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MULTICENTRIC CALCULUS AND THE RIESZ PROJECTION

DIANA APETREI∗ and OLAVI NEVANLINNA∗

Abstract. In multicentric holomorphic calculus one represents the function ϕ
using a new polynomial variable w = p(z) in such a way that when it is evaluated
at the operator A, then p(A) is small in norm. Usually it is assumed that p has
distinct roots. In this paper we discuss two related problems, the separation of
a compact set (such as the spectrum) into different components by a polynomial
lemniscate, respectively the application of the Calculus to the computation and
the estimation of the Riesz spectral projection. It may then become desirable
the use of p(z)n as a new variable. We also develop the necessary modifications
to incorporate the multiplicities in the roots.
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1. INTRODUCTION

Let p(z) be a polynomial of degree d with distinct roots λ1, . . . , λd. In
multicentric holomorphic calculus the polynomial is taken as a new variable
w = p(z) and functions ϕ(z) are represented with the help of a vector-valued
function f , mapping w 7→ f(w) ∈ Cd, [9]. For example, sets bounded by
lemniscates |p(z)| = ρ are then mapped onto discs |w| ≤ ρ and for ρ small, f
has a rapidly converging Taylor series.

The multicentric representation then yields a functional calculus for oper-
ators (or matrices) A, if one has found a polynomial p such that ‖p(A)‖ is
small. In fact, denote

Vp(A) =
{
z ∈ C : |p(z)| ≤ ‖p(A)‖

}
and observe that, by spectral mapping theorem, the spectrum σ(A) satisfies
σ(A) ⊂ Vp(A). If f has a rapidly converging Taylor series for |w| ≤ ‖p(A)‖,
then ϕ(A) can be written down by a rapidly converging explicit series expan-
sion.

Since Vp(A) can have several components, one can define ϕ = 1 in the neigh-
borhood of some components, while ϕ = 0 in a neighborhood of the others.
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Then ϕ(A) represents the spectral projection onto the invariant subspace cor-
responding to the part of the spectrum where ϕ = 1. The spectral projection
satisfies

ϕ(A) = 1
2πi

∫
γ
(λI −A)−1dλ,

where γ surrounds the appropriate components of the spectrum, but the com-
putational approach does not need the evaluation of the contour integral. The
coefficients for the Taylor series of f can be computed with explicit recursion
from those of ϕ at the local centers λj [9]. The approach also yields a bound
for ‖ϕ(A)‖ by a generalization of the von Neumann theorem for contractions,
see [7]. If the scalar function ϕ is not holomorphic at the spectrum, the multi-
centric calculus leads to a new functional calculus to deal with, e.g. nontrivial
Jordan blocks [10].

In this paper we take a closer look at the computation of spectral projections
in finding the stable and unstable invariant subspaces of an operator A. The
direct approach would be to ask for a polynomial p with distinct roots such
that

Vp(A) ∩ iR = ∅
and then apply the calculus with ϕ = 1 for Re z > 0, respectively ϕ = 0
for Re z < 0. However, we discuss this as two different subjects, one being
the separation of the spectrum and the other being the computation of the
projection.

In order to discuss the separation, we denote

V (p, ρ) = {z ∈ C : |p(z)| ≤ ρ}

and we let K = σ(A), then we ask what is the minimal degree of a polynomial
such that

(1.1) K ⊂ V (p, ρ) and V (p, ρ) ∩ iR = ∅.

holds. By Hilbert’s lemniscate theorem, see e.g. [12], such a polynomial with a
minimal degree always exists. We model this question by considering in place
of σ(A) two lines parallel to the imaginary axis as follows

K =
{
z = x+ iy : x ∈ {−1, 1}, |y| ≤ tan(α)

}
and derive a sample of polynomials for which (1.1) holds when α grows. For
α < π/4, the minimal degree is clearly 2 but in general we are not able to
prove exact lower bounds.

Whenever (1.1) holds, then the series expansion of f representing ϕ = 1 for
Re z > 0 and ϕ = 0 for Re z < 0 converges in p(K), and if σ(A) ⊂ K then we
do obtain a convergent expresion for the projection onto to unstable invariant
subspace. However, whenever p(A) would be nonnormal, it could happen that
Vp(A) ∩ iR 6= ∅, and then we would not get a bound for the projection by the
generalization of von Neumann theorem. To overcome this, note that from the
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spectral radius formula r(B) = lim ‖Bn‖1/n in such a case, there does exist an
integer n such that with q = pn we have Vq(A) ∩ iR = ∅.

This leads to the other topic discussed in this paper. With q = pn, the
new variable there are no longer simple zeros and we shall therefore derive
the multicentric representations needed in this case. This is done in Section
2 while the model problem is discussed in Section 3. In Section 4 we present
concluding remarks and in the end we discuss a nonnormal small dimensional
problem with q(z) = (z2 − 1)n.

2. REPRESENTATIONS AND MAIN ESTIMATES

2.1. Formulas and estimates. We need the basic formula for expressing a
given function ϕ(z) as a linear combination of functions fj,k(wn) when w =
p(z), for n a given positive integer.

Let p(z) be the monic polynomial of degree d with distinct roots λ1, . . . , λd.
We denote by δk ∈ Pd−1 the Lagrange interpolation basis polynomials at λj

δk(λ) = 1
p′(λk)

∏
j 6=k

(λ− λj).

Then the multicentric representation of ϕ takes the form

(2.1) ϕ(z) =
d∑
j=1

δj(z)fj(w), where w = p(z)

and fj ’s are obtained from ϕ with the formula [7]

(2.2) fj(w) =
d∑
l=1

δl(λj , w)ϕ(ζl(w)),

where ζl(w) denote the roots of p(λ)− w = 0 and

δl(λ,w) = p(λ)− w
p′(ζl(w))(λ− ζl(w)) .

When ϕ is holomorphic, f can also be computed from the Taylor coefficients
of ϕ at the local centers λj . In fact,

fj(w) =
∞∑
n=0

1
n!f

(n)
j (0)wn,

where f (n)
j (0) can be computed recursively:

(p′(λj))nf (n)
j (0) =

(2.3)

= ϕ(n)(λj)−
d∑

k=1

n−1∑
m=0

(n
m

)
δ

(n−m)
k (λj)

m∑
l=0

bml(λj)f
(l)
k (0)−

n−1∑
l=0

bnl(λj)f
(l)
j (0).
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Here the polynomials bnm are determined by

bn+1,m = bn,m−1p
′ + b′nm

with bn0 = 0, b1,1 = p′ and bnm = 0 for m > n, see Proposition 4.3 in [9].

Remark. Erratum: the last term on the right of (2.3) is missing from the
formula (4.2) of [9]. �

Since the computations for fj ’s are done with power series, we can move to
p(z)n = wn, because the expansions are done for that variable. Therefore we
formulate the next theorem.

Theorem 2.1. Suppose p has simple zeros and assume ϕ is holomorphic in
a neighborhood of V (p, ρ) = {z ∈ C : |p(z)| ≤ ρ} and given in the form

ϕ(z) =
d∑
j=1

δj(z)fj(w), where w = p(z).

Then

ϕ(z) =
d∑
j=1

δj(z)[fj,0(wn) + · · ·+ wn−1fj,n−1(wn)],

where fj,k are holomorphic in a neighborhood of the disc |w| ≤ ρ and given by

wkfj,k(wn) = 1
n

{
fj(w)+e−2πik/nfj(e2πi/nw)+· · ·+e−2πi(n−1)k/nfj(e2πi(n−1)/nw)

}
.

In order to prove this, we consider a fixed function fj and put g = fj . Then
we set

wkgk(wn) = 1
n

{
g(w)+e−2πik/ng(e2πi/nw)+ · · ·+e−2πi(n−1)k/ng(e2πi(n−1)/nw)

}
pointwise.

Proposition 2.2. Given an arbitrary n ∈ N and the functions gi, i =
0, . . . , n− 1, for all w ∈ C we have:

g(w) = g0(wn) + wg1(wn) + · · ·+ wn−1gn−1(wn).

Proof. Using the above formula of gk(wn), for k = 0, 1, . . . , n− 1, we have
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g0(wn) = 1
n

{
g(w) + g(e2πi/nw) + g(e4πi/nw) + · · ·+ g(e2πi(n−1)/nw)

}
wg1(wn) = 1

n

{
g(w) + e−2πi/ng(e2πi/nw) + e−4πi/ng(e4πi/nw) + . . .

+ e−2πi(n−1)/ng(e2πi(n−1)/nw)
}

w2g2(wn) = 1
n

{
g(w) + e−4πi/ng(e2πi/nw) + e−8πi/ng(e4πi/nw) + . . .

+ e−4πi(n−1)/ng(e2πi(n−1)/nw)
}

. . .

wn−1gn−1(wn) = 1
n

{
g(w) + e−2πi(n−1)/ng(e2πi/nw) + e−4πi(n−1)/ng(e4πi/nw)

+ · · ·+ e−2πi(n−1)2/ng(e2πi(n−1)/nw)
}
.

Summing up all the terms we get

1
nng(w) + 1

ng(e2πi/nw)
n−1∑
k=0

e−2πik/n + 1
ng(e4πi/nw)

n−1∑
k=0

e−4πik/n + . . .

+ 1
ng(e2πi(n−2)/nw)

n−1∑
k=0

e−2πi(n−2)k/n + 1
ng(e2πi(n−1)/nw)

n−1∑
k=0

e−2πi(n−1)k/n

= g(w)

since all the other terms sum up to zero. �

Proof of Theorem 2.1. It follows now immediately from Proposition 2.2 to-
gether with the following proposition. �

Proposition 2.3. If fj is given for |p(z)| ≤ ρ, then fj,k, k = 1, . . . , n− 1,
are defined for |p(z)n| ≤ ρn and

(2.4) fj(p(z)) =
n−1∑
k=0

p(z)kfj,k(p(z)n), for |p(z)| ≤ ρ.

Further, if fj(p(z)) is analytic for |p(z)| ≤ ρ then so are fj,k(p(z)n).

Proof. First part is proved in Proposition 2.2.
For the second part, we assume fj analytic, thus it can be written as a

power series

(2.5) fj(p(z)) =
∞∑
m=0

αmp(z)m.
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We know that pointwise we have

p(z)kfj,k(p(z)n) = 1
n

[
fj(p(z)) + e−2πik/nfj(e2πi/np(z)) + . . .

+e−2πi(n−1)k/nfj(e2πi(n−1)/np(z))
]
.(2.6)

When we substitute (2.5) in (2.6), we get
fj,0(p(z)n) =

= 1
n

[
α0 + α1p(z) + α2p(z)2 + · · ·+ αnp(z)n + . . .

+ α0 + e2πi/nα1p(z) + e4πi/nα2p(z)2 + · · ·+ αnp(z)n + . . .

+ . . .

+ α0 + e2πi(n−1)/nα1p(z) + e4πi(n−1)/nα2p(z)2 + · · ·+ αnp(z)n + . . .
]
.

Thus fj,0(p(z)n) = α0 +αnp(z)n+α2np(z)2n+ . . . , since all the other terms
vanish.

We continue with p(z)fj,1(p(z)n), so we get

p(z)fj,1(p(z)n) = 1
n

[
α0 + α1p(z) + α2p(z)2 + · · ·+ αnp(z)n + . . .

+ e−2πi/nα0 + α1p(z) + e2πi/nα2p(z)2

+ · · ·+ e2πi(n−1)/nαnp(z)n + αn+1p(z)n+1 + . . .

+ . . .

+ e−2πi(n−1)/nα0 + α1p(z) + e2πi(n−1)/nα2p(z)2

+ · · ·+ e2πi(n−1)2/nαnp(z)n + αn+1p(z)n+1 + . . .
]
.

Therefore fj,1(p(z)n) = α1p(z) + αn+1p(z)n+1 + α2n+1p(z)2n+1 + . . . .
In a similar way it follows that
(2.7) p(z)kfj,k(p(z)n) = αkp(z)k + αn+kp(z)n+k + α2n+kp(z)2n+k + . . .

Because all the coefficients αmk
, for mk = k, n+ k, 2n+ k, 3n+ k, . . . , come

from fj which is analytic, we know that lim sup |αmk
|1/mk ≤ 1

ρ , therefore we
have that p(z)kfj,k(p(z)n) is analytic, i.e. a converging power series.

Now, if we factor (2.7)

p(z)kfj,k(p(z)n) = p(z)k
[
αk + αn+kp(z)n + α2n+kp(z)2n + . . .

]
we have that

fj,k(p(z)n) = αk + αn+kp(z)n + α2n+kp(z)2n + . . .

is a converging power series, thus is analytic for |p(z)n| ≤ ρn.
�

Next we need to be able to bound ϕ in terms of fj,k’s and vice versa. The first
one is straightforward.
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Proposition 2.4. Denote L(ρ) = sup|p(z)|≤ρ
∑d
j=1 |δj(z)|. Then

sup
|p(z)|≤ρ

|ϕ(z)| ≤ L(ρ) max
1≤j≤d

n−1∑
k=0

sup
|w|≤ρ

|wkfj,k(wn)|.

The other direction is more involved and we formulate it in the following
theorem.

Theorem 2.5. Assume p is a monic polynomial of degree d with distinct
roots and s(ρ) denotes the distance from the lemniscate |p(z)| = ρ to the nearest
critical point of p, zc, such that |p(zc)| > ρ . Then there exists a constant C,
depending on p but not on ρ, such that if ϕ is holomorphic inside and in a
neighborhood of the lemniscate, then each fj,k is holomorphic for |w| ≤ ρ and
for |w| ≤ ρ, 1 ≤ j ≤ d, 0 ≤ k ≤ n− 1, we have
(2.8) |wkfj,k(wn)| ≤

(
1 + C

sd−1

)
sup
|p(z)|≤ρ

|ϕ(z)|.

For the proof of this statement we need some lemmas. The aim is to bound
the representing functions fj,k in terms of the original function ϕ. To that end
we first quote the basic result of bounding fj in terms of ϕ and then proceed
bounding fj,k in terms of fj .

Lemma 2.6. (Theorem 1.1 in [7]) Suppose ϕ is holomorphic in a neighbor-
hood of the set {ζ : |p(ζ)| ≤ ρ} and let s be as in Theorem 2.5. There exists a
constant C, depending on p but independent of ρ and ϕ, such that

sup
|w|≤ρ

|fj(w)| ≤
(
1 + C

sd−1

)
sup
|p(z)|≤ρ

|ϕ(z)|, for all j = 1, . . . , d.

Lemma 2.7. In the notation above we have
sup
|w|≤ρ

|wkgk(wn)| ≤ sup
|w|≤ρ

|g(w)|.

Proof. We have
wkgk(wn) = 1

n{g(w)+e−2πik/ng(e2πi/nw)+ · · ·+e−2πi(n−1)k/ng(e2πi(n−1)/nw)}.
The bound follows by taking the absolute values termwise. �

Proof of Theorem 2.5. The proof follows immediately from these two lemmas.
�

Remark 2.8. Gauss-Lucas theorem asserts that given a polynomial p with
complex coefficients, all zeros of p′ belong to the convex hull of the set of zeros
of p, see [3]. Thus, as soon as ρ is large enough, all the critical points will stay
inside the lemniscate whenever the lemniscate is just a single Jordan curve.
But when we want to make the separation, we start squeezing the level of
the lemniscate and this results in leaving at least one critical point outside.
Therefore the s we are measuring is the distance to the boundary from that
particular critical point.
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If the critical points of p are simple (as they generically are) then the depen-
dency of the distance is inverse proportional and the coefficient in the theorem
takes the form (

1 + C
s

)
. �

To see how one can find these constants C and what they describe we will
present an example with the computations of δl(λj , w) for p(z) = z4 +1. These
computations will be used in computing the constants. We also apply them
for the Riesz projections.

Example 2.9. Let p(z) = z4 + 1 with roots λ1 = (−1)1/4, λ2 = (−1)3/4,
λ3 = −(−1)1/4 and λ4 = −(−1)3/4. Let w = z4 + 1. Using the formula for
δl(λj , w) we have:

δ1(λ1, w) = 1 + 3
8w + 19

64w
2 + 33

128w
3 + . . .

δ1(λ2, w) = −1+i
8 w − 3+4i

32 w2 − 20+31i
256 w3 + . . .

δ1(λ3, w) = −1
8w −

7
64w

2 − 13
128w

3 + . . .

δ1(λ4, w) = −1−i
8 w − 3−4i

32 w2 − 20−31i
256 w3 + . . .

δ2(λ1, w) = −1
8w −

7
64w

2 − 13
128w

3 + . . .

δ2(λ2, w) = −1−i
8 w − 3−4i

32 w2 − 20−31i
256 w3 + . . .

δ2(λ3, w) = 1 + 3
8w + 19

64w
2 + 33

128w
3 + . . .

δ2(λ4, w) = −1+i
8 w − 3+4i

32 w2 − 20+31i
256 w3 + . . .

δ3(λ1, w) = −1−i
8 w − 3−4i

32 w2 − 20−31i
256 w3 + . . .

δ3(λ2, w) = 1 + 3
8w + 19

64w
2 + 33

128w
3 + . . .

δ3(λ3, w) = −1+i
8 w − 3+4i

32 w2 − 20+31i
256 w3 + . . .

δ3(λ4, w) = −1
8w −

7
64w

2 − 13
128w

3 + . . .

δ4(λ1, w) = −1+i
8 w − 3+4i

32 w2 − 20+31i
256 w3 + . . .

δ4(λ2, w) = −1
8w −

7
64w

2 − 13
128w

3 + . . .

δ4(λ3, w) = −1−i
8 w − 3−4i

32 w2 − 20−31i
256 w3 + . . .

δ4(λ4, w) = 1 + 3
8w + 19

64w
2 + 33

128w
3 + . . .

where ζl(w), for l = 1, 4, are given by ζ1(w) = (w−1)1/4, ζ2(w) = −(w−1)1/4,
ζ3(w) = i(w − 1)1/4 and ζ4(w) = −i(w − 1)1/4. �

Remark 2.10. From Lemma 2.6 we see that

(2.9) |δ(m)
l (λk, w)|∼ Cm

sm+1 .

where m is the multiplicity of the nearest critical point of p outside the lem-
niscate. �
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To be able to compute the constants C from equation (2.9) for polynomials
of degree d ≥ 4, we need to separate the spectrum by perturbing the roots
with an angle ε small enough and by dropping the magnitude ρ below 1. The
perturbations for polynomials of degree 4, 6, 8, 10, 12 and 14 are described in
the next section.

Note that before the perturbation we have multiple critical points, all inside
the lemniscate, except for 0, which is on the level curve. After we perturb the
roots, one critical point is left outside the lemniscate, while all the others
remain inside. Therefore, in our case, the multiplicity m is zero.

From now on we will choose a random value for ε to make some experimental
computations. All the computations below will work properly for any other
random value ε small enough that ensures the desired separation.

Now, if we choose a random perturbation with, for example, ε = π/70, we
get the following values for the constant C

Degree 4 6 8 10 12 14
Constant C 576.4344 1.4665 8.0721 2.2754 12.8520 4.0475

Table 2.1. The constant C.

The computations for
∑
|δl(λk, w)| were made with Mathematica and the

values for s, the smallest distance from the lemniscate to the nearest critical
point, were computed with the help of Tiina Vesanen that provided a Matlab
program. The codes can be found in the appendix of [1], which is a preprint
version on this article, that contains in appendix material which is not included
in this paper. For all these computations one has to choose a value for the
level ρ, smaller than 1. If one chooses level ρ = 1, then the value for s will be
zero, since the lemniscate passes through origin. Therefore we have chosen the
minimum value for the level ρ such that the lemniscate separates only in two
parts when having a perturbation with ε = π/70. Hence we have registered
the following data

Degree 4 6 8 10 12 14∑
|δl(λk, w)| 2293.81 6.5122 46.6599 16.3586 83.4547 16.7046

s 0.2513 0.2252 0.1730 0.1391 0.1540 0.2423

Table 2.2. Experimental values which help in computing the constant
C in Table 2.1.

From the table of constants C one can see that the lemniscate bifurcates
differently even with a small ε.

Remark 2.11. For the quadratic polynomial p(z) = z2 − 1, one does not
need to perturb the roots, but just to decrease the magnitude of ρ below 1. In
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this case, for example, if the level is ρ = 0.9 then one gets C = 0.2, while if
the level is ρ = 0.99 then C = 0.6956. �

2.2. Application to Riesz projection. Let A be a bounded operator in a
Hilbert space such that

Vpn(A) = {z : |p(z)n| ≤ ‖p(A)n‖}.
In order to compute the Riesz projection we take ϕ = 1 in one of the compo-
nents and ϕ = 0 in the other components of Vpn(A) and

fj(p(z)) =
n−1∑
k=0

p(z)kfj,k(p(z)n).

We shall apply the following theorem, if ϕ is holomorphic in a neighbour-
hood of the unit disk D and A ∈ B(H), then
(2.10) ‖ϕ(A)‖ ≤ sup

D
|ϕ|,

see e.g. [11].
From Theorem 2.5 we have for |p(z)| ≤ ρ that

(2.11) |p(z)kfj,k(p(z)n)| ≤
(
1 + C

sd−1

)
sup
|p(z)|≤ρ

|ϕ(z)|,

and since fj,k are analytic, we can apply (2.10) to each of them, so with
ρ = ‖p(A)n‖1/n

(2.12) ‖fj,k(p(A)n)‖ ≤ sup
|p(z)|≤ρ

|fj,k(p(z)n)|.

We have,
‖p(A)kfj,k(p(A)n)‖ ≤ ‖p(A)k‖‖fj,k(p(A)n)‖

and from (2.12) we get
‖p(A)kfj,k(p(A)n)‖ ≤ ‖p(A)k‖ sup

|p(z)|≤ρ
|fj,k(p(z)n)|.

By the Maximum principle we see that
‖p(A)k‖ sup

|p(z)|≤ρ
|fj,k(p(z)n)| = ‖p(A)k‖ρ−k sup

|p(z)|≤ρ
|p(z)kfj,k(p(z)n)|.

Therefore, by (2.11), we have

‖p(A)kfj,k(p(A)n)‖ ≤ ‖(p(A)/ρ)k‖
(
1 + C

sd−1

)
sup
|p(z)|≤ρ

|ϕ(z)|.

Substituting now in the decomposition (2.1), ϕ(A) becomes the Riesz pro-
jection and it is bounded by

(2.13) ‖ϕ(A)‖ ≤

(1 + C
sd−1

)
‖p(A)k‖
ρk

d∑
j=1
‖δj(A)‖

 sup
|p(z)|≤ρ

|ϕ(z)|.

Thus we have proven the following theorem.
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Theorem 2.12. Given a polynomial p of degree d, with distinct roots and a
bounded operator A in a Hilbert space, we assume that the "expression"

Vpn(A) = {z : |p(z)n| ≤ ‖p(A)n‖}
has at least two components. Set ρ = ‖p(A)n‖1/n and let ϕ be a function such
that ϕ = 1 in one component of Vpn(A) and ϕ = 0 in the others. Let s be the
distance from the nearest outside critical point to the boundary of Vpn(A).

Then, considering fj,k as given by Theorem 2.1, one has

ϕ(A) =
d∑
j=1

δj(A)
n−1∑
k=0

p(A)kfj,k(p(A)n),

which is the Riesz spectral projection onto the invariant subspace corresponding
to the spectrum inside the component where ϕ = 1.

The bound for the norm of ϕ(A) is given by (2.13).
Remark 2.13. In applications we will consider ϕ = 1 in the components

of Vpn(A) that are on the right complex half-plane and ϕ = −1 in the com-
ponents on the left complex half-plane. This way the computations are more
symmetrical. In this situation there is only one critical point at the origin,
which is simple, so we will have

(
1 + C

s

)
in the formula for the bound of the

Riesz projection. �

3. SEPARATING POLYNOMIALS

3.1. Separation tasks. In this section we shall discuss separating issues by
lemniscates. To that end, given a polynomial p denote by V (p, ρ) the set

V (p, ρ) = {z ∈ C : |p(z)| ≤ ρ}.
A key result in this context is the following. Let K ⊂ C be compact and such
that C \K is connected. For δ > 0 denote further

K(δ) = {z : dist(z,K) < δ}.
Then there exists a polynomial p and ρ > 0 such that

K ⊂ V (p, ρ) ⊂ K(δ).
In particular, if K = K1 ∪K2 and K1 ∩K2 = ∅ since K is compact, then for
small enough δ

K1(δ) ∩K2(δ) = ∅
as well. Thus, V (p, ρ) separates the components K1 and K2 respectively.
Suppose that we have two analytic functions ϕj , each analytic in Kj(δ). We
can view them as just one analytic function

ϕ : K(δ)→ C,
where ϕ agrees to ϕj on Kj(δ). We are interested in particular in the case
where ϕj is constant. Multicentric representation then gives a power series
which is simultaneously valid in both components.
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So, we can ask, for such a separation task what is the smallest degree of a
polynomial achieving this.

We model this as follows: Let
K1(δ) = {z = 1 + iy : |y| ≤ tan(δ)}

and K2(δ) symmetrically on the other side of the imaginary axis:
K2(δ) = {z = −1 + iy : |y| ≤ tan(δ)}

Our first problem concerns the minimal degree of a polynomial p such that
Kj(δ) ⊂ V (p, ρ)

and
V (p, ρ) ∩ iR = ∅.

This is discussed in the next subsection.
Another natural task is related to existence of a logarithm. So, C is again

compact and we assume 0 /∈ C. Now there exists a single valued logarithm
in C if and only if 0 is in the unbounded component of the complement of
C. That is, the set C does not separate origin from infinity. The natural task
here is to find a polynomial p such that

C ⊂ V (p, ρ)
and

0 /∈ V (p, ρ).
As V (p, ρ) is polynomially convex, this suffices for representing the logarithm
in V (p, ρ).

3.2. Model problem. Let p(z) = zd − 1 be a monic polynomial of complex
variable z, with |p(z)| = 1. The polynomial p can be written as

p(z) =
d∏
j=1

(z − eiθj )

where eiθj are the roots of p and θj are the angles of the roots. For d = 4m,
m ≥ 1 we have

p(z) =
m∏
j=1

(z − eiθj )
m∏
j=1

(z − e−iθj )
m∏
j=1

(z + eiθj )
m∏
j=1

(z + e−iθj ).

We are interested to separate the spectrum of p, as discussed earlier in this
paper. In this sense, we first check if there are roots laying on the imaginary
axis. If so, a rotation with angle π/d is applied so that no roots touch iR.

Next we perturb the roots as follows: the four roots that are closest to the
imaginary axis (complex roots) are moved along the unit circle towards the
real axis with small angle ε. Then the level ρ is slightly decreased with η. This
approach is used for polynomials of degree d ≥ 4. The quadratic polynomial
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case is shortly discussed below and cubic polynomial case is presented as a
first example.

To this end we have to find the maximum η for a chosen ε so that the
spectrum gets separated in only two parts, one on the right hand side of the
imaginary axis and one on the left hand side. Also we can find the maximum
angle α (see Figure 3.1) such that the spectrum will lay inside our lemniscate.

Fig. 3.1. Level 0.996.

Now we analyze some cases. The quadratic polynomial, p(z) = z2−1 is the
classical lemniscate and for this one just has to decrease the magnitude ρ to
below 1. No perturbation of the roots is needed. For a decrease with η = 0.01
of the level we get the picture from Figure 3.2:
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Fig. 3.2. Level 0.99.
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Example 3.1. Let p(z) = z3− 1 with roots e2πi/3, e−2πi/3 and 1. We apply
a perturbation with ε to the complex roots and we get

pε(z) = (z − ei(2π/3+ε))(z − e−i(2π/3+ε))(z − 1).
Thus the lemniscate is |pε(z)| = 1 − η. For ε = π/70 the resulted picture is
shown in Figure 3.3. �
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Fig. 3.3. Separation of the cubic polynomial.

Example 3.2. Let p(z) = z4 − 1. Since there are roots on the imaginary
axis, we have to apply a rotation with π/4. Thus our polynomial becomes
p(z) = z4 + 1.

Then
p(z) = (z − eiθ)(z − e−iθ)(z + eiθ)(z + e−iθ)

where θ = π/4, so we have
(3.1) p(z) = (z2 − e2iθ)(z2 − e−2iθ) = z4 − 2 cos(2θ)z2 + 1.
Next, we decrease the angle θ with ε small enough and denote the new angle
θε = θ − ε. For the polynomial with perturbed θ we compute the lemniscate.

We have that
e2iθε = e2iθ−2iε = eiπ/2−2iε

= i(1− 2iε− 2ε2 + . . . ) = 2ε+ i(1− 2ε2 + . . . ).
For z = t ∈ R

|pθε(t)| = |t2 − 2ε+ i(−1 + 2ε2 + . . . )|2

= t4 − 4t2ε+ 1 + o(ε2).(3.2)
For z = it ∈ C

|pθε(it)| = |(it)2 − 2ε+ i(−1 + 2ε2 + . . . )|2

= t4 − 4t2ε+ 1 + o(ε2).
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We write t = z = x+ iy in (3.2) and compute the lemniscate l : |pε(z)| = 1−η,
where pε(z) = z4 − 2 cos(2θε)z2 + 1 from (3.1). Thus

l : (x2 + y2)4 + 2(x2 + y2)2 − 16x2y2 + 16ε2(x2 + y2)2

− 8ε(x6 + x4y2 − x2y4 − y6 + x2 − y2) = 0.
For ε = π/70 the results are shown in Figure 3.4. �
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Fig. 3.4. Separation of the quartic polynomial.

Similar computations were made for polynomials of degree 6, 8, 10, 12 and
14, and these can be seen in [1].

Remark 3.3. The goal was to find the maximum angle α such that the
spectrum lays inside the lemniscate. For this, one can compute the ratio a/b,
where a and b are the length of the lines a and b from Figure 3.5 below, and
hence the angle α is

α = arctan(a/b).

Note that, for a minimum level one might have that the line a cuts the
lemniscate, situation that happens even for a slightly perturbation of the level
in all the cases with polynomials of degree d ≥ 6. Therefore, one has to consider
a smaller angle.
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Fig. 3.5. Ratio and angle α.

For a minimum level ρ of the lemniscate and a perturbation with ε = π/70
we have the values for the ratio from Table 3.1 or from the chart in Fig. 3.6.

Degree 4 Degree 6 Degree 8 Degree 10 Degree 12 Degree 14
a 0.5637 0.9040 0.9905 1.0043 0.9973 0.9846
b 0.3090 0.3767 0.3790 0.3624 0.3402 0.3176

a/b 1.8242 2.3997 2.6134 2.7712 2.9315 3.1001

Table 3.1. Ratio.

Fig. 3.6. Ratio chart.

The maximum angle α that we have found is presented in the chart from
Figure 3.7. �
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Fig. 3.7. Maximum angle α.

Remark 3.4. The quadratic polynomial is a special case since the only
perturbation applied is decreasing the level. In this case, the maximum angle
is when the level ρ is unchanged, in this case α = 45◦ and the minimum angle
goes to 0◦ when the level is significantly decreased with η = 0, 99. For a slightly
change with η = 0.01 we have found an angle of 29.92◦ and for a change with
η = 0.1 we have registered an angle of 26.57◦. �

Remark 3.5. For polynomials of degree d ≥ 4, it is easy to check the
maximum value of η, i.e. the minimum value that the level can have, such
that we get the desired separation. For example, if again the perturbation is
ε = π/70 we get the values from Table 3.2.

Degree 4 6 8 10 12 14
η 0.008 0.0078 0.0038 0.0021 0.0022 0.0045

Table 3.2. Maximum change η of the level ρ.

With these values the lemniscate squeezes next to the closest critical point
to the perturbed root. A bigger decrease of the level would force that critical
point to get out from the interior of the lemniscate and thus one doesn’t get
the desired separation. These estimates may not be the best but they are
what we have reached by manipulating the pictures and the resulting pictures
can be seen in [1]. �

4. CONCLUDING REMARKS

In Section 2 we presented the closed formula and the bound for the Riesz
projection, in Section 3 we described the separation process and in this section
one can see how the expansions on the Riesz projection look like when taking
ϕ = 1 for the components on the right side of the imaginary axis and ϕ = −1
for the ones on the left side. We will finish this paper with an example that
shows what the effects are on the Riesz projection.
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In the appendices of [1] one can find applications that explicitly compute
the series expansions for fj ’s in the decomposition

ϕ(z) =
d∑
j=1

δj(z)fj(w), w = p(z),

when ϕ is identically 1 on the right half plane and −1 on the left half plane,
for the quadratic, the quartic, the perturbed quartic polynomial and the poly-
nomial q(z) = p(z)n = (z2 − 1)n, respectively.

Remark 4.1. In using multicentric calculus a central problem is to find
a polynomial p such that p(A) has small norm and, when aiming for Riesz
projection, that the lemniscate on the level of ‖p(A)‖ separates the spectrum
into different components. This can be done, for example, by minimizing
‖p(A)‖ approximately over a set of polynomials, or, by using a suitable p
which has been computed for a neighbouring matrix.

Alternatively, and that is the main topic here, one search for polynomials
p such that it is small in a neighbourhood of the spectrum of A. And then
computes high enough power p(A)2m such that ‖p(A)2m‖1/2m ∼ ρ(p(A)). �

In the following example we point out with the help of a low-dimensional
problem, how the size of coupling can affect on the need of taking a high power
of p(A).

Example 4.2. Let

(4.1) A =
(
B X
0 −B

)
be a 4× 4 matrix where

(4.2) B =
(
α 1
0 α

)
and

(4.3) X =
(

0 γ
γ 0

)
.

In this example we could take p(z) = z2−α2 to actually get a closed form for
the projection. However, we take p(z) = z2 − 1 as our polynomial and then
the effect of α > 0 being close or further away from 1 models the lack of exact
knowledge on the spectrum. We are interested in having ‖p(A)n‖ < 1 and ask
how the parameters α and γ contribute to the value of n needed. Qualitatively
it is clear that such an n exists if and only if α <

√
2, independently of γ.

Substituting A into p we have

p(A) =
(
C Y
0 C

)
,
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where
C =

(
α2 − 1 2α

0 α2 − 1

)
and

Y =
(
γ 0
0 −γ

)
.

A short computation shows that

p(A)n =
(
Cn n(α2 − 1)n−1Y
0 Cn

)
.

Thus, we have

‖p(A)n‖ ∼ |α2 − 1|n−1
[
|α2 − 1|+ n(|α|+ |γ|)

]
,

so that if |α2 − 1| � 1 then a small n shall work. If however, |α2 − 1| = 1− ε
with 0 < ε � 1, modelling the case when e.g. spectrum of A is scattered
inside the lemniscate, then the behavior is of the nature

‖p(A)n‖ ∼ (1− ε)n(n+ 1),
which becomes below 1 only for n� 1/ε. �
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