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SEMILOCAL CONVEGENCE OF NEWTON-LIKE METHODS
UNDER GENERAL CONDITIONS, WITH APPLICATIONS

IN FRACTIONAL CALCULUS

GEORGE A. ANASTASSIOU1 and IOANNIS K. ARGYROS2

Abstract. We present a semilocal convergence study of Newton-like methods
on a generalized Banach space setting to approximate a locally unique zero of an
operator. Earlier studies such as [5, 6, 7, 14] require that the operator involved
is Fréchet-differentiable. In the present study we assume that the operator is
only continuous. This way we extend the applicability of Newton-like methods
to include fractional calculus and problems from other areas. Some applications
include fractional calculus involving the Riemann-Liouville fractional integral
and the Caputo fractional derivative. Fractional calculus is very important for
its applications in many applied sciences.
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1. INTRODUCTION

We present a semilocal convergence analysis for Newton-like methods on a
generalized Banach space setting to approximate a zero of an operator. The
semilocal convergence is, based on the information around an initial point, to
give conditions ensuring the convergence of the method. A generalized norm
is defined to be an operator from a linear space into a partially order Banach
space (to be precised in section 2). Earlier studies such as [5, 6, 7, 14] for
Newton’s method have shown that a more precise convergence analysis is ob-
tained when compared to the real norm theory. However, the main assumption
is that the operator involved is Fréchet-differentiable. This hypothesis limits
the applicability of Newton’s method. In the present study we only assume
the continuity of the operator. This may expand the applicability of these
methods.

The rest of the paper is organized as follows: section 2 contains the basic
concepts on generalized Banach spaces and auxiliary results on inequalities
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and fixed points. In section 3 we present the semilocal convergence analysis
of Newton-like methods. Finally, in the concluding sections 4-5, we present
special cases and applications in fractional calculus.

2. GENERALIZED BANACH SPACES

We present some standard concepts that are needed in what follows to make
the paper as self contained as possible. More details on generalized Banach
spaces can be found in [5, 6, 7, 14], and the references there in.

Let X be a linear space. A subset C of X is called a cone if C+C ⊆ C and
αC ⊆ C for α > 0. The cone C is proper if C ∩ (−C) = {0}. The relation
”≤” defined by

x ≤ y if and only if y − x ∈ C
is a partial ordering on C which is compatible with the linear structure of this
space. Two elements x and y of X are called comparable if either x ≤ y or
y ≤ x holds. The space X endowed with the above relation is called a partially
ordered linear space (POL-space). If X has a topology compatible with its
linear structure and if the cone C is closed in that topology then X is called
a partially ordered topological space (POTL-space).

We remark that in a POTL-space the intervals [a, b] = {x : a ≤ x ≤ b} are
closed sets. A stronger connection is considered in the following definitions:

Definition 2.1. A POTL-space is called normal if, given a local base V
for the topology, there exists a positive number η so that if 0 ≤ z ∈ U ⊆ V
then [0, z] ⊂ ηU.

Definition 2.2. A POTL-space is called regular if every order bounded
increasing sequence has a limit.

If the topology of a POTL-space is given by a norm then this space is called
a partially ordered normed space (PON-space). If a PON-space is complete
with respect to its topology then it is called a partially ordered Banach space
(POB-space). According to Definition 2.1 a PON-space is normal if and only
if there exists a positive number α such that

‖x‖ ≤ α ‖y‖ , for all x, y ∈ X with 0 ≤ x ≤ y.
Let us note that any regular POB-space is normal. The reverse is not true.
For example, the space C [0, 1] of all continuous real functions defined on [0, 1],
ordered by the cone of nonnegative functions, is normal but is not regular. All
finite dimensional POTL-spaces are both normal and regular.

Definition 2.3. A generalized Banach space is a triplet (X, (E,K, ‖·‖) , /·/)
such that

(i) X is a linear space over R (C) .
(ii) E = (E,K, ‖·‖) is a partially ordered Banach space, i.e.

(ii1) (E, ‖·‖) is a real Banach space,
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(ii2) E is partially ordered by a closed convex cone K,
(ii3) The norm ‖·‖ is monotone on K.
(iii) The operator /·/ : X → K satisfies

/x/ = 0⇔ x = 0, /θx/ = |θ| /x/ ,

/x+ y/ ≤ /x/ + /y/ , for each x, y ∈ X, θ ∈ R(C).
(iv) X is a Banach space with respect to the induced norm ‖·‖i := ‖/·/‖ .

Remark 2.4. The operator /·/ is called a generalized norm. In view of (iii)
and (ii3) ‖·‖i , is a real norm. In the rest of this paper all topological concepts
will be understood with respect to this norm. �

Definition 2.5. Let L
(
Xj , Y

)
stand for the space of j-linear symmetric

and bounded operators from Xj to Y , where X and Y are Banach spaces. For
X,Y partially ordered L+

(
Xj , Y

)
stands for the subset of monotone operators

P such that

(2.1) 0 ≤ ai ≤ bi ⇒ P (a1, ..., aj) ≤ P (b1, ..., bj) .

Definition 2.6. The set of bounds for an operator Q ∈ L (X,X) on a
generalized Banach space (X,E, /·/) is defined to be:

(2.2) B (Q) := {P ∈ L+ (E,E) , /Qx/ ≤ P /x/ for each x ∈ X} .

Let D ⊂ X and T : D → D be an operator. If x0 ∈ D the sequence {xn} given
by

(2.3) xn+1 := T (xn) = Tn+1 (x0)

is well defined. We write in case of convergence

(2.4) T∞ (x0) := lim (Tn (x0)) = lim
n→∞

xn.

We need some auxiliary results on inequations.

Lemma 2.7. Let (E,K, ‖·‖) be a partially ordered Banach space, ξ ∈ K and
M,N ∈ L+ (E,E).

(i) Suppose there exists r ∈ K such that

(2.5) R (r) := (M +N) r + ξ ≤ r

and

(2.6) (M +N)k r → 0 as k →∞.

Then, b := R∞ (0) is well defined, satisfies the equation t = R (t) and
is smaller than any solution of the inequality R (s) ≤ s.

(ii) Suppose there exists q ∈ K and θ ∈ (0, 1) such that R (q) ≤ θq, then
there exists r ≤ q satisfying (i).
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Proof. (i) Define sequence {bn} by bn = Rn (0). Then, we have by (2.5)
that b1 = R (0) = ξ ≤ r ⇒ b1 ≤ r. Suppose that bk ≤ r for each k = 1, 2, ..., n.
Then, we have by (2.5) and the inductive hypothesis that bn+1 = Rn+1 (0) =
R (Rn (0)) = R (bn) = (M +N) bn + ξ ≤ (M +N) r + ξ ≤ r ⇒ bn+1 ≤ r.
Hence, sequence {bn} is bounded above by r. Set Pn = bn+1 − bn. We shall
show that

(2.7) Pn ≤ (M +N)n r for each n = 1, 2, ...

We have by the definition of Pn and (2.6) that

P1 = R2 (0)−R (0) = R (R (0))−R (0)

= R (ξ)−R (0) =
∫ 1

0
R′ (tξ) ξdt ≤

∫ 1

0
R′ (ξ) ξdt

≤
∫ 1

0
R′ (r) rdt ≤ (M +N) r,

which shows (2.7) for n = 1. Suppose that (2.7) is true for k = 1, 2, ..., n.
Then, we have in turn by (2.6) and the inductive hypothesis that

Pk+1 = Rk+2 (0)−Rk+1 (0) = Rk+1 (R (0))−Rk+1 (0)

= Rk+1 (ξ)−Rk+1 (0) = R
(
Rk (ξ)

)
−R

(
Rk (0)

)
=
∫ 1

0
R′
(
Rk (0) + t

(
Rk (ξ)−Rk (0)

)) (
Rk (ξ)−Rk (0)

)
dt ≤

≤ R′
(
Rk (ξ)

) (
Rk (ξ)−Rk (0)

)
= R′

(
Rk (ξ)

) (
Rk+1 (0)−Rk (0)

)
≤ R′ (r)

(
Rk+1 (0)−Rk (0)

)
≤ (M +N) (M +N)k r = (M +N)k+1 r,

which completes the induction for (2.7). It follows that {bn} is a complete
sequence in a Banach space and as such it converges to some b. Notice that
R (b) = R

(
lim
n→∞

Rn (0)
)

= lim
n→∞

Rn+1 (0) = b⇒ b solves the equation R (t) = t.
We have that bn ≤ r ⇒ b ≤ r, where r a solution of R (r) ≤ r. Hence, b is
smaller than any solution of R (s) ≤ s.

(ii) Define sequences {vn}, {wn} by v0 = 0, vn+1 = R (vn), w0 = q, wn+1 =
R (wn). Then, we have that

0 ≤ vn ≤ vn+1 ≤ wn+1 ≤ wn ≤ q,(2.8)
wn − vn ≤ θn (q − vn)

and sequence {vn} is bounded above by q. Hence, it converges to some r with
r ≤ q. We also get by (2.8) that wn − vn → 0 as n → ∞ ⇒ wn → r as
n→∞. �

We also need the auxiliary result for computing solutions of fixed point
problems.
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Lemma 2.8. Let (X, (E,K, ‖·‖) , /·/) be a generalized Banach space, and
P ∈ B (Q) be a bound for Q ∈ L (X,X) . Suppose there exists y ∈ X and
q ∈ K such that
(2.9) Pq + /y/ ≤ q and P kq → 0, as k →∞.
Then, z = T∞ (0), T (x) := Qx + y is well defined and satisfies: z = Qz + y
and /z/ ≤ P /z/ + /y/ ≤ q. Moreover, z is the unique solution in the subspace
{x ∈ X|∃ θ ∈ R : {x} ≤ θq} .

The proof can be found in [14, Lemma 3.2].

3. SEMILOCAL CONVERGENCE

Let (X, (E,K, ‖·‖) , /·/) and Y be generalized Banach spaces, D ⊂ X an
open subset, G : D → Y a continuous operator and A (·) : D → L (X,Y ). A
zero of operator G is to be determined by a Newton-like method starting at
a point x0 ∈ D. The results are presented for an operator F = JG, where
J ∈ L (Y,X). The iterates are determined through a fixed point problem:

xn+1 = xn + yn, A (xn) yn + F (xn) = 0(3.1)
⇔ yn = T (yn) := (I −A (xn)) yn − F (xn) .

Let U (x0, r) stand for the ball defined by
U (x0, r) := {x ∈ X : /x− x0/ ≤ r}

for some r ∈ K.
Next, we present the semilocal convergence analysis of Newton-like method

(3.1) using the preceding notation.

Theorem 3.1. Let F : D ⊂ X → X, A (·) : D → L (X,X) and x0 ∈ D be
as defined previously. Suppose:

(H1) There exists an operator M ∈ B (I −A (x)) for each x ∈ D.
(H2) There exists an operator N ∈ L+ (E,E) satisfying for each x, y ∈ D

/F (y)− F (x)−A (x) (y − x)/ ≤ N /y − x/ .
(H3) There exists a solution r ∈ K of

R0 (t) := (M +N) t+ /F (x0)/ ≤ t.
(H4) U (x0, r) ⊆ D.
(H5) (M +N)k r → 0 as k →∞.
Then, the following hold:
(C1) The sequence {xn} defined by

xn+1 = xn + T∞n (0) ,
Tn (y) := (I −A (xn)) y − F (xn)(3.2)

is well defined, remains in U (x0, r) for each n = 0, 1, 2, ... and con-
verges to the unique zero of operator F in U (x0, r) .
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(C2) An apriori bound is given by the null-sequence {rn} defined by r0 := r
and for each n = 1, 2, ...

rn = P∞n (0) , Pn (t) = Mt+Nrn−1.

(C3) An a posteriori bound is given by the sequence {sn} defined by
sn := R∞n (0) , Rn (t) = (M +N) t+Nan−1,

bn := /xn − x0/ ≤ r − rn ≤ r,
where

an−1 := /xn − xn−1/ , for each n = 1, 2, ...

Proof. Let us define for each n ∈ N the statement:
(In) xn ∈ X and rn ∈ K are well defined and satisfy

rn + an−1 ≤ rn−1.

We use induction to show (In). The statement (I1) is true: By Lemma 2.7 and
(H3), (H5) there exists q ≤ r such that:

Mq + /F (x0)/ = q and Mkq ≤Mkr → 0 as k →∞.
Hence, by Lemma 2.8 x1 is well defined and we have a0 ≤ q. Then, we get the
estimate

P1 (r − q) = M (r − q) +Nr0

≤Mr −Mq +Nr = R0 (r)− q
≤ R0 (r)− q = r − q.

It follows with Lemma 2.7 that r1 is well defined and
r1 + a0 ≤ r − q + q = r = r0.

Suppose that (Ij) is true for each j = 1, 2, ..., n. We need to show the existence
of xn+1 and to obtain a bound q for an. To achieve this notice that:

Mrn +N (rn−1 − rn) = Mrn +Nrn−1 −Nrn = Pn (rn)−Nrn ≤ rn.
Then, it follows from Lemma 2.7 that there exists q ≤ rn such that
(3.3) q = Mq +N (rn−1 − rn) and (M +N)k q → 0, as k →∞.
By (Ij) it follows that

bn = /xn − x0/ ≤
n−1∑
j=0

aj ≤
n−1∑
j=0

(rj − rj+1) = r − rn ≤ r.

Hence, xn ∈ U (x0, r) ⊂ D and by (H1) M is a bound for I −A (xn) .
We can write by (H2) that

/F (xn)/ = /F (xn)− F (xn−1)−A (xn−1) (xn − xn−1)/
≤ Nan−1 ≤ N (rn−1 − rn) .(3.4)
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It follows from (3.3) and (3.4) that
Mq + /F (xn)/ ≤ q.

By Lemma 2.8, xn+1 is well defined and an ≤ q ≤ rn. In view of the definition
of rn+1 we have that

Pn+1 (rn − q) = Pn (rn)− q = rn − q,
so that by Lemma 2.7, rn+1 is well defined and

rn+1 + an ≤ rn − q + q = rn,

which proves (In+1). The induction for (In) is complete. Let m ≥ n, then we
obtain in turn that

(3.5) /xm+1 − xn/ ≤
m∑
j=n

aj ≤
m∑
j=n

(rj − rj+1) = rn − rm+1 ≤ rn.

Moreover, we get inductively the estimate
rn+1 = Pn+1 (rn+1) ≤ Pn+1 (rn) ≤ (M +N) rn ≤ ... ≤ (M +N)n+1 r.

It follows from (H5) that {rn} is a null-sequence. Hence, {xn} is a complete
sequence in a Banach space X by (3.5) and as such it converges to some x∗ ∈
X. By letting m→∞ in (3.5) we deduce that x∗ ∈ U (xn, rn). Furthermore,
(3.4) shows that x∗ is a zero of F . Hence, (C1) and (C2) are proved.

In view of the estimate
Rn (rn) ≤ Pn (rn) ≤ rn

the apriori, bound of (C3) is well defined by Lemma 2.7. That is sn is smaller
in general than rn. The conditions of Theorem 3.1 are satisfied for xn replacing
x0. A solution of the inequality of (C2) is given by sn (see (3.4)). It follows
from (3.5) that the conditions of Theorem 3.1 are easily verified. Then, it
follows from (C1) that x∗ ∈ U (xn, sn) which proves (C3). �

In general the a posteriori estimate is of interest. Then, condition (H5) can
be avoided as follows:

Proposition 3.2. Suppose: condition (H1) of Theorem 3.1 is true.
(H′3) There exists s ∈ K, θ ∈ (0, 1) such that

R0 (s) = (M +N) s+ /F (x0)/ ≤ θs.
(H′4) U (x0, s) ⊂ D.

Then, there exists r ≤ s satisfying the conditions of Theorem 3.1. Moreover,
the zero x∗ of F is unique in U (x0, s) .

Remark 3.3. (i) Notice that by Lemma 2.7 R∞n (0) is the smallest solution
of Rn (s) ≤ s. Hence any solution of this inequality yields on upper estimate
for R∞n (0). Similar inequalities appear in (H2) and (H′2).

(ii) The weak assumptions of Theorem 3.1 do not imply the existence of
A (xn)−1. In practice the computation of T∞n (0) as a solution of a linear
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equation is no problem and the computation of the expensive or impossible to
compute in general A (xn)−1 is not needed.

(iii) We can use the following result for the computation of the a posteriori
estimates. The proof can be found in [14, Lemma 4.2] by simply exchanging
the definitions of R. �

Lemma 3.4. Suppose that the conditions of Theorem 3.1 are satisfied. If
s ∈ K is a solution of Rn (s) ≤ s, then q := s−an ∈ K and solves Rn+1 (q) ≤ q.
This solution might be improved by Rkn+1 (q) ≤ q for each k = 1, 2, ... .

4. SPECIAL CASES AND APPLICATIONS

Application 4.1. The results obtained in earlier studies such as [5, 6, 7, 14]
require that operator F (i.e. G) is Fréchet-differentiable. This assumption lim-
its the applicability of the earlier results. In the present study we only require
that F is a continuous operator. Hence, we have extended the applicability
of Newton-like methods to classes of operators that are only continuous. If
A (x) = F ′ (x) Newton-like method (3.1) reduces to Newton’s method consid-
ered in [14]. �

Example 4.2. The j-dimensional space Rj is a classical example of a gen-
eralized Banach space. The generalized norm is defined by componentwise
absolute values. Then, as ordered Banach space we set E = Rj with compo-
nentwise ordering with e.g. the maximum norm. A bound for a linear operator
(a matrix) is given by the corresponding matrix with absolute values. Simi-
larly, we can define the ”N” operators. Let E = R. That is we consider the
case of a real normed space with norm denoted by ‖·‖. Let us see how the
conditions of Theorem 3.1 look like. �

Theorem 4.3. Assume:
(H1) ‖I −A (x)‖ ≤M for some M ≥ 0.
(H2) ‖F (y)− F (x)−A (x) (y − x)‖ ≤ N ‖y − x‖ for some N ≥ 0.
(H3) M +N < 1,

(4.1) r = ‖F (x0)‖
1− (M +N) .

(H4) U (x0, r) ⊆ D.
(H5) (M +N)k r → 0 as k →∞, where r is given by (4.1).

Then, the conclusions of Theorem 3.1 hold.

5. APPLICATION TO FRACTIONAL CALCULUS

Our presented earlier semilocal convergence Newton-type general methods,
see Theorem 4.3, apply in the next two fractional settings given that the
following inequalities are fulfilled:
(5.1) ‖1−A (x)‖∞ ≤ γ0 ∈ (0, 1) ,
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and

(5.2) |F (y)− F (x)−A (x) (y − x)| ≤ γ1 |y − x| ,

where γ0, γ1 ∈ (0, 1), furthermore

(5.3) γ = γ0 + γ1 ∈ (0, 1) ,

for all x, y ∈ [a, b∗] .
Here we consider a < b∗ < b.
The specific functions A (x), F (x) will be described next.
I) Let α > 0 and f ∈ L∞ ([a, b]). The right Riemann-Liouville integral [4,

pp. 333–354] is given by

(5.4) (Jαb f) (x) := 1
Γ(α)

∫ b

x
(t− x)α−1 f (t) dt, x ∈ [a, b] .

Then

|(Jαb f) (x)| ≤ 1
Γ(α)

( ∫ b

x
(t− x)α−1 |f (t)| dt

)
≤ 1

Γ(α)

( ∫ b

x
(t− x)α−1 dt

)
‖f‖∞ = 1

Γ(α)
(b−x)α
α ‖f‖∞(5.5)

= (b−x)α
Γ(α+1) ‖f‖∞ = (ξ1) .

Clearly

(5.6) (Jαb f) (b) = 0.

(5.7) (ξ1) ≤ (b−a)α
Γ(α+1) ‖f‖∞ .

That is

(5.8) ‖Jαb f‖∞,[a,b] ≤
(b−a)α
Γ(α+1) ‖f‖∞ <∞,

i.e. Jαb is a bounded linear operator.
By [3] we get that (Jαb f) is a continuous function over [a, b] and in particular

over [a, b∗]. Thus there exist x1, x2 ∈ [a, b∗] such that

(Jαb f) (x1) = min (Jαb f) (x) ,(5.9)
(Jαb f) (x2) = max (Jαb f) (x) , x ∈ [a, b∗] .

We assume that

(5.10) (Jαb f) (x1) > 0.

Hence

(5.11) ‖Jαb f‖∞,[a,b∗] = (Jαb f) (x2) > 0.

Here it is

(5.12) J (x) = mx, m 6= 0.
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Therefore the equation
(5.13) Jf (x) = 0, x ∈ [a, b∗] ,
has the same solutions as the equation

(5.14) F (x) := Jf (x)
2
(
Jαb f

)
(x2) = 0, x ∈ [a, b∗] .

Notice that

(5.15) Jαb

(
f

2
(
Jαb f

)
(x2)

)
(x) = (Jαb f) (x)

2
(
Jαb f

)
(x2) ≤

1
2 < 1, x ∈ [a, b∗] .

Call

(5.16) A (x) := (Jαb f) (x)
2
(
Jαb f

)
(x2) , ∀ x ∈ [a, b∗] .

We notice that

(5.17) 0 < (Jαb f) (x1)
2
(
Jαb f

)
(x2) ≤ A (x) ≤ 1

2, ∀ x ∈ [a, b∗] .

Hence the first condition (5.1) is fulfilled

(5.18) |1−A (x)| = 1−A (x) ≤ 1− (Jαb f) (x1)
2
(
Jαb f

)
(x2) =: γ0, ∀ x ∈ [a, b∗] .

Clearly γ0 ∈ (0, 1) .
Next we assume that F (x) is a contraction, i.e.

(5.19) |F (x)− F (y)| ≤ λ |x− y| ; all x, y ∈ [a, b∗] ,
and 0 < λ < 1

2 .
Equivalently we have

(5.20) |Jf (x)− Jf (y)| ≤ 2λ (Jαb f) (x2) |x− y| , all x, y ∈ [a, b∗] .
We observe that

|F (y)− F (x)−A (x) (y − x)| ≤ |F (y)− F (x)|+ |A (x)| |y − x|
≤ λ |y − x|+ |A (x)| |y − x|
= (λ+ |A (x)|) |y − x|
=: (ψ1) , ∀ x, y ∈ [a, b∗] .(5.21)

We have that

(5.22) |(Jαb f) (x)| ≤ (b− a)α

Γ (α+ 1) ‖f‖∞ <∞, ∀ x ∈ [a, b∗] .

Hence
(5.23)

|A (x)| = |(Jαb f) (x)|
2
(
Jαb f

)
(x2) ≤

(b− a)α ‖f‖∞
2Γ (α+ 1)

((
Jαb f

)
(x2)

) <∞, ∀ x ∈ [a, b∗] .
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Therefore we get

(5.24) (ψ1) ≤
(
λ+ (b− a)a ‖f‖∞

2Γ (α+ 1)
((
Jαb f

)
(x2)

)) |y − x| , ∀ x, y ∈ [a, b∗] .

Call

(5.25) 0 < γ1 := λ+ (b− a)a ‖f‖∞
2Γ (α+ 1)

((
Jαb f

)
(x2)

) ,
choosing (b− a) small enough we can make γ1 ∈ (0, 1), fulfilling (5.2).

Next we call and we need that

(5.26) 0 < γ := γ0 +γ1 = 1− (Jαb f) (x1)
2
(
Jαb f

)
(x2) +λ+ (b− a)a ‖f‖∞

2Γ (α+ 1)
((
Jαb f

)
(x2)

) < 1,

equivalently,

(5.27) λ+ (b− a)a ‖f‖∞
2Γ (α+ 1)

((
Jαb f

)
(x2)

) < (Jαb f) (x1)
2
(
Jαb f

)
(x2) ,

equivalently,

(5.28) 2λ (Jαb f) (x2) + (b− a)a ‖f‖∞
Γ (α+ 1) < (Jαb f) (x1) ,

which is possible for small λ, (b− a). That is γ ∈ (0, 1), fulfilling (5.3). So
our numerical method converges and solves (5.13).

II) Let again a < b∗ < b, α > 0, m = dαe (d·e ceiling function), α /∈ N,
G ∈ Cm−1 ([a, b]), 0 6= G(m) ∈ L∞ ([a, b]). Here we consider the right Caputo
fractional derivative (see [4, p. 337]),

(5.29) Dα
b−G (x) = (−1)m

Γ (m− α)

∫ b

x
(t− x)m−α−1G(m) (t) dt.

By [3] Dα
b−G is a continuous function over [a, b] and in particular continuous

over [a, b∗]. Notice that by [4, p. 358], we have that Dα
b−G (b) = 0.

Therefore there exist x1, x2 ∈ [a, b∗] such that Dα
b−G (x1) = minDα

b−G (x),
and Dα

b−G (x2) = maxDα
b−G (x), for x ∈ [a, b∗].

We assume that
Dα
b−G (x1) > 0.

(i.e. Dα
b−G (x) > 0, ∀ x ∈ [a, b∗]).

Furthermore ∥∥Dα
b−G

∥∥
∞,[a,b∗] = Dα

b−G (x2) .

Here it is
J (x) = mx, m 6= 0.

The equation
JG (x) = 0, x ∈ [a, b∗] ,
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has the same set of solutions as the equation

F (x) := JG (x)
2Dα

b−G (x2) = 0, x ∈ [a, b∗] .

Notice that

Dα
b−

(
G (x)

2Dα
b−G (x2)

)
=

Dα
b−G (x)

2Dα
b−G (x2) ≤

1
2 < 1, ∀ x ∈ [a, b∗] .

We call
A (x) :=

Dα
b−G (x)

2Dα
b−G (x2) , ∀ x ∈ [a, b∗] .

We notice that
0 <

Dα
b−G (x1)

2Dα
b−G (x2) ≤ A (x) ≤ 1

2 .

Hence the first condition (5.1) is fulfilled

|1−A (x)| = 1−A (x) ≤ 1−
Dα
b−G (x1)

2Dα
b−G (x2) =: γ0, ∀ x ∈ [a, b∗] .

Clearly γ0 ∈ (0, 1) .
Next we assume that F (x) is a contraction over [a, b∗], i.e.

|F (x)− F (y)| ≤ λ |x− y| ; ∀ x, y ∈ [a, b∗] ,
and 0 < λ < 1

2 .
Equivalently we have

|JG (x)− JG (y)| ≤ 2λ
(
Dα
b−G (x2)

)
|x− y| , ∀ x, y ∈ [a, b∗] .

We observe that
|F (y)− F (x)−A (x) (y − x)| ≤ |F (y)− F (x)|+ |A (x)| |y − x|

≤ λ |y − x|+ |A (x)| |y − x|
= (λ+ |A (x)|) |y − x|
=: (ξ2) , ∀ x, y ∈ [a, b∗] .

We observe that∣∣Dα
b−G (x)

∣∣ ≤ 1
Γ(m−α)

∫ b

x
(t− x)m−α−1 ∣∣G(m) (t)

∣∣dt
≤ 1

Γ(m−α)

( ∫ b

x
(t− x)m−α−1 dt

)∥∥G(m)∥∥
∞

= 1
Γ(m−α)

(b−x)m−α

(m−α)
∥∥G(m)∥∥

∞

= 1
Γ(m−α+1) (b− x)m−α

∥∥G(m)∥∥
∞ ≤

(b−a)m−α

Γ(m−α+1)
∥∥G(m)∥∥

∞.

That is ∣∣Dα
b−G (x)

∣∣ ≤ (b−a)m−α

Γ(m−α+1)‖G
(m)‖∞ <∞, ∀ x ∈ [a, b] .
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Hence, ∀ x ∈ [a, b∗] we get that

|A (x)| =

∣∣∣Dα
b−G (x)

∣∣∣
2Dα

b−G (x2) ≤
(b− a)m−α

2Γ (m− α+ 1)

∥∥G(m)∥∥
∞

Dα
b−G (x2) <∞.

Consequently we observe

(ξ2) ≤
(
λ+ (b− a)m−α

2Γ (m− α+ 1)
‖G(m)‖∞
Dα
b−G (x2)

)
|y − x| , ∀ x, y ∈ [a, b∗] .

Call

0 < γ1 := λ+ (b− a)m−α

2Γ (m− α+ 1)
‖G(m)‖∞
Dα
b−G (x2) ,

choosing (b− a) small enough we can make γ1 ∈ (0, 1). So (5.2) is fulfilled.
Next we call and need

0 < γ := γ0 + γ1 = 1−
Dα
b−G (x1)

2Dα
b−G (x2) + λ+ (b− a)m−α

2Γ (m− α+ 1)
‖G(m)‖∞
Dα
b−G (x2) < 1,

equivalently we find,

λ+ (b− a)m−α

2Γ (m− α+ 1)
‖G(m)‖∞
Dα
b−G (x2) <

Dα
b−G (x1)

2Dα
b−G (x2) ,

equivalently,

2λDα
b−G (x2) + (b− a)m−α

Γ (m− α+ 1)‖G
(m)‖∞ < Dα

b−G (x1) ,

which is possible for small λ, (b− a).
That is γ ∈ (0, 1), fulfilling (5.3). Hence equation (5) can be solved with

our presented numerical methods.
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