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Abstract. The paper deals with existence, uniqueness and spline approximation
of solutions to boundary value problems for delay integro-differential equations.
An iterative approximation scheme based on the use of cubic splines with defect
two is presented, and sufficient conditions for its convergence are obtained.
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1. INTRODUCTION

Dynamic processes in many applied problems are described by delay dif-
ferential and integral equations (Andreeva, Kolmanovsky and Shayhet 1992).
An analytical solution of such equation exists only in the simplest cases, so
the construction and study of approximate algorithms for solutions of these
equations are important.

In the present note we study an approximate method of solving boundary
value problems for delay integro-differential equations based on approximation
of the solution by cubic splines with defect two.

Existence and uniqueness of a solution of delay boundary value problems
in various function spaces were considered by Grim and Schmitt (1968), Ka-
mensky and Myshkis (1972), Biga and Gaber (2007), Athanasiadou (2013).
Applying spline functions for solving differential-difference equations was in-
vestigated by Nikolova and Bainov (1981), Cherevko and Yakimov (1989),
Nastasyeva and Cherevko (1999).
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2. PROBLEM STATEMENT. EXISTENCE OF A SOLUTION

Let us consider the following boundary value problem

y′′ (x) = f
(
x, y (x) , y (x− τ0 (x)) , y′ (x) , y′ (x− τ1 (x))

)
+(1)

+
∫ b

a
g
(
x, s, y (s) , y (s− τ0 (s)) , y′ (s) , y′ (s− τ1 (s))

)
ds,

y(i) (x) = ϕ(i) (x) , i = 0, 1, x ∈ [a∗; a] , y (b) = γ,(2)

where

a∗ = min
{

inf
x∈[a;b]

(x− τ0 (x)) , inf
x∈[a;b]

(x− τ1 (x))
}
, γ ∈ R, τ0 (x) ≥ 0, τ1 (x) ≥ 0.

Let f (x, u0, u1, v0, v1), g (x, s, u0, u1, v0, v1) be continuous functions in G =
[a, b] × G2

1 × G2
2 and Q = [a, b] × G, where G1 = {u ∈ R : |u| < P1}, G2 =

{v ∈ R : |v| ≤ P2}, P1, P2 are positive constants, ϕ (t) ∈ C1 [a∗; a], delays
τ0 (x) and τ1 (x) are continuous functions on [a, b], and additionally, τ1 (x) is
such that the set E = {xi ∈ [a, b] : xi − τ1 (xi) = a, i = 1, k} is finite.

We introduce the notations:

P = sup
{∣∣f (x, u, u1, v, v1)

∣∣+ ∣∣∣ ∫ b

a
g(x, s, u, u1, v, v1)ds

∣∣∣ :

|ui| < P1, |vi| < P2, i = 0, 1, x, s ∈ [a, b]
}
,

J = [a∗; a] , I = [a, b] , I1 = [a, x1] , I2 = [x1, x2] , . . . ,
Ik = [xk−1, xk] , Ik+1 = [xk, b] ,

B
(
J ∪ I

)
=
{
y (x) : y (x) ∈

(
C(J ∪ I)∩

(
C1(J)∪C1(I)

)
∩
(k+1⋃
j=1

C2 (Ij)
))
,

|y (x)| ≤ P1, |y′(x)| ≤ P2
}
.

A function y = y (x) from the space B (J ∪ I) is called a solution of the
problem (1)-(2) if it satisfies the equation (1) on [a; b] (with the possible ex-
ception of the set E) and boundary conditions (2).

From the definition of the space B (J ∪ I) we conclude that the solution
of the problem (1)-(2) is continuously differentiable for each x ∈ [a, b] where
y′ (a) is the right derivative.

Let us introduce a norm in the space B (J ∪ I):

‖y‖B = max
{

8
(b−a)2 max

x∈J ∪ I
|y (x)| , 2

b−a max
{

max
x∈J

∣∣y′ (x)
∣∣ ,max

x∈I

∣∣y′ (x)
∣∣ }}.

The space B (J ∪ I) with this norm is a Banach space.
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The boundary value problem (1)-(2) is equivalent to the following integral
equation (Grim and Schmitt 1968; Kamensky and Myshkis 1972)

y (x) =
∫ b

a∗

[
f
(
s, y (s) , y (s− τ0 (s)) , y′ (s) , y′ (s− τ1 (s))

)
+

(3)

+
∫ b

a
g
(
s, ξ, y (ξ) , y (ξ − τ0 (ξ)) , y′ (ξ) , y′ (ξ − τ1 (ξ))

)
dξ

]
Ḡ (x, s) ds

+ l (x) , x ∈ J ∪ I,
where

Ḡ (x, s) =
{
G (x, s) , x, s ∈ I,
0, otherwise,

l (x) =
{
ϕ (x) , x ∈ J,
γ−ϕ(a)
b−a (x−a) + ϕ(a), x ∈ I,

and G (x, s) is the Green’s function of the following boundary value problem
y′′ (x) = 0, x ∈ I, y (a) = y (b) = 0.

We define an operator T in the space B (J ∪ I) in the following way

(Ty) (x) =
∫ b

a∗

[
f
(
s, y (s) , y (s− τ0 (s)) , y′ (s) , y′ (s− τ1 (s))

)
+

+
∫ b

a
g
(
s, ξ, y (ξ) , y (ξ−τ0 (ξ)) , y′ (ξ) , y′ (ξ−τ1 (ξ))

)
dξ

]̄
G (x, s) ds

+ l (x) , x ∈ J ∪ I.
Hence,

(Ty)′ (x) =
∫ b

a∗

[
f
(
s, y (s) , y (s− τ0 (s)) , y′ (s) , y′ (s− τ1 (s))

)
+

(4)

+
b∫
a

g
(
s, ξ, y (ξ) , y (ξ−τ0 (ξ)) , y′ (ξ) , y′ (ξ−τ1 (ξ))

)
dξ

]̄
G
′
x (x, s) ds

+ γ−ϕ(a)
b−a , x ∈ J ∪ I.

Theorem 1. Let the following conditions hold:

1) max
{

max
x∈J
|ϕ (x)| , (b−a)2

8 P + max (|ϕ (a)| , |γ|)
}
≤ P1,

2) max
{

max
x∈J
|ϕ′ (x)| , b−a

2 P +
∣∣∣γ−ϕ(a)

b−a

∣∣∣} ≤ P2,

3) the functions f (x, u0, u1, v0, v1) , g (x, s, u0, u1, v0, v1) satisfy the Lip-
schitz condition for variables ui, vi, i = 0, 1 with constants L1

j , L
2
j , j =

1, 4 in G and Q,
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4) (b−a)2

8
2∑
j=1

(
L1
j + (b− a)L2

j

)
+ b−a

2
4∑
j=3

(
L1
j + (b− a)L2

j

)
< 1.

Then there exists a unique solution of the problem (1)-(2) in B (J ∪ I).

Proof. Based on Green’s function (Hartman 2002)

G (t, s) =


(s−a)(t−b)

b−a , a ≤ s ≤ t ≤ b,

(t−a)(s−b)
b−a , a ≤ t ≤ s ≤ b,

we obtain the following estimates

(5)
∫ b

a
|G (t, s)| ds ≤ (b−a)2

8 ,

∫ b

a
G
′
t (t, s) ds ≤ b−a

2 .

When the conditions 1)-2) and the inequalities (5) are true the operator T
maps the space B (J ∪ I) on itself.

Let y1, y2 ∈ B (J ∪ I). Considering the condition 3) and the estimates (5),
we get:

|(Ty1) (t)− (Ty2) (t)| ≤

≤
∫ b

a∗

[(
L1

1 + L1
2

)
max

t ∈ J ∪ I
|y1 (t)− y2 (t)|

+
(
L1

3 + L1
4

)
max

{
max
t ∈ I

∣∣∣y′1 (t)− y′2 (t)
∣∣∣ , max

t ∈ J

∣∣∣y′1 (t)− y′2 (t)
∣∣∣}

+ (b− a)
(
L2

1 + L2
2

)
max

t ∈ J ∪ I
|y1 (t)− y2 (t)|

+ (b−a)
(
L2

3+L2
4

)
max

{
max
t ∈ I

∣∣∣y′1 (t)−y′2 (t)
∣∣∣ ,max
t ∈ J

∣∣∣y′1 (t)−y′2 (t)
∣∣∣}]Ḡ (t, s) ds

≤ (b−a)2

8

[
(b−a)2

8

(
L1

1 + L1
2 + (b− a)

(
L2

1 + L2
2

))
+ b−a

2

(
L1

3 + L1
4 + (b− a)

(
L2

3 + L2
4

))]
‖y1 − y2‖B,∣∣∣(Ty1)

′
(t)− (Ty2)

′
(t)
∣∣∣ ≤

≤ b−a
2

[
(b−a)2

8

(
L1

1 + L1
2 + (b− a)

(
L2

1 + L2
2

))
+ b−a

2

(
L1

3 + L1
4 + (b− a)

(
L2

3 + L2
4

))]
‖y1 − y2‖B.
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Based on the obtained estimates and on the definition of the norm in the
space B (J ∪ I) we have:

‖(Ty1) (t)− (Ty2) (t)‖B ≤

(6)

≤
[

(b−a)2

8

2∑
i=1

(
L1
i + (b− a)L2

i

)
+ b−a

2

4∑
i=3

(
L1
i + (b− a)L2

i

)]
‖y1 − y2‖B.

The inequality (6) and the condition 4) imply that the operator T is a
contraction in B (J ∪ I) and it has a single fixed point in this space, therefore
the boundary value problem (1)-(2) has a unique solution y (t) ∈ B (J ∪ I).
The proof is complete. �

3. CUBIC SPLINES WITH DEFECT TWO

Let us consider an irregular grid ∆ = {a = x0 < x1 < . . . < xn = b} on the
segment [a; b], E ⊂ ∆. We denote by S (y, x) an interpolating cubic spline
with defect two on ∆ which belongs to the space B (J ∪ I).

We can obtain a formula of S (y, x) (Nikolova and Bainov 1981; Nastasyeva
and Cherevko 1999; Dorosh and Cherevko 2014):

S (y, x) =M+
j−1

(xj−x)3

6hj +M−j
(x−xj−1)3

6hj +
(
yj−1 −

M+
j−1h

2
j

6

)
xj−x
hj

+
(
yj −

M−j h
2
j

6

)
x−xj−1
hj

, x ∈ [xj−1;xj ] , hj = xj − xj−1, j = 1, n,(7)

where M+
j = S′′ (y, xj + 0) , j = 0, n− 1, M−j = S′′ (y, xj − 0) , j = 1, n

satisfy the following system of equations
hj+1yj−1 − (hj + hj+1) yj + hjyj+1 =

= hjhj+1
6

(
hjM

+
j−1 + 2hjM−j + 2hj+1M

+
j + hj+1M

−
j+1

)
, j = 1, n− 1,(8)

y0 = ϕ (a) , yn = γ.

We shall present the equations (8) in a matrix form
Ay = BM + d,(9)

where

A =


− (h1 + h2) h1 0 0 · · · 0

h3 − (h2 + h3) h2 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 · · · 0 hn − (hn−1 + hn)


is an (n− 1) × (n− 1) matrix, d = (−h2y0, 0, . . . , 0, −hn−1yn)T , B is a
right side of the relations (8) coefficient matrix with dimensions(n− 1)× 2n,

M =
(
M+

0 , M
−
1 ,M

+
1 , M

−
2 , M

+
2 , . . . , M

−
n−1, M

+
n−1, M

−
n

)T
.
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Lemma. The following correlations are true:

1) det (A) = (−1)n−1h2h3 . . . hn−1 (b− a) ,(10)

2)‖A−1‖ ≤ K2

8h3 (b− a) ,(11)

3) max
1≤i<n−2

n−1∑
j=1

(
a−1
i+1,j − a

−1
i,j

)
≤ K2(b−a)

2h2 ,(12)

4)‖B‖ ≤ H3,(13)

where h = min
i
hi, H = max

i
hi, K = H

h and a−1
ij are elements of a matrixA−1.

The proof of the lemma statements is easy to obtain by applying the prin-
ciple of mathematical induction and using the structure of the matrices A,B.

4. COMPUTATIONAL SCHEME

A) Choose a cubic spline S
(
y(0), x

)
randomly so that the boundary condi-

tions (2) are enforced, for instance, S
(
y(0), x

)
= γ−ϕ(a)

b−a (x− a)+ϕ (a).

B) Using the original equation (1) and the spline S
(
y(k), x

)
, find

M
+(k+1)
j =f

(
xj , S

(
y(k), xj + 0

)
, S
(
y(k), xj − τ0 (xj) + 0

)
,(14)

S′
(
y(k), xj + 0

)
, S′

(
y(k), xj − τ1 (xj) + 0

))
+

+
∫ b

a
g

(
xj , s, S

(
y(k), s

)
, S
(
y(k), s− τ0 (s)

)
, S′

(
y(k), s

)
,

S′
(
y(k), s− τ1 (s)

))
ds, j = 0, n− 1,

M
−(k+1)
j =f

(
xj , S

(
y(k), xj − 0

)
, S
(
y(k), xj − τ0 (xj)− 0

)
,(15)

S′
(
y(k), xj − 0

)
, S′

(
y(k), xj − τ1 (xj)− 0

))
+

+
∫ b

a
g

(
xj , s, S

(
y(k), s

)
, S
(
y(k), s− τ0 (s)

)
, S′

(
y(k), s

)
,

S′
(
y(k), s− τ1 (s)

))
ds, j = 1, n.

In (14), (15) put S(p)
(
y(k), t

)
= ϕ(p) (t) , p = 0, 1 if t < a.

C) Compute
{
yk+1
j

}
, j = 0, n from the equations (8).
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D) Build a cubic spline S
(
y(k+1), x

)
according to (7), using the values of{

yk+1
j

}
, M

+(k+1)
j , M

−(k+1)
j . This spline will be the next approxima-

tion.
Let us denote

λ1 = L1
1 + L1

2 + (b− a)
(
L2

1 + L2
2

)
, λ2 = L1

3 + L1
4 + (b− a)

(
L2

3 + L2
4

)
,

u = K5

8 (b− a)2 + H2

8 , v = K5

2 (b− a) + 2H
3 .(16)

Theorem 2. Assume that the conditions of Theorem 1 hold. If the following
inequality is true

(17) θ = uλ1 + vλ2 < 1,

then there exists H∗ > 0 such that for each 0 < H < H∗ the sequence of
splines

{
S
(
y(k), x

)}
, k = 0, 1 . . . converges uniformly on [a; b].

Proof. The equation (10) implies that it is possible to construct an iterative
spline sequence S

(
y(k), x

)
, k = 0, 1, . . . using the scheme A)-D). We shall

demonstrate that the series

S(p)
(
y(0), x

)
+
∞∑
i=1

[
S(p)

(
y(i), x

)
− S(p)

(
y(i−1), x

)]
, p = 0, 1

are uniformly convergent on [a; b] and thus the sequences S(p)
(
y(k), x

)
, k =

0, 1, . . . , p = 0, 1 are also uniformly convergent.
Let us define scalar functions y (x) , M (x) on [a; b] and denote the following

vectors
ȳ =

(
y (x1) , . . . , y (xn−1)

)T
,

M̄ =
(
M (x0 + 0) ,M (x1 − 0) ,M (x1 + 0) , . . . ,M (xn−1 − 0) ,

M (xn−1 + 0) ,M (xn − 0)
)T
.

We shall write the iterative algorithm A)-D) in a matrix form

ȳ(k+1) = A−1BM̄k+1 +A−1d,(18)

where the vector M̄ components are defined according to (14)-(15) and the
constant vector d depends only on the boundary conditions (2).

From (18) we obtain the estimate∥∥∥y(k+1) − y(k)
∥∥∥ =

∥∥∥A−1BMk+1 −A−1BMk
∥∥∥(19)

≤
∥∥∥A−1

∥∥∥ ‖B‖ ∥∥∥M̄k+1 − M̄k
∥∥∥ .
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From (14)-(15) and the properties of the functions f and g we obtain the
following inequalities

∥∥∥M+(k+1)
j −M+(k)

j

∥∥∥ ≤ λ1 max
x∈[a;b]

∣∣∣S (y(k), x
)
− S

(
y(k−1), x

)∣∣∣(20)

+λ2max
x∈[a;b]

∣∣∣S′(y(k), x
)
−S′

(
y(k−1), x

)∣∣∣, j = 0, 1, . . . , n−1,∥∥∥M−(k+1)
j −M−(k)

j

∥∥∥ ≤ λ1 max
x∈[a;b]

∣∣∣S (y(k), x
)
− S

(
y(k−1), x

)∣∣∣
+ λ2 max

x∈[a;b]

∣∣∣S′ (y(k), x
)
−S′

(
y(k−1), x

)∣∣∣ , j = 1, 2, . . . , n.

Therefore, taking into account the above mentioned lemma, (19) can be writ-
ten in the following way

∥∥∥y(k+1) − y(k)
∥∥∥ ≤ K5

8 (b− a)
[
λ1
∥∥∥S (y(k), x

)
− S

(
y(k−1), x

)∥∥∥(21)

+ λ2
∥∥∥S′ (y(k), x

)
− S′

(
y(k−1), x

)∥∥∥].
Let x ∈ [xj−1;xj ]. Considering (7), we have

∣∣∣S (y(k+1), x
)
− S

(
y(k), x

)∣∣∣ ≤ ∣∣∣xj−x6hj

∣∣∣ ((xj − x)2 − h2
j

)
+

+ x−xj−1
6hj

(
(x− xj−1)2 − h2

j

) ∥∥∥M̄k+1 − M̄k
∥∥∥+(22)

+
∣∣∣yk+1
j−1 − y

k
j

∣∣∣ ∣∣∣xj−xhj

∣∣∣+ ∣∣∣yk+1
j − ykj

∣∣∣ ∣∣∣x−xj−1
hj

∣∣∣ .
It is easy to show that

max
x∈[xj−1;xj ]

∣∣∣xj−x6hj

(
h2
j − (xj − x)2

)
+ x−xj−1

6hj

(
h2
j − (x− xj−1)2

)∣∣∣ ≤ H2

8 .(23)

Using (20), (21), (23), from (22) we obtain

∥∥∥S (y(k+1), x
)
− S

(
y(k), x

)∥∥∥ ≤ H2

8

∥∥∥M̄k+1 − M̄k
∥∥∥+

∥∥∥y(k+1) − y(k)
∥∥∥(24)

≤
(
K5

8 (b− a)2 + H2

8

)(
λ1
∥∥∥S (y(k), x

)
− S

(
y(k−1), x

)∥∥∥+

+ λ2
∥∥∥S′ (y(k), x

)
− S′

(
y(k−1), x

)∥∥∥).
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According to the spline (7), we get

∣∣∣S′ (y(k+1), x
)
− S′

(
y(k), x

)∣∣∣ ≤
(25)

≤
∣∣∣∣hj6 − (xj−x)2

2hj

∣∣∣∣ ∣∣∣M+(k+1)
j−1 −M+(k)

j−1

∣∣∣
+
∣∣∣∣ (x−xj−1)2

2hj − hj
6

∣∣∣∣ ∣∣∣M−(k+1)
j −M−(k)

j

∣∣∣+ 1
hj

∣∣∣yk+1
j − yk+1

j−1 −
(
ykj − ykj−1

)∣∣∣ .
One can show that

max
x∈[xj−1;xj ]

(∣∣∣∣hj6 − (xj−x)2

2hj

∣∣∣∣+ ∣∣∣∣ (x−xj−1)2

2hj − hj
6

∣∣∣∣) ≤ 2H
3 ,(26)

max
1<j<n

∣∣∣yk+1
j − yk+1

j−1 −
(
ykj − ykj−1

)∣∣∣ ≤ K4

2 (b− a)H
∥∥∥M̄k+1 − M̄k

∥∥∥ .(27)

Due to (26)-(27), the inequality (25) implies that∥∥∥S′ (y(k+1), x
)
− S′

(
y(k), x

)∥∥∥ ≤
≤
(
K5

2 (b− a) + 2
3H
)(

λ1
∥∥∥S (y(k), x

)
− S

(
y(k−1), x

)∥∥∥(28)

+ λ2
∥∥∥S′ (y(k), x

)
− S′

(
y(k−1), x

)∥∥∥).
After iterating (24), (28) and considering the notations (16)-(17) we obtain

∥∥∥S (y(k+1), x
)
− S

(
y(k), x

)∥∥∥ ≤(29)

≤ uθk−1
(
λ1
∥∥∥S (y(1), x

)
− S

(
y(0), x

)∥∥∥+ λ2
∥∥∥S′ (y(1), x

)
− S′

(
y(0), x

)∥∥∥) ,∥∥∥S′ (y(k+1), x
)
− S′

(
y(k), x

)∥∥∥ ≤
≤ vθk−1

(
λ1
∥∥∥S (y(1), x

)
− S

(
y(0), x

)∥∥∥+ λ2
∥∥∥S′ (y(1), x

)
− S′

(
y(0), x

)∥∥∥) .
The correlations (29) with the condition (17) ensure the convergence of the

sequences
{
S(p)

(
y(k), x

)}
, k = 0, 1, . . . , p = 0, 1. Theorem 2 is proved. �

Let us denote lim
k→∞

S(p)
(
y(k), x

)
= S(p) (ỹ, x) , p = 0, 1, . . . Note that the

parameters M̃+
j , M̃

−
j of the spline S (ỹ, x) satisfy the system (8) and equations

(14)-(15).
Let S (y, x) be a cubic spline with defect 2 which interpolates the solution

y (x) of the boundary value problem (1)-(2). Thus,∥∥∥S(p) (ỹ, x)− y(p) (x)
∥∥∥ ≤ ∥∥∥S(p) (ỹ, x)− S(p) (y, x)

∥∥∥
+
∥∥∥S(p) (y, x)− y(p) (x)

∥∥∥ , p = 0, 1.(30)
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For the second term on the right side of the inequality (30) it is true (Alberg,
Nilson and Walsh 1967) that∥∥∥S(p) (y, x)− y(p) (x)

∥∥∥ ≤ KpH
2−pω

(
y′′ (x) , H

)
,(31)

p = 0, 1, 2, K0 = 5
2 , K1 = K2 = 5,

where ω (y′′ (x) , H) = max
1≤r≤k+1

ωr (y′′ (x) , H), ωr (y′′ (x) , H) is a modulus of

continuity for y′′ (x) on Ir = [xr−1;xr].
We shall denote

max
x∈[a;b]

∣∣∣S(p) (ỹ, x)− S(p) (y, x)
∣∣∣ = αp, p = 0, 1.

According to the properties of the functions f , g and estimates (31), we obtain∣∣∣∣M+
j − f

(
xj , y (xj) , y (xj − τ0 (xj)) , y′ (xj) , y′ (xj − τ1 (xj))

)
−
∫ b

a
g
(
xj , s, y (s) , y (s− τ0 (s)) , y′ (s) , y′ (s− τ1 (s))

)
ds

∣∣∣∣(32)

≤ 5
(
1 + 1

2λ1H
2 + λ2H

)
ω
(
y′′ (x) , H

)
,∣∣∣∣M−j − f(xj , y (xj) , y (xj − τ0 (xj)) , y′ (xj) , y′ (xj − τ1 (xj))

)
−
∫ b

a
g
(
xj , s, y (s) , y (s− τ0 (s)) , y′ (s) , y′ (s− τ1 (s))

)
ds

∣∣∣∣(33)

≤ 5
(
1 + 1

2λ1H
2 + λ2H

)
ω
(
y′′ (x) , H

)
.

Using the formulas of S (ỹ, x) , S (y, x) and the inequalities (32)-(33), one
can get the following system of inequalities

α0 ≤ u
(
α0λ1 + α1λ2 + 5

(
1 + 1

2λ1H
2 + λ2H

)
ω
(
y′′ (x) , H

))
,

α1 ≤ v
(
α0λ1 + α1λ2 + 5

(
1 + 1

2λ1H
2 + λ2H

)
ω
(
y′′ (x) , H

))
.

(34)

Solving the system (34), we find estimates for the first terms on the right side
of (30):

α0 ≤
5(1+ 1

2λ1H2+λ2H)u
1−θ ω

(
y′′ (x) , H

)
,

α1 ≤
5(1+ 1

2λ1H2+λ2H)v
1−θ ω

(
y′′ (x) , H

)
.

Now the inequalities (30) can be written in the following form∥∥∥S(p) (ỹ, x)− y(p) (x)
∥∥∥ ≤ Kpω

(
y′′ (x) , H

)
, p = 0, 1,(35)

where K0 = sup
H≤H∗

(
uµ

1−θ + 5H2

2

)
,K1 = sup

H≤H∗

(
vµ

1−θ + 5H
)
.
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We can summarize the aforementioned arguments concerning accuracy of
approximating the solution of the boundary value problem (1)-(2) based on
the spline sequence as the following theorem.

Theorem 3. Let the solution of the boundary value problem (1)-(2) exist, be
unique and belong to the space B [a∗; b]. If the condition (17) holds, then there
exists H∗ > 0 such that for any H < H∗ the spline sequence

{
S
(
y(k), x

)}
is approximating the solution of the boundary value problem (1)-(2) and the
correlations (35) are true.

5. EXAMPLE

Let us consider the usage of this calculation scheme for finding an approxi-
mate solution of the following boundary value problem

y′′ (x) = −αy′
(
x− π

2
)

+
∫ π

2

0
y(t− π

2 )dt+ cosx, 0 ≤ x ≤ π
2 ,

y (x) = sin(x) + 1, −π
2 ≤ x < 0,

y (0) = 1, y(π2 ) = 2 + α.

In this example L1
1 = L1

2 = L1
3 = 0, L1

4 = α, L2
1 = L2

3 = L2
4 = 0, L2

2 = 1,
so λ1 = π

2 , λ2 = α, h = H = π
40 , K = 1, u = π2

32 + H2

8 , v = π
4 + 2

3H,

θ =
(
π2

32 + H2

8

)
π
2 +

(
π
4 + 2

3H
)
α. If we put α = 1

4 , then θ ≈ 0.695 < 1 and
therefore the conditions of the Theorems 1 and 2 are satisfied. The precise
solution yp (x) of this boundary value problem, which was found using the step
method, is

yp (x) = α sin x− cosx+
(
π
2 − 1

)
x2

2 + π
4
(
1− π

2
)
x+ 2.

x ya(x) yp(x) ∆ δ

0 1 1 0 0%
π
8 1.03971 1.03976 0.00005 0.01%
π
4 1.2935 1.2936 0.00010 0.01%
3π
8 1.7162 1.7163 0.00010 0.01%
π
2 2.25 2.25 0 0%

Table 1. Precise and approximate solutions.

The results of the calculation are given in Table 1, where yp(x) is the pre-
cise solution, ya(x) is the approximate solution obtained with h = π

40 after 2
iterations, ∆ is the absolute error and δ is the relative error.
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