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COMMUTATIVITY AND SPECTRAL PROPERTIES OF GENUINE
BASKAKOV-DURRMEYER TYPE OPERATORS AND THEIR kTH

ORDER KANTOROVICH MODIFICATION∗

MARGARETA HEILMANN�

Abstract. In this paper we present an overview of commutativity results and
different methods for the proofs for Baskakov-Durrmeyer type operators and as-
sociated differential operators. We discuss the spectral properties and generalize
all results to kth order Kantorovich modifications and corresponding Durrmeyer
type variants of Bleimann, Butzer and Hahn operators and Meyer-König and
Zeller operators.
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1. INTRODUCTION AND DEFINITION OF THE OPERATORS

In 1957 Baskakov [5] introduced a general method to construct a class of
positive linear operators depending on a real parameter c including the clas-
sical Bernstein, Szász-Mirakjan and Baskakov operators as special cases. The
so-called Bernstein-Durrmeyer operators were introduced by Durrmeyer in
[17] and independently developed by Lupaş [31]. Afterwards this construction
was carried over to many other classical operators; for instance see [32, 35]
for the Szász-Mirakjan and Baskakov operators, [20, 22] in the general set-
ting for so-called Baskakov-Durrmeyer type operators, [33, 10, 11] for the
Jacobi weighted Bernstein-Durrmeyer operators, [14, 15] for the non-weighted
and Jacobi weighted multivariate Bernstein-Durrmeyer operators defined on
a simplex. These operators have a lot of nice properties; they commute, they
commute with certain differential operators, they are self-adjoint but they
only reproduce constants. Let us mention also [2, 24] for general Durrmeyer-
type modifications of Meyer-König and Zeller operators and [3] for Durrmeyer
variants of the Bleimann, Butzer and Hahn operators. The Durrmeyer modi-
fication of the Bleimann, Butzer and Hahn operators are closely connected to
the Bernstein-Durrmeyer operators and the Meyer-König and Zeller operators
to the Baskakov-Durrmeyer operators. Due to this relation we can carry over
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several results which will be discussed in a separate section at the end of this
paper.

The consideration of so-called genuine Baskakov-Durrmeyer type operators
leads to a class of operators reproducing linear functions and interpolating at
(finite) endpoints of the corresponding interval. These operators are related to
the Baskakov-Durrmeyer type operators in the same way as the Baskakov type
operators to their corresponding Kantorovich variants, i. e., D1◦Bn◦I1 = B

(1)
n

with the notation below.
In what follows for c ∈ R we use the notations

ac,j :=
j−1∏
l=0

(a+ cl), ac,j :=
j−1∏
l=0

(a− cl), j ∈ N; ac,0 = ac,0 := 1

which can be considered as a generalization of rising and falling factorials.
Note that a−c,j = ac,j and ac,j = a−c,j . This notation enables us to state the
results for the different operators in a unified form.

In the following definitions of the operators we omit the parameter c in the
notations in order to reduce the necessary sub- and superscripts.

Let c ∈ R, n ∈ R, n > c for c ≥ 0 and −n/c ∈ N for c < 0. Furthermore let
j ∈ N0, x ∈ Ic with Ic = [0,∞) for c ≥ 0 and Ic = [0,−1/c] for c < 0. Then
the basis functions are given by

pn,j(x) =


nj

j! x
je−nx , c = 0,

nc,j

j! x
j(1 + cx)−(nc +j) , c 6= 0.

Note that pn,j(x) ≡ 0 for j > −n/c if c < 0 and

p′n,j(x) = n[pn+c,j−1(x)− pn+c,j(x)](1)

with the convention pn,l(x) = 0, if l < 0.
For c < 0 we consider the space L1(Ic) and denote by L0

1(Ic) the set of all
functions f ∈ L1(Ic) with finite limits f(0) = limx→0+ f(x) and f(−1/c) =
limx→−1/c− f(x) at the endpoints of the interval. For c ≥ 0, α ≥ 0 we denote
by Wα(Ic) the space of all locally integrable functions on Ic, satisfying for
t ≥ 0 the growth condition

|f(t)| ≤Meαt if c = 0 and |f(t)| ≤M(1 + ct)
α
c if c > 0

for some positive constant M . W 0
α(Ic) consists of all functions f ∈ Wα(Ic)

with finite limit f(0) = limx→0+ f(x). Furthermore Pl denotes the set of all
polynomials of degree at most l.

Now we can define the genuine Baskakov-Durrmeyer type operators.



168 Margareta Heilmann 3

Definition 1. For c < 0, n ∈ R+, −n/c ∈ N, f ∈ L0
1(Ic) define

(Bnf)(x) = f(0)pn,0(x) + f
(
−1
c

)
pn,−n

c
(x)

+(n+ c)
−n
c
−1∑

j=1
pn,j(x)

∫ − 1
c

0
pn+2c,j−1(t)f(t)dt, x ∈

[
0,−1

c

]
.

For c ≥ 0, α ≥ 0, n ∈ R+, n > α− c, f ∈W 0
α(Ic) define

(Bnf)(x) = f(0)pn,0(x)

+(n+ c)
∞∑
j=1

pn,j(x)
∫ ∞

0
pn+2c,j−1(t)f(t)dt, x ∈ [0,∞).

Setting c = −1 leads to the genuine Bernstein-Durrmeyer operators first
defined in [12] and independently in [18], c = 0 to the Phillips operators [34],
c > 0 was investigated in [36].

Similar as in [27, 28, 6] we also consider the kth order Kantorovich modifi-
cation of the operators Bn, i.e.,

(2) B(k)
n := Dk ◦Bn ◦ Ik, k ∈ N0,

where Dk denotes the kth order ordinary differential operator and

Ikf = f, if k = 0, and (Ikf)(x) =
∫ x

0

(x− t)k−1

(k − 1)! f(t)dt, if k ∈ N.

For k = 0 we omit the superscript (k) as indicated by the definition above.
This general definition contains many known operators as special cases. For

k = 1 we get the Baskakov-Durrmeyer type operators B(1)
n (see [17] for c = −1,

[32] for c = 0 and [22, (1.3)] for c ≥ 0, named Mn+c there) and for k ≥ 2 the
auxiliary operators B(k)

n considered in [23, (3.5)] (named Mn+c,k−1 there).
For k ∈ N, f ∈ L1(Ic) for c < 0 and f ∈ Wα(Ic) for c ≥ 0, we have the

explicit representation [23, (3.5)]

(B(k)
n f)(x) = nc,k

nc,k−1

∞∑
j=0

pn+ck,j(x)
∫
Ic
pn−c(k−2),j+k−1(t)f(t)dt,

where the upper limit of the sum is −n
c − k in case c < 0, as pn+ck,j(x) ≡ 0

for j > −n
c − k .

In this paper we summarize known results, give an overview of different
methods for the proofs and establish general results for the kth order Kan-
torovich modification concerning the commutativity properties and results for
the eigenfunctions of the operators and appropriate differential operators. The
proofs are mainly based on the fact that for a suitable function g, s ∈ N0, l ∈ N

(3) IlD
sg =

{
Ds−lg − ql−1 , s ≥ l,
Il−sg − ql−1 , s ≤ l,
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where

ql−1(x) =
l−1∑

i=max{0,l−s}

g(i+s−l)(0)
i! xi ∈ Pl−1.

Furthermore we need that for each k ∈ N0

(4) p ∈ Pl =⇒ B(k)
n p ∈ Pl

(see [27, 28, Theorem 1, Theorem 2]).

2. COMMUTATIVITY OF THE OPERATORS

First we summarize known results and give a survey over the different meth-
ods of proofs.

In 1981 Derriennic [13, Théorème III.3] proved that the eigenfunctions of
the Bernstein-Durrmeyer operators B(1)

n , i. e. , c = −1, k = 1, are the Legendre
polynomials

Q0(x) = 1, Ql(x) =
√

2l+1
l! Dl

[
xl(1− x)l

]
, l ∈ N,

with corresponding eigenvalues

λn,l =
{

n!(n−1)!
(n−l−1)!(n+l)! , l ≤ n− 1,

0 , l ≥ n,

and deduced the representation of the operators in terms of these eigenfunc-
tions, i. e.,

(B(1)
n f)(x) =

n−1∑
l=0

λn,lQl(x)
∫ 1

0
Ql(t)f(t)dt, f ∈ L1[0, 1].

Ditzian and Ivanov [16] remarked that from this result it follows immediately
that the operators commute:

B(1)
m B(1)

n f = B(1)
n B(1)

m f =
min {m−1,n−1}∑

l=0
λm,lλn,lQl

∫ 1

0
Ql(t)f(t)dt.

So, the proof of the commutativity is quite elegant in case c = −1. The general
case c < 0, k = 1 can be proved in the same way by using the corresponding
eigenfunctions and eigenvalues given in Theorem 9.

For c = 0 we have the eigenfunction e0 = 1, for c > 0 certain polynomial
eigenfunctions (see [25, Remark 2.2, Corollary 2.5]). So, the method for c = −1
is not applicable to the non-compact interval [0,∞) in case c ≥ 0.

In [20, 21] the author proved the commutativity for c ≥ 0, k = 1, f ∈
Lp[0,∞), 1 ≤ p ≤ ∞ with a completely different method. Here we give an
outline of the main steps of the proof. Note that the proof is also valid for
f ∈Wα(Ic).
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• First the integral representations

(B(1)
n B(1)

m f)(x) =
∫ ∞

0
f(y)Gn,m(x, y)dy,

(B(1)
m B(1)

n f)(x) =
∫ ∞

0
f(y)Gm,n(x, y)dy

for all x ∈ [0,∞) were derived with the kernel functions

Gn,m(x, y) =
∞∑
j=0

∞∑
l=0

pn+c,j(x)pm+c,l(y)
(j+l
j

)
nc,j+1mc,l+1

(n+m+c)c,j+l+1 ,

Gm,n(x, y) =
∞∑
j=0

∞∑
l=0

pn+c,j(y)pm+c,l(x)
(j+l
j

)
nc,j+1mc,l+1

(n+m+c)c,j+l+1 .

• Next, the kernel functions were considered as functions of two complex
variables and it was shown that they are holomorphic in a certain
region.
• The equality of the kernel functions was proved in an open neighbor-

hood of (0, 0) by considering the Taylor series at (0, 0).
• Finally, by using the identity theorem for analytic functions, the equal-

ity of the kernel functions was established for all x, y ∈ [0,∞).
In 2005 Abel and Ivan [4] presented a nice alternative proof for the commu-

tativity in case c = 0. They proved that for every f ∈Wα(Ic), n,m > α with
nm
n+m > α

(5) B(1)
n B(1)

m f = B
(1)
nm
n+m

f

from which the commutativity follows as a corollary.
In 2011 Tachev and the author [29] proved an analogue for the case c = 0,

k = 0, i. e., for every f ∈W 0
α(Ic), n,m > α with nm

n+m > α

(6) BnBmf = B nm
n+m

f.

Now we generalize (5) and (6), respectively, to k ≥ 2.

Theorem 2. Let c = 0, k ≥ 2, f ∈Wα(Ic), α ≥ 0, n,m > α with nm
n+m > α.

Then

(7) B(k)
n B(k)

m f = B
(k)
nm
n+m

f

Proof. Using the definition of B(k)
n and applying (3) for g = B

(1)
m Ik−1f we

derive

B(k)
n B(k)

m f = Dk−1B(1)
n Ik−1D

k−1B(1)
m Ik−1f

= Dk−1B(1)
n B(1)

m Ik−1f −Dk−1B(1)
n qk−2.
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As B(1)
n qk−2 ∈ Pk−2 by (4) the last term on the right hand side vanishes.

Together with (5) this leads to

B(k)
n B(k)

m f = Dk−1B
(1)
nm
n+m

Ik−1f = B
(k)
nm
n+m

f.

�

From Theorem 2 together with (5) and (6) we now get the commutativity
of the operators B(k)

n for each k ∈ N0 in case c = 0.
Now we consider c 6= 0. Since identities as given in (5), (6) and (7), respec-

tively, are not true for c 6= 0, the method by Abel and Ivan is not applicable
in this case. For k = 0 we need the following result.

Lemma 3. For c < 0 let n ∈ R+, −n/c ∈ N, f ∈ L0
1(Ic) such that D1f ∈

L1(Ic). For c > 0, α ≥ 0 let n ∈ R+, n > α − c, f ∈ W 0
α(Ic) such that

D1f ∈Wα(Ic). Then
Bnf = f(0) + I1B

(1)
n D1f.

Proof. We only prove the case c < 0 as the case c > 0 is completely analogue.
Using integration by parts and (1) we have∫ −1/c

0
pn+c,j(t)f ′(t)dt = −(n+ c)

∫ −1/c

0
[pn+2c,j−1(t)− pn+2c,j(t)]f(t)dt

+


f
(
−1
c

)
, j = −n

c − 1,

−f(0) , j = 0,

0 , 1 ≤ j ≤ −n
c − 2.

Thus, again using (1), we derive
(B(1)

n D1f)(x)(8)
= n

[
f
(
−1
c

)
pn+c,−n

c
−1(x)− f(0)pn+c,0(x)

]
−n
−n
c
−1∑

j=0
pn+c,j(x)(n+ c)

∫ −1/c

0
(pn+2c,j−1(t)− pn+2c,j(t))f(t)dt

= n

[
f

(
−1
c

)
pn+c,−n

c
−1(x)− f(0)pn+c,0(x)

]

+(n+ c)
−n
c
−1∑

j=1
p′n,j(x)

∫ −1/c

0
pn+2c,j−1(t)f(t)dt.

As ∫ x

0
pn+c,−nc−1(u)du = 1

n(−cx)−
n
c = 1

npn,−nc (x),∫ x

0
pn+c,0(u)du = 1

n

[
1− (1 + cx)−

n
c

]
= 1

n(1− pn,0(x)),
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we get by applying I1 on both sides of (8)

(I1B
(1)
n D1f)(x) = f

(
−1
c

)
pn,−n

c
(x)− f(0)(1− pn,0(x))

+(n+ c)
−n
c
−1∑

j=1
pn,j(x)

∫ −1/c

0
pn+2c,j−1(t)f(t)dt

= −f(0) + (Bnf)(x).

�

Theorem 4. With the same assumptions as in Lemma 3 we have

BnBmf = BmBnf.

Proof. With Lemma 3 and the interpolation property of the genuine oper-
ators, i. e., (Bnf)(0) = (Bmf)(0) = f(0), we get

BnBmf = f(0) + I1B
(1)
n D1I1B

(1)
m D1f

= f(0) + I1B
(1)
n B(1)

m D1f

= f(0) + I1B
(1)
m B(1)

n D1f

= BmBnf.

�

Next we consider the case k ≥ 2.

Theorem 5. Let k ∈ N, k ≥ 2. For c < 0 let n ∈ R+, −n/c ∈ N,
f ∈ L1(Ic). For c > 0, α ≥ 0 let n ∈ R+, n > α− c, f ∈Wα(Ic). Then

B(k)
n B(k)

m f = B(k)
m B(k)

n f.

Proof. With similar arguments as in the proof of Theorem 4 we get

B(k)
n B(k)

m f = Dk−1B(1)
n Ik−1D

k−1B(1)
m Ik−1f

= Dk−1B(1)
n B(1)

m Ik−1f −Dk−1B(1)
n qk−2

= Dk−1B(1)
m B(1)

n Ik−1f

= B(k)
m B(k)

n f.

�

3. ADAPTED DIFFERENTIAL OPERATORS

The operators B(k)
n are strongly connected to appropriate differential op-

erators. This was used for example for the construction of quasi-interpolants
(see, e.g., [9, 1, 30, 36]).

In the following we use the notation ϕ(x) =
√
x(1 + cx).
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Definition 6. For r ∈ N we define

D̃2r,(k) =
{
Dr−1+kϕ2rDr+1−k , k ≤ r + 1,
Dr−1+kϕ2rIk−r−1 , k ≥ r + 1. .

Formally we denote D̃0,(k) = Id.

The following recursion formula for the differential operators was proved for
the special cases c = −1, k = 1 also in the multivariate setting in [8, (4.4)],
for c ≥ 0, k = 1 in [7, Lemma 4], for c = −1, k = 0 in [30, Lemma 3] and for
c ≥ 0, k = 0 in [36, Lemma 2.3].

Theorem 7. For r ∈ N0 we have

D̃2r+2,(k) = D̃2r,(k)
[
D̃2,(k) − cr(r + 1)Id

]
.

Proof. In view of the already known results we only have to consider k ≥ 2.
We distinguish between the cases 2 ≤ k ≤ r + 1 and k ≥ r + 2.
2 ≤ k ≤ r + 1:

D̃2r,(k)D̃2,(k) = Dr+k−1ϕ2rDr−k+1Dkϕ2Ik−2

= Dr+k−1ϕ2rDr+1ϕ2Ik−2.

By using Leibniz’ formula we derive
Dr+1ϕ2Ik−2

=
r+1∑
l=0

(r+1
l

) (
Dlϕ2

) (
Dr+1−lIk−2

)
= ϕ2Dr+1Ik−2 + (r + 1)

(
Dϕ2

)
(DrIk−2) + cr(r + 1)

(
Dr−1Ik−2

)
= ϕ2Dr+3−k + (r + 1)

(
Dϕ2

)
Dr+2−k + cr(r + 1)Dr+1−k.

Thus,

D̃2r,(k)D̃2,(k)(9)
= Dr+k−1ϕ2r+2Dr+3−k + (r + 1)Dr+k−1ϕ2r

(
Dϕ2

)
Dr+2−k

+cr(r + 1)Dr+k−1ϕ2rDr+1−k.

Furthermore,

D̃2r+2,(k) = Dr+k−1Dϕ2r+2Dr+2−k(10)
= Dr+k−1

[
(r + 1)ϕ2r(Dϕ2)Dr+2−k + ϕ2r+2Dr+3−k

]
.

The proposition now follows from (9) and (10).
k ≥ r + 2: By using (3) for l = s = k− r− 1 with g = Dr+1ϕ2Ik−2 we derive

D̃2r,(k)D̃2,(k) = Dr+k−1ϕ2rIk−r−1D
k−r−1Dr+1ϕ2Ik−2

= Dr+k−1ϕ2rDr+1ϕ2Ik−2.
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Again by Leibniz’ formula we get

Dr+1ϕ2Ik−2 =
= ϕ2Dr+1Ik−2 + (r + 1)

(
Dϕ2

)
(DrIk−2) + cr(r + 1)

(
Dr−1Ik−2

)
= ϕ2DIk−2−r + (r + 1)

(
Dϕ2

)
Ik−2−r + cr(r + 1)Ik−r−1.

Thus,

D̃2r,(k)D̃2,(k) =(11)
= Dr+k−1ϕ2r+2DIk−2−r + (r + 1)Dr+k−1ϕ2r

(
Dϕ2

)
Ik−2−r

+cr(r + 1)Dr+k−1ϕ2rIk−r−1.

Furthermore

D̃2r+2,(k) = Dr+k−1Dϕ2r+2Ik−r−2(12)
= Dr+k−1

[
(r + 1)ϕ2r(Dϕ2)Ik−r−2 + ϕ2r+2DIk−r−2

]
.

The proposition now follows from (11) and (12). �

From Theorem 7 the following product formula can be easily established by
induction (see [8, (4.5)] for k = 1 also in the multivariate setting, [30, Lemma
4] for c = −1, k = 0 and [36, Lemma 2.4] for c ∈ R, k = 0).

D̃2r,(k) =
r−1∏
j=0

[
D̃2,(k) − j(j + 1)cId

]
(13)

= D̃2,(k) ◦
(
D̃2,(k) − 2cId

)
◦ · · · ◦

(
D̃2,(k) − (r − 1)rcId

)
.

For the special case c = 0 this means

D̃2r,(k) =
(
D̃2,(k)

)r
.

The commutativity of the differential operators now follows as a corollary.

Corollary 8. Let r, l ∈ N , k ∈ N0. Then

D̃2r,(k)D̃2l,(k) = D̃2l(k)D̃2r,(k).

4. SPECTRAL PROPERTIES

Next we generalize results concerning the spectral properties of the opera-
tors B(k)

n and the differential operators. For B(k)
n the special case k = 1, c = −1

was considered in [13, Théorème III.3], for c = −1, k = 0 see [19, Theorem
4], for k = 1, c = 1 [24, Corollary 2.5] and for k = 0, c 6= 0 [36, Lemma 1.16].
References concerning the differential operators are [8, Theorem 4], [9, (2.1),
(2.2)] for c = −1, k = 1 (also in the Jacobi weighted multivariate setting) and
[36, Lemmas 2.2, 2.3, 2.4].
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Theorem 9. For c 6= 0, l ∈ N0 and n > c(l + k − 1) in case c > 0 it holds

B(k)
n gl,k = λn,l,kgl,k and D̃2r,(k)gl,k = γn,l,kgl,k,

where
g0,0(x) = 1, g1,0(x) = x, gl,k(x) = Dl+2(k−1)ϕ2(l+k−1), l + 2(k − 1) ≥ 0

and

λn,l,k = nc,l+k

nc,l+k
, γr,l,k =

 cr
(l + k + r − 1)!
(l + k − r − 1)! , l + k − 1 ≥ r,

0 , l + k − 1 < r.

Proof. First we consider B(k)
n . We use the known results for k = 0. For

k = 1, l = 0 we have
g0,1 = 1 and B(1)

n g0,1 = g0,1

as B(1)
n preserves constants.

Now let k ∈ N, l ∈ N0 with l + k ≥ 2. Then, again using (3) and (4),

B(k)
n gl,k = DkBnIkD

l+2(k−1)ϕ2(l+k−1)

= DkBnD
l+k−2ϕ2(l+k−1)

= DkBngl+k,0

= nc,l+k

nc,l+k
gl,k.

Next we treat the differential operators. With
γr,l,k = γr,l+k,0 and gl,k = Dkgl+k,0

we derive
γr,l,kgl,k = Dkγr,l+k,0gl+k,0

= DkD̃2r,(0)gl+k,0

= Dk+r−1ϕ2rDr+1gl+k,0

=
{
Dk+r−1ϕ2rDr+1−kDkgl+k,0, k ≤ r + 1
Dk+r−1ϕ2rIk−r−1D

kgl+k,0, k ≥ r + 1

= D̃2r,kgl,k.

�

5. COMMUTATIVITY OF THE OPERATORS AND APPROPRIATE DIFFERENTIAL

OPERATORS

In [23, Lemma 3.1] the author proved that the operators B(1)
n and the dif-

ferential operators D̃2r,(1) commute for sufficiently smooth functions. The
corresponding result for c = 0, k = 0 was proved in [29, Theorem 3.2, Remark
3.1] and was generalized for c ∈ R, k = 0 in [36, Satz 2.8].
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Theorem 10. For k ≥ 2 we have

D̃2r,(k)B(k)
n = B(k)

n D̃2r,(k).

Proof. With regard to the above mentioned known results we only have to
treat the case k ≥ 2 and prove our proposition by induction.
r = 1: Using (3) with l = k − 2 and g = B

(1)
n Ik−1f if k ≥ 3 we get

D̃2,(k)B(k)
n f = Dk−1Dϕ2DB(1)

n Ik−1f

= Dk−1B(1)
n Dϕ2DIk−1f

= Dk−1B(1)
n Dϕ2Ik−2f

= Dk−1B(1)
n Ik−1D

kϕ2Ik−2f

= B(k)
n D̃2,(k).

The conclusion r ⇒ r + 1 follows easily from (13). �

6. RELATED DURRMEYER TYPE OPERATORS

In this section we consider c 6= 0. Let

σ : Ic −→ I−c σ(x) = x

1 + cx

ψ : Ic −→ I−c ψ(x) = x

1− cx.

The consideration of(
B

(k)
n f(t)

)
(x) :=

(
B(k)
n f(σ(t))

)
(ψ(x))

leads to kth order Kantorovich modifications of Durrmeyer type variants of
Bleimann, Butzer and Hahn operators (BBH-D operators) for c < 0 and
Meyer-König and Zeller operators (MKZ-D operators) for c > 0.
With the notation

pn,j(x) := pn,j (ψ(x)) = nc,j

j! x
j(1− cx)

n
c

they are explicitly given by the following formulas.
For c < 0, n ∈ R+, −n/c ∈ N, (1 − c·)−2f(·) ∈ L1[0,∞) with finite limits

f(0) = limx→0+ f(x) and f∞ = limx→∞ f(x)

(Bnf)(x) = f(0)pn,0(x) + f∞pn,−n
c
(x)

+(n+ c)
−n
c
−1∑

j=1
pn,j(x)

∫
I−c

pn+2c,j−1(t)f(t)(1− ct)−2dt,

x ∈ [0,∞), we have a genuine variant of BBH-D operators.
For c > 0, α ≥ 0, n ∈ R+, n > α − c, f locally integrable on [0, 1

c )
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satisfying |f(t)| ≤ M(1 − ct)−
α
c , t ∈ [0, 1

c ), and possessing a finite limit
f(0) = limx→0+ f(x)

(Bnf)(x) = f(0)pn,0

+(n+ c)
∞∑
j=1

pn,j(x)
∫
I−c

pn+2c,j−1(t)f(t)(1− ct)−2dt,

x ∈ [0, 1
c ), defines a genuine variant of MKZ-D operators.

For the kth order Kantorovich modification we derive for f as above without
the conditions for the limits with c 6= 0, k ∈ N:

(B(k)
n f)(x) = nc,k

nc,k−1

∞∑
j=0

pn+ck,j(x)
∫
I−c

pn−c(k−2),j+k−1(t)f(t)(1− ct)−2dt

where the upper limit of the sum is −n
c − k for c < 0.

From the results in Section 2 we deduce that the operators B(k)
n are com-

mutative. For the special case k = 1, c = −1 see [3, Theorem 2.1] and for
k = 1, c = 1 [26, Theorem 1]. Furthermore they commute with the differential
operators

D
2r,(k) =

{
D̂r−1+kϕ2rD̂r+1−k , k ≤ r + 1,
D̂r−1+kϕ2r Îk−r−1 , k ≥ r + 1,

where, with ϕ(x) =
√
x

1−cx ,

(D̂f)(x) = (1− cx)−2f ′(x), D̂mf = D̂m−1(D̂f)
and

(̂If)(x) =
∫ x

0

f(t)
(1− ct)2dt, Îmf = Îm−1(Îf).

From Section 4 we get the eigenfunctions

g0,0(x) = 1, g1,0(x) = x

1− cx, gl,k(x) = D̂l+2(k−1)ϕ2(l+k−1), l + 2(k − 1) ≥ 0

for the operators B(k)
n and the differential operators D2r,(k).
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