-
Welsch procedure, obtained by a simplification of QR algorithm [7]. This pro-
cedure is implemented in several packages including the most known ORTPOL
given by Gautschi [4].

As we can see from (2.4), for constructing Gauss–Christoffel quadratures
(2.3) for any number of nodes less than or equal to n, we need the first n
recursion coefficients αk and βk, k = 0, 1, . . . , n− 1, in (2.5).

In general, the recursion coefficients are known explicitly only for some
narrow classes of orthogonal polynomialsc(e.g. for the classical orthogonal
polynomials). In the case of the so-called strongly non-classical polynomi-
als, these recursion coefficients must be constructed numerically (cf. [3], [5],
[10, pp. 159–166]). However, recent progress in symbolic computation and
variable-precision arithmetic today makes it possible to generate the recur-
sive coefficients in (2.5) directly by using the original Chebyshev method of
moments. Respectively symbolic/variable-precision software for orthogonal
polynomials and Gaussian (and similar) quadratures is available. Our Math-
ematica package OrthogonalPolynomials (see [1] and [13]), is download-
able from the web site http://www.mi.sanu.ac.rs/˜gvm/. Also, there is
Gautschi’s software in Matlab (packages OPQ and SOPQ).

Now, we can give our main result:

Theorem 2.1. Let x 7→ w(x) be a weight function on (a,+∞), a > 0, such
that the condition (2.1) holds. Assume also that τk and Bk, k = 1, . . . , n,
are nodes and Christoffel numbers of the Gaussian quadrature formula (2.3),
respectively. Then there exists the generalized Gaussian quadrature formula

(2.7)
∫ +∞

a
w(x)f(x) dx =

n∑
k=1

Akf(xk) +Rn(f),

with

(2.8) xk = 1
τk
, Ak = Bk

τ2
k

> 0, k = 1, . . . , n,

which is exact for all functions of the form f(x) = x−2P (x−1), where P ∈
P2n−1.

The remainder term in this quadrature rule can be expressed in the following
form Rn(f) = RGn (g), where g(t) = t−2f(t−1).

Proof. We start with the system of 2n nonlinear equations (2.2), whose
solution determines the parameters of the quadrature formula (2.7). Our aim
is to prove that this solution uniquely exists.

First, we take the sequence of orthogonal polynomials {πm}2n−1
m=0 in the

system (2.2) and then by a simple change of variables x = 1/t in the integral
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on the left hand side we obtain∫ +∞

a
w(x) 1

x2πm
(1
x

)
dx =

∫ 1/a

0
w
(1
t

)
πm(t) dt

= (π0, πm)

= µ0δ0,m,

where the inner product is defined by (2.6) and δk,m is Kronecker’s delta.
Evidently, this leads to the system of equations

(2.9)
n∑
k=1

Ak
1
x2
k

πm
( 1
xk

)
= µ0δ0,m, m = 0, 1, . . . , 2n− 1,

but, by an application of the Gaussian rule (2.3), it gives also another system
of equations

(2.10)
n∑
k=1

Bkπm(τk) = µ0δ0,m, m = 0, 1, . . . , 2n− 1,

because RGn (g) = 0 for each g ∈ P2n−1. The last system has the unique
solution, and it represents the parameters τk and Bk, k = 1, . . . , n, of the
Gaussian quadrature (2.3).

Since the systems of equations (2.9) and (2.10) are equivalent, the statement
of this theorem follows directly. �

3. SPECIAL CASES AND NUMERICAL EXAMPLES

In this section we consider special cases of quadrature formulas with respect
to the weight function x 7→ w(x) = xβ logm x, where 0 ≤ β < 1 and m ∈ N0.
For β = 0 and m = 0, it reduces to the constant weight w(x) = 1. In order
to show the efficiency of the obtained quadrature formulas we present a few
numerical examples.

We start this section with the weight function x 7→ w(x) = xβ, 0 ≤ β < 1.
The condition (2.1) is satisfied, because∫ +∞

a

w(x)
x2 dx = aβ−1

1− β .

Here we consider only the case β = 0, i.e., when w(x) = 1. Since∫ +∞

a
f(x) dx = a

∫ +∞

1
f(ax) dx,

we see that for this important case the following statement holds.

Proposition 3.1. Let

(3.1)
∫ +∞

a
f(x) dx =

n∑
k=1

Ak(a)f(xk(a)) +Rn(f ; a), a > 0,
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be a generalized Gaussian quadrature (2.7) (with the constant weight function
w(x) = 1). Then

Ak(a) = aAk(1) and xk(a) = axk(1), k = 1, . . . , n.

This means that it is enough to know only quadrature parameters for a = 1.
These parameters can be obtained directly using (2.8) and Gauss-Legendre
parameters τk and Bk for transformed interval (0, 1).

Recursive coefficients in (2.5), in this case for translated monic Legendre
polynomials, are

αk = 1
2 , k ≥ 0, β0 = 1, βk = k2

4(4k2 − 1) , k ≥ 1.

Otherwise, it can be obtained using our Mathematica Package Orthogonal-
Polynomials in symbolic form (see [1] and [13]). For example, if we need the
first forty recurrence coefficients, then we start with the first eighty moments
µk = 1/(k + 1), k = 0, 1, . . . , 79, and then we use the standard Chebyshev
algorithm (cf. [10, 160–162]:

<< orthogonalPolynomials‘
mom=Table[1/(k+1), {k,0,79}];
{al,be} = aChebyshevAlgorithm[mom, Algorithm -> Symbolic]
These recursive coefficients enable us to construct quadrature formulas (2.3)

for any number of nodes up to 40.
However, in this Legendre case (translated to (0, 1)) we can directly use

aGaussianNodesWeights routine to construct nodes and weights in the Gauss-
ian quadrature formula (2.3), as well as ones in the quadrature formula (2.7):

<< orthogonalPolynomials‘
transLeg[n_] := (aGaussianNodesWeights[n, {aLegendre},

WorkingPrecision -> 70, Precision -> 65] + {1,0})/2;
parQF = Table[transLeg[n], {n,2,40,2}];
For[m = 1, m < 21, m++,

parQF[[m]][[2]] = parQF[[m]][[2]]/parQF[[m]][[1]]ˆ2;
parQF[[m]][[1]] = 1/parQF[[m]][[1]];]

Thus, in this way for a = 1, we obtain quadrature parameters xk and Ak
for each n = 2(2)40.

Example 3.2. In order to show the efficiency of our quadrature rule (2.7)
we apply it to the integral

J(a; c) =
∫ +∞

a

1
(x− 2)2 + c2 dx = 1

2c

[
π − 2 arctan

(a− 2
c

)]
,

for different values of a > 0 and c > 0. In Figure 3.1 we present graphics of
the function

x 7→ f(x; c) = 1
(x− 2)2 + c2
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for c = 1
8 ,

1
4 ,

1
2 , and 1, as well as the corresponding graphics of the exact values

of this integral J(a; c) (right).
In order to test the quadrature formula (3.1), we apply it to J(a; 1) for

a = 1
2 , 1, 2, 3, 4, and 8, when n = 2(2)40.
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Fig. 3.1. The function x 7→ f(x; c) (left) and the integral a 7→ J(a; c) (right) for c = 1
8 (blue

line), c = 1
4 (black line), c = 1

2 (brown line), and c = 1 (red line).

Relative errors in the quadrature sums

Qn(f(·; c); a) =
n∑
k=1

Ak(a)f(xk(a); c),

defined by

errn(f(·; c); a) =
∣∣∣Qn(f(·; c); a)− J(a; c)

J(a; c)

∣∣∣,
are displayed in Figure 3.2 in a log-scale. Numerical results show that the
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Fig. 3.2. Relative errors errn(f(·; 1); a) in quadrature sums Qn(f(·; 1); a).
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convergence is much faster if the parameter a is larger. For example, if a =
2, then for n = 10(10)40, the relative errors are 1.71 × 10−7, 1.83 × 10−14,
1.91 × 10−21, 1.94 × 10−28, respectively, while the corresponding errors for
a = 4 are 5.52× 10−15, 1.21× 10−29, 1.40× 10−44, 1.44× 10−59.

Otherwise, this integrand f(x; c) has poles at the points 2 ± ic, which are
approaching the real line when c tends to zero. In this case, for small val-
ues of a (near 2 or less than 2), the convergence of the quadrature process
slows down considerably, because of a strong influence of these singularities.
This effect can be seen from Table 3.1, where quadrature approximations and
corresponding relative errors are presented for (a, c) = (1, 1

4), (21
10 , 10−6), and

(4, 10−6). In order to save space, in last case only relative errors are given.
Digits in error are underlined, and numbers in parenthesis indicate the decimal
exponents.

Notice that the integral J(a; 0) for a ≤ 2 does not exist.
Finally, the last column shows that for (a, c) = (4, 10−6), the convergence

of the quadrature rule (3.1) is very fast.

n (a, c) = (1, 1/4) (a, c) = (21/10, 10−6) (a, c) = (4, 10−6)
2 2.83088 7.56(−1) 4.21706255691703 5.78(−1) 5.92(−3)
4 5.38719 5.35(−1) 8.01223217799471 1.99(−1) 9.70(−6)
6 7.41379 3.60(−1) 9.47887835712778 5.21(−2) 1.24(−8)
8 8.88711 2.33(−1) 9.88043864297441 1.20(−2) 1.42(−11)

10 9.89102 1.46(−1) 9.97447558340612 2.55(−3) 1.53(−14)
20 11.45438 1.14(−2) 9.99999276505451 7.23(−7) 1.47(−29)
30 11.57808 7.23(−4) 9.99999999813998 1.53(−10) 1.08(−44)
40 11.58606 3.41(−5) 9.99999999966638 2.86(−14) 6.99(−60)

Table 3.1. Quadrature sums Qn(f(·; c); a) and their relative errors
errn(f(·; c); a) for integrals J(a; c).

In the sequel we consider quadrature rules with respect to the weight func-
tion x 7→ w(x) = xβ log x, 0 ≤ β < 1. Here we suppose that a ≥ 1. The
condition (2.1) is satisfied, because

(3.2) 0 <
∫ +∞

a

w(x)
x2 dx = aβ−1

(1− β)2 [1 + (1− β) log a] .

In this case, the moments

µk =
∫ 1/a

0
w(1/t)tk dt =

∫ 1/a

0
tk−β log 1

t
dt

can be expressed in the form

(3.3) µk = aβ−k−1[(k + 1− β) log a+ 1]
(k + 1− β)2 , k ≥ 0.

Taking the first one hundred moments (mom) (e.g. for a = 1 and β = 1/4)
and using Mathematica Package OrthogonalPolynomials, we can get the
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first fifty recurrence coefficients αk and βk (denoted by {al1,be1}) in the
three-term recurrence relation (2.5) in a symbolic form

<< orthogonalPolynomials‘
mom=Table[(aˆ(-1+b-k)(1+(1-b+k)Log[a]))/(1-b+k)ˆ2, {k,0,99}];
mom1=mom/. {a->1, b->1/4}
{al1,be1} = aChebyshevAlgorithm[mom, Algorithm -> Symbolic]
For example, first four coefficients are

α0 = 9
49 , α1 = 209897

452025 , α2 = 6582284926939
13538179995075 , α3 = 7618613698603068100869609

15464687102113919816429449
and

β0 = 16
9 , β1 = 11808

290521 , β2 = 213147564896
3717280400625 , β3 = 421267942813254097088

6997413354065613077481 .

Example 3.3. As a test example we consider the function

x 7→ f(x) = 1
(x+ 1)2

and integral (see [2])

I(f ; a) =
∫ +∞

a

x1/4 log x
(x+ 1)2 dx

= 1
36a 7

4 (a+ 1)

{
−9(a+ 1)Φ

(
−1
a
, 2, 7

4

)
+4a

[
3(a+ 1)(log a+ 4) 2F1

(3
4 , 1; 7

4 ;−1
a

)
+ 4a+ 9a log a+ 4

]}
,

where Φ and 2F1 are the Lerch transcendent and Gauss hypergeometric func-
tion, defined by

Φ(z, s, a) =
+∞∑
k=0

zk

(k + a)s and 2F1(a, b; c; z) =
+∞∑
k=0

(a)k(b)k
(c)k

zk

k! ,

respectively, and (a)k = a(a+ 1) . . . (a+ k − 1) is the Pochhammer symbol.
We consider this integral for two values of the lower bound: a = 1 and

a = e, i.e.,
I(f ; 1) = 1.359 743 280 976 008 95 . . . and I(f ; e) = 1.228 976 186 680 372 55 . . . .

Applying Gauss-Laguerre rule to I(f ; 1) (translated from (1,+∞) to (1,+∞))
gives poor results. Relative errors in the corresponding Gauss-Laguerre quad-
rature sums are presented in Table 3.2. As we can see only two two decimal
digits are true in quadrature sum with 2048 nodes!

Now, we apply our quadrature formula (2.7), with parameters given by
(2.8), to I(f ; 1) and I(f ; e), with only n = 2(2)12 nodes. The relative errors
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n = 2 n = 8 n = 32 n = 128 n = 512 n = 2048
6.72(−1) 3.60(−1) 1.64(−1) 7.00(−2) 2.90(−2) 1.18(−2)

Table 3.2. Relative errors in Gauss-Laguerre quadrature sums
with n = 2, 8, 32, 128, 512 and 2048 nodes.

in the quadrature sums Qn(f ; a) =
∑n
k=1Akf(xk),

errn(f ; a) =
∣∣∣Qn(f ; a)− I(f ; a)

I(f ; a)

∣∣∣,
are presented in Table 3.3.

a n = 2 n = 4 n = 6 n = 8 n = 10 n = 12
1 2.94(−3) 4.24(−6) 5.15(−9) 5.72(−12) 4.74(−13) 7.07(−13)
e 2.40(−4) 1.64(−8) 8.91(−13) 8.83(−14) 5.31(−14) 3.80(−14)
e2 7.18(−6) 1.28(−11) 3.10(−14)

Table 3.3. Relative errors errn(f ; a) in quadrature sums Qn(f ; a)
for different number of nodes n and three values of a (= 1, e, and e2).

As we can see, the convergence is faster when a is bigger. In the third line of
the same table we also present the corresponding relative errors when a = e2

and n = 2, 4, and 6.

Finally, we mention that this approach can be applied also in the case of
the weight functions

w(x) = wm(x) = xβ logm x, 0 ≤ β < 1, m = 2, 3, . . . ,

on the interval (a,+∞), with a ≥ 1.
The condition (2.1) for Um =

∫+∞
a x−2wm(x) dx is also satisfied, because

Um = 1
1− β

[
mUm−1 + aβ−1 logm a

]
, m = 2, 3, . . . ,

where U1 is given in (3.2). The corresponding moments

µ
[m]
k =

∫ 1/a

0
tk−β logm 1

t
dt, k = 0, 1, . . . ,

can be expressed recursively in terms of the moments µ[m−1]
k ,

µ
[m]
k = 1

k + 1− β
(
mµ

[m−1]
k + aβ−k−1 logm a

)
, m = 2, 3, . . . ,

where the moments µ[1]
k (≡ µk) are given by (3.3). For example, for m = 2 we

get

µ
[2]
k =

aβ−k−1
[
(k + 1− β)2 log2 a+ 2(k + 1− β) log a+ 2

]
(k + 1− β)3 , k ≥ 0.
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The corresponding recursive coefficients, for example for β = 0 and a = 1,
are

α0 = 1
8 , α1 = 115

296 , α2 = 28200187
62721512 , α3 = 28003451041760695

59414538084233528 , . . .

and

β0 = 2, β1 = 37
1728 , β2 = 211897

4620375 , β3 = 945381680572419
17600932734728000 , . . . .

Example 3.4. We consider the function x 7→ 1/(1 + x2) and the corre-
sponding weighted integral over (a,+∞)

I(f ; a) =
∫ +∞

a

log2 x

1 + x2 dx,

for two values of a (= 1 and = e), for which
I(f ; 1) = 1.937 892 292 518 738 760 967 269 691 69 . . .

and
I(f ; e) = 1.809 886 879 397 869 426 020 164 472 46 . . . .

Applying our quadrature formula (2.7), with parameters given by (2.8), to
I(f ; 1) and I(f ; e), with n = 2(2)12 nodes, we get the corresponding quadra-
ture approximations Qn(f ; a) with the relative errors errn(f ; a) presented in
Table 3.4.

a n = 2 n = 4 n = 6 n = 8 n = 10 n = 12
1 1.66(−4) 1.31(−6) 1.98(−10) 5.73(−12) 2.08(−15) 2.56(−17)
e 5.33(−5) 5.04(−10) 1.86(−13) 2.05(−17) 1.22(−21) 3.30(−26)

Table 3.4. Relative errors errn(f ; a) in quadrature sums Qn(f ; a)
for different number of nodes n and two values of a (= 1 and = e).

Here also we can note a faster convergence when a has a larger value.
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