# FURTHER RESULTS ON $L^{1}$-CONVERGENCE OF SOME MODIFIED COMPLEX TRIGONOMETRIC SUMS 

XHEVAT Z. KRASNIQI*


#### Abstract

In this paper we have defined a new class of numerical sequences, which tend to zero, briefly denoted by $\mathbb{K}^{2}$. Moreover, employing such class of numerical sequences we have studied $L^{1}$-convergence of some modified complex trigonometric sums introduced previously by others.


MSC 2010. 42A20, 42A32.
Keywords. $L^{1}$-convergence, null sequence, trigonometric series, modified sums.

## 1. INTRODUCTION

Let $\left(c_{k}\right), k \in\{0, \pm 1, \pm 2, \ldots\}$, be a sequence of complex numbers and let

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} c_{k} e^{i k x} \tag{1}
\end{equation*}
$$

be a formal complex trigonometric series with its partial sums

$$
\begin{equation*}
S_{n}(x)=\sum_{k=-n}^{n} c_{k} e^{i k x}, \quad n \in\{0,1,2, \ldots\} . \tag{2}
\end{equation*}
$$

Let

$$
\|f\|_{L^{1}}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)| d x
$$

be the $L^{1}$-norm of a function $f \in L^{1}$.
The following interesting statement is a well-known one: If a trigonometric series converges in $L^{1}$-norm to a function $f \in L^{1}$, then it is the Fourier series of the function $f$. Riesz (see [5], Vol. II, Chap. VIII, § 22) gave a counter example showing that in the metric $L^{1}$ we can not expect the converse of above mention statement to be true. This fact motivated the various authors to study the $L^{1}$ convergence of trigonometric series, introducing the so-called modified cosine and sine sums, since these modified sums approximate their limits better than the classical trigonometric series in the sense that they converge in $L^{1}$-norm to the sum of the trigonometric series whereas the classical series itself may not.

[^0]C. S. Rees and C. V. Stanojevic 3] for the first time introduced the following type of modified cosine sums
$$
f_{n}(x)=\frac{1}{2} \sum_{k=0}^{n} \triangle a_{k}+\sum_{k=1}^{n} \sum_{j=k}^{n} \triangle a_{j} \cos k x,
$$
and obtained a necessary and sufficient condition for the integrability of the limit of these sums, where $\triangle a_{j}=a_{j}-a_{j+1}$.

Then several interesting properties (their integrability [2] or $L^{1}$-convergence [15]) of these sums were investigated imposing several conditions on the coefficients $a_{k}$ in "old papers" [1], [2, [6] or in some "new papers" [4, [9], [13], [14, [16.

After introducing the sums $f_{n}(x)$, B. Ram and S. Kumari [8] seems to be motivated to introduce the set of the sums

$$
\begin{gathered}
h_{n}(x)=\frac{a_{0}}{2}+\sum_{k=1}^{n} \sum_{j=k}^{n} \triangle\left(\frac{a_{j}}{j}\right) k \cos k x \\
g_{n}(x)=\sum_{k=1}^{n} \sum_{j=k}^{n} \triangle\left(\frac{a_{j}}{j}\right) k \sin k x
\end{gathered}
$$

and studied their $L^{1}$-convergence under condition that the coefficients $a_{n}$ belong to the class $\mathbb{R}$.

Definition 1 ([12]). If $a_{k} \rightarrow 0$ as $k \rightarrow \infty$ and

$$
\sum_{k=1}^{\infty} k^{2}\left|\triangle^{2}\left(\frac{a_{k}}{k}\right)\right|<\infty
$$

then it is said that ( $a_{k}$ ) belongs to the class $\mathbb{R}$, where $\triangle^{2} a_{j}=a_{j}-2 a_{j+1}+a_{j+2}$.
The above definition were introduced by T. Kano who verified a result which we will formulate it as follows.

Theorem 2 (12). If $\left(a_{k}\right) \in \mathbb{R}$ then the series (11) and (2) are Fourier series or equivalently they represent integrable functions.

Among others, using this result B. Ram and S. Kumari proved the following result.

Theorem 3 ([8]). Let $\left(a_{k}\right) \in \mathbb{R}$. Then for $x \in(0, \pi]$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} t_{n}(x)=t(x), \quad t \in L(0, \pi], \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|t_{n}-t\right\|_{L^{1}} \rightarrow 0, \text { as } n \rightarrow \infty, \tag{4}
\end{equation*}
$$

where $t_{n}(x)$ represents either $h_{n}(x)$ or $g_{n}(x)$.

The authors of [9] have introduced the following modified complex trigonometric sums

$$
\begin{aligned}
g_{n}^{c}(x)= & S_{n}(x)+\frac{i}{2 \sin x}\left[c_{n} e^{i(n+1) x}-c_{-n} e^{-i(n+1) x}+c_{n+1} e^{i n x}-c_{-(n+1)} e^{-i n x}\right. \\
& \left.+\left(c_{n}-c_{n+2}\right) E_{n}(x)+\left(c_{-(n+2)}-c_{-n}\right) E_{-n}(x)\right]
\end{aligned}
$$

where $E_{n}(x)=\sum_{j=0}^{n} e^{i j x}$.
Note that the above sums are indeed the complex form of the modified sine and cosine sums introduced in [10] and [11] respectively.

Also they have introduced the following definition.
Definition 4. A sequence $\left(c_{k}\right)$ of complex numbers belongs to class $J^{*}$ if $\lim _{k \rightarrow \infty} c_{k}=0$, and there exists a sequence $\left(A_{k}\right)$ such that

$$
\begin{gather*}
A_{k} \downarrow 0, \quad \text { as } \quad k \rightarrow \infty,  \tag{5}\\
\sum_{k=1}^{\infty} k A_{k}<\infty, \tag{6}
\end{gather*}
$$

and

$$
\begin{equation*}
\left|\triangle\left(\frac{c_{k}-c_{-k}}{k}\right)\right| \leq \frac{A_{k}}{k}, \quad \forall k . \tag{7}
\end{equation*}
$$

Throughout this paper we will denote by $S_{n}(x)$ the partial sums of the series (1) and $\lim _{n \rightarrow \infty} S_{n}(x)=f(x)$.

Theorem 5 ([8]). Let $\left(c_{k}\right)$ belongs to the class $J^{*}$ then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} g_{n}^{c}(x)=f(x), \quad \text { exists for } \quad|x| \in(0, \pi], \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
f \in L^{1}(0, \pi] \quad \text { and } \quad\left\|g_{n}^{c}-f\right\|_{L^{1}} \rightarrow 0, \text { as } n \rightarrow \infty \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|S_{n}-f\right\|_{L^{1}} \rightarrow 0, \text { as } n \rightarrow \infty . \tag{10}
\end{equation*}
$$

Here and in sequel we will use the notation $\triangle^{2} b_{k}=\triangle b_{k}-\triangle b_{k+1}, k \in$ $\{1,2, \ldots\}$. Now we are going to introduce the following class of sequences of complex numbers.

Definition 6. A sequence $\left(c_{k}\right)$ of complex numbers belongs to class $\mathbb{K}^{2}$ if $\lim _{k \rightarrow \infty} c_{k}=0$, and there exists a sequence $\left(A_{k}\right)$ such that

$$
\begin{gather*}
A_{k} \downarrow 0, \quad \text { as } \quad k \rightarrow \infty,  \tag{11}\\
\sum_{k=1}^{\infty} k^{2} A_{k}<\infty, \tag{12}
\end{gather*}
$$

and

$$
\begin{equation*}
\max \left\{\left|\triangle^{2}\left(\frac{c_{k}}{k}\right)\right|,\left|\triangle^{2}\left(\frac{c_{-k}}{k}\right)\right|\right\} \leq \frac{A_{k}}{k^{2}}, \quad k \in\{1,2, \ldots\} . \tag{13}
\end{equation*}
$$

Next example shows that the there exist sequences that belong or not belong to the class $\mathbb{K}^{2}$.

Let $\left(c_{k}\right)$ be a sequence defined by its general term $c_{k}:=\frac{1}{n^{2}}, n \in\{1,2, \ldots\}$. Then, $\left|\triangle^{2}\left(\frac{c_{ \pm k}}{k}\right)\right| \leq \frac{4}{k^{3}}=\frac{A_{k}}{k^{2}}, A_{k}=\frac{4}{k} \downarrow 0$, and $\sum_{k=1}^{\infty} k^{2} A_{k}=+\infty$, which means that $\left(c_{k}\right) \notin \mathbb{K}^{2}$.

On the other hand, let $\left(\bar{c}_{k}\right)$ be a sequence defined by its general term $\bar{c}_{k}=\frac{1}{n^{5}}$ ,$n \in\{1,2, \ldots\}$. Then, $\left|\triangle^{2}\left(\frac{c_{ \pm k}}{k}\right)\right| \leq \frac{4}{k^{6}}=\frac{A_{k}}{k^{2}}, A_{k}=\frac{4}{k^{4}} \downarrow 0$, and $\sum_{k=1}^{\infty} k^{2} A_{k}<$ $+\infty$, which means that $\left(\bar{c}_{k}\right) \in \mathbb{K}^{2}$.

The aim of this paper is to study $L^{1}$-convergence of sums $g_{n}^{c}(x)$ under condition that the coefficients $c_{k}$ belong to the class $\mathbb{K}^{2}$.

Closing this section, we recall the well-known equality named as Abel's transformation: Let $n$ be a positive integer, and $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be two sequences. If $S_{k}=a_{1}+a_{2}+\cdots+a_{n}$, then

$$
\sum_{k=1}^{n} a_{k} b_{k}=\sum_{k=1}^{n-1} S_{k}\left(b_{k}-b_{k+1}\right)+S_{n} b_{n} .
$$

## 2. HELPFUL LEMMAS

Let

$$
\widetilde{D}_{n}(x)=\sum_{j=1}^{n} \cos (j x)=\frac{\sin \left(n+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}}
$$

and

$$
\widetilde{D}_{n}(x)=\sum_{j=1}^{n} \sin (j x)=\frac{\cos \frac{x}{2}-\cos \left(n+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}}
$$

be the Dirichlet's and conjugate Dirichlet's kernels respectively.
The following statements are needed for the proof of the main result.
Lemma 7 ([7). Let $r$ be a non-negative integer and $0<\varepsilon<\pi$. Then there exists $M_{r \varepsilon}>0$ such that for all $\varepsilon \leq|x| \leq \pi$ and all $n \geq 1$,
(i) $\left|E_{n}^{(r)}(x)\right| \leq \frac{M_{r \varepsilon} n^{r}}{|x|}$,
(ii) $\left|E_{-n}^{(r)}(x)\right| \leq \frac{M_{r \varepsilon} n^{r}}{|x|}$,
(iii) $\left|D_{n}^{(r)}(x)\right| \leq \frac{2 M_{r} \varepsilon^{r}}{|x|}$,
(iv) $\left|\widetilde{D}_{n}^{(r)}(x)\right| \leq \frac{M_{r \varepsilon} n^{r}}{|x|}$,

Lemma 8 ( $[$ ]). For $n \geq 1$, we have
(i) $\left\|\frac{E_{n}(x)}{2 \sin x}\right\|_{L^{1}}=o(n)$ as $n \rightarrow \infty$,
(ii) $\left\|\frac{E_{-n}(x)}{2 \sin x}\right\|_{L^{1}}=o(n)$ as $n \rightarrow \infty$,
(iii) $\left\|\frac{e^{i n x}}{2 \sin x}\right\|_{L^{1}}=o(\log n)$ as $n \rightarrow \infty$.

Lemma 9. Let $r$ be a non-negative integer and $0<\varepsilon<\pi$. Then there exists $M_{r \varepsilon}>0$ such that for all $\varepsilon \leq|x| \leq \pi$ and all $n \geq 1$,
(i) $\left|\bar{E}_{n}^{\prime}(x)\right| \leq \frac{M_{r \varepsilon} n^{2}}{|x|}$,
(ii) $\left|\bar{E}_{-n}^{\prime}(x)\right| \leq \frac{M_{r e} n^{2}}{|x|}$,
where $\bar{E}_{n}(x)=\sum_{m=1}^{n} E_{m}(x)$.
Proof. (i) Under conditions of this Lemma and Lemma 7 we have

$$
\begin{aligned}
\left|\bar{E}_{n}^{\prime}(x)\right| & \leq \sum_{m=1}^{n}\left|E_{m}^{\prime}(x)\right| \leq \frac{M_{r \varepsilon}}{|x|} \sum_{m=1}^{n} m \\
& =\frac{M_{r \varepsilon}}{|x|} \cdot \frac{n(n+1)}{2} \leq \frac{M_{r \varepsilon} n^{2}}{|x|},
\end{aligned}
$$

for $0<\varepsilon \leq|x| \leq \pi$.
(ii) Similarly we have obtained

$$
\left|\bar{E}_{-n}^{\prime}(x)\right| \leq \sum_{m=1}^{n}\left|E_{-m}^{\prime}(x)\right| \leq \frac{M_{r \varepsilon}}{|x|} \sum_{m=1}^{n} m \leq \frac{M_{r \varepsilon} n^{2}}{|x|},
$$

for $0<\varepsilon \leq|x| \leq \pi$.

## 3. MAIN RESULTS

The following theorem presents the main result.
Theorem 10. Let $\left(c_{k}\right)$ belongs to the class $\mathbb{K}^{2}$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} g_{n}^{c}(x)=f(x), \quad \text { exists for } \quad|x| \in(0, \pi], \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
f \in L^{1}(0, \pi] \quad \text { and } \quad\left\|g_{n}^{c}-f\right\|_{L^{1}} \rightarrow 0, \text { as } n \rightarrow \infty, \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|S_{n}(f)-f\right\|_{L^{1}} \rightarrow 0, \text { as } n \rightarrow \infty . \tag{16}
\end{equation*}
$$

Proof. Firstly, we will show that $f(x)$ exists on $(0, \pi]$. Indeed, it is clear that we can write

$$
S_{n}(x)=\sum_{k=-n}^{n} c_{k} e^{i k x}=c_{0}+\sum_{k=1}^{n}\left(\frac{c_{k}}{k} k e^{i k x}+\frac{c_{-k}}{k} k e^{-i k x}\right)
$$

Applying twice the Abel's transformation we obtain

$$
\begin{aligned}
& S_{n}(x)= c_{0}- \\
&-i\left[\sum_{k=1}^{n-2} \triangle^{2}\left(\frac{c_{k}}{k}\right) \bar{E}_{k}^{\prime}(x)+\triangle\left(\frac{c_{n-1}}{n-1}\right) \bar{E}_{n}^{\prime}(x)\right]-i \frac{c_{n}}{n} E_{n}^{\prime}(x) \\
&+i\left[\sum_{k=1}^{n-2} \triangle^{2}\left(\frac{c_{-k}}{k}\right) \bar{E}_{-k}^{\prime}(x)+\triangle\left(\frac{c_{-(n-1)}}{n-1}\right) \bar{E}_{-n}^{\prime}(x)\right]+i \frac{c_{-n}}{n} E_{-n}^{\prime}(x) .
\end{aligned}
$$

Based on Lemmas 7 and 9 we clearly have

$$
\begin{aligned}
& \quad\left|S_{n}(x)\right| \leq \\
& \leq\left|c_{0}\right|+\sum_{k=1}^{n-2}\left[\left|\triangle^{2}\left(\frac{c_{k}}{k}\right)\right|\left|\bar{E}_{k}^{\prime}(x)\right|+\left|\triangle^{2}\left(\frac{c_{-k}}{k}\right)\right|\left|\bar{E}_{-k}^{\prime}(x)\right|\right] \\
& \\
& +\left[\left|\triangle\left(\frac{c_{n-1}}{n-1}\right)\right|\left|\bar{E}_{n}^{\prime}(x)\right|+\left|\triangle\left(\frac{c_{-(n-1)}}{n-1}\right)\right|\left|\bar{E}_{-n}^{\prime}(x)\right|\right] \\
& \\
& +\frac{\left|c_{n}\right|}{n}\left|E_{n}^{\prime}(x)\right|+\frac{\left|c_{-n}\right|}{n}\left|E_{-n}^{\prime}(x)\right| \\
& \leq \\
& \left|c_{0}\right|+\frac{M_{r \varepsilon}}{|x|}\left\{\sum_{k=1}^{n-2} k^{2}\left[\left|\triangle^{2}\left(\frac{c_{k}}{k}\right)\right|+\left|\triangle^{2}\left(\frac{c_{-k}}{k}\right)\right|\right]\right. \\
& \\
& \left.\quad+n^{2}\left[\left|\triangle\left(\frac{c_{n-1}}{n-1}\right)\right|+\left|\triangle\left(\frac{c_{-(n-1)}}{n-1}\right)\right|\right]+\left|c_{n}\right|+\left|c_{-n}\right|\right\} \\
& \leq \\
& \leq\left|c_{0}\right|+\frac{2 M_{r \varepsilon}}{|x|}\left\{\sum_{k=1}^{n-2} A_{k}+2 \sum_{k=n-1}^{\infty} k^{2}\left[\left|\triangle^{2}\left(\frac{c_{k}}{k}\right)\right|+\left|\triangle^{2}\left(\frac{c_{-k}}{k}\right)\right|\right]+2 \bar{M}\right\} \\
& \leq \\
& \leq \\
& \left|c_{0}\right|+\frac{2 M_{r \varepsilon}}{|x|}\left\{5 \sum_{k=1}^{\infty} k^{2} A_{k}+2 \bar{M}\right\}<+\infty,
\end{aligned}
$$

since $\left(c_{k}\right) \in \mathbb{K}^{2}$, where $\bar{M}$ is a positive constant.
Subsequently, $\lim _{n \rightarrow \infty} S_{n}(x)=\lim _{n \rightarrow \infty} g_{n}^{c}(x)=f(x)$ exists, because of the boundedness of the functions $\frac{e^{i n x}}{\sin x}, \frac{E_{n}(x)}{\sin x}, \frac{E_{-n}(x)}{\sin x}$ on $(0, \pi]$, and thus 14) holds true.

Now we are going to prove (15). Indeed, for $x \neq 0$ we have

$$
\begin{aligned}
f(x)-g_{n}^{c}(x)= & \sum_{k=n+1}^{\infty}\left(\frac{c_{k}}{k} k e^{i k x}+\frac{c_{-k}}{k} k e^{-i k x}\right) \\
& -\frac{i}{2 \sin x}\left[c_{n} e^{i(n+1) x}-c_{-n} e^{-i(n+1) x}+c_{n+1} e^{i n x}\right. \\
& \left.-c_{-(n+1)} e^{-i n x}+\left(c_{n}-c_{n+2}\right) E_{n}(x)+\left(c_{-(n+2)}-c_{-n}\right) E_{-n}(x)\right] .
\end{aligned}
$$

Again, applying twice the Abel's transformation to the above equality we obtain

$$
\begin{aligned}
& f(x)-g_{n}^{c}(x)= \\
&=-i \lim _{p \rightarrow \infty}\left\{\sum_{k=n+1}^{p-2}\left[\triangle^{2}\left(\frac{c_{k}}{k}\right) \bar{E}_{k}^{\prime}(x)-\triangle^{2}\left(\frac{c_{-k}}{k}\right) \bar{E}_{-k}^{\prime}(x)\right]\right. \\
&+\triangle\left(\frac{c_{p-1}}{p-1}\right) \bar{E}_{p-1}^{\prime}(x)-\triangle\left(\frac{c_{-(p-1)}}{p-1}\right) \bar{E}_{-(p-1)}^{\prime}(x)+\frac{c_{p}}{p} E_{p}^{\prime}(x) \\
&-\frac{c_{-p}}{p} E_{-p}^{\prime}(x)-\triangle\left(\frac{c_{n}}{n}\right) \bar{E}_{n}^{\prime}(x)+\triangle\left(\frac{c_{-n}}{n}\right) \bar{E}_{-n}^{\prime}(x)-\frac{c_{n+1}}{n+1} E_{n}^{\prime}(x) \\
&\left.+\frac{c_{-(n+1)}}{n+1} E_{-n}^{\prime}(x)\right\}-\frac{i}{2 \sin x}\left[c_{n} e^{i(n+1) x}-c_{-n} e^{-i(n+1) x}+c_{n+1} e^{i n x}\right. \\
&\left.-c_{-(n+1)} e^{-i n x}+\left(c_{n}-c_{n+2}\right) E_{n}(x)+\left(c_{-(n+2)}-c_{-n}\right) E_{-n}(x)\right] \\
&=- i\left\{\sum_{k=n+1}^{\infty}\left[\triangle^{2}\left(\frac{c_{k}}{k}\right) \bar{E}_{k}^{\prime}(x)-\triangle^{2}\left(\frac{c_{-k}}{k}\right) \bar{E}_{-k}^{\prime}(x)\right]-\triangle\left(\frac{c_{n}}{n}\right) \bar{E}_{n}^{\prime}(x)\right. \\
&\left.+\triangle\left(\frac{c_{-n}}{n}\right) \bar{E}_{-n}^{\prime}(x)-\frac{c_{n+1}}{n+1} E_{n}^{\prime}(x)+\frac{c_{-(n+1)}}{n+1} E_{-n}^{\prime}(x)\right\} \\
&-\frac{i}{2 \sin x}\left[c_{n} e^{i(n+1) x}-c_{-n} e^{-i(n+1) x}+c_{n+1} e^{i n x}-c_{-(n+1)} e^{-i n x}\right. \\
&\left.+\left(c_{n}-c_{n+2}\right) E_{n}(x)+\left(c_{-(n+2)}-c_{-n}\right) E_{-n}(x)\right] .
\end{aligned}
$$

Hence, using Lemmas 7 and 9 we get

$$
\begin{aligned}
& \left|f(x)-g_{n}^{c}(x)\right| \leq \\
\leq & \sum_{k=n+1}^{\infty}\left[\left|\triangle^{2}\left(\frac{c_{k}}{k}\right)\right|\left|\bar{E}_{k}^{\prime}(x)\right|+\left|\triangle^{2}\left(\frac{c_{-k}}{k}\right)\right|\left|\bar{E}_{-k}^{\prime}(x)\right|\right] \\
& +\left|\triangle\left(\frac{c_{n}}{n}\right)\right|\left|\bar{E}_{n}^{\prime}(x)\right|+\left|\triangle\left(\frac{c_{-n}}{n}\right)\right|\left|\bar{E}_{-n}^{\prime}(x)\right|+\left|\frac{c_{n+1}}{n+1}\right|\left|E_{n}^{\prime}(x)\right| \\
& \left.+\left|\frac{c_{-(n+1)}}{n+1}\right|\left|E_{-n}^{\prime}(x)\right|\right\}+\frac{1}{2|\sin x|}\left[\left|c_{n}\right|+\left|c_{-n}\right|+\left|c_{n+1}\right|\right. \\
& \left.+\left|c_{-(n+1)}\right|+\left(\left|c_{n}\right|+\left|c_{n+2}\right|\right)\left|E_{n}(x)\right|+\left(\left|c_{-(n+2)}\right|+\left|c_{-n}\right|\right)\left|E_{-n}(x)\right|\right] \\
\leq & \frac{M_{r \varepsilon}}{|x|}\left\{\sum_{k=n+1}^{\infty} k^{2}\left[\left|\triangle^{2}\left(\frac{c_{k}}{k}\right)\right|+\left|\triangle^{2}\left(\frac{c_{-k}}{k}\right)\right|\right]\right. \\
& \left.+n^{2}\left[\left|\triangle\left(\frac{c_{n}}{n}\right)\right|+\left|\triangle\left(\frac{c_{-n}}{n}\right)\right|\right]+(n+1)\left(\left|c_{n+1}\right|+\left|c_{-(n+1)}\right|\right)\right\} \\
& +\frac{\left|c_{n}\right|+\left|c_{-n}\right|+\left|c_{n+1}\right|+\left|c_{-(n+1)}\right|}{2|\sin x|}
\end{aligned}
$$

$$
\begin{aligned}
& +\left(\left|c_{n}\right|+\left|c_{n+2}\right|\right)\left|\frac{E_{n}(x)}{2 \sin x}\right|+\left(\left|c_{-(n+2)}\right|+\left|c_{-n}\right|\right)\left|\frac{E_{-n}(x)}{2 \sin x}\right| \\
\leq & \frac{M_{r \varepsilon}}{|x|}\left[2 \sum_{k=n}^{\infty} A_{k}+(n+1)\left(\left|c_{n+1}\right|+\left|c_{-(n+1)}\right|\right)\right] \\
& +\frac{\left|c_{n}\right|+\left|c_{-n}\right|+\left|c_{n+1}\right|+\left|c_{-(n+1)}\right|}{2|\sin x|} \\
& +\left(\left|c_{n}\right|+\left|c_{n+2}\right|\right)\left|\frac{E_{n}(x)}{2 \sin x}\right|+\left(\left|c_{-(n+2)}\right|+\left|c_{-n}\right|\right)\left|\frac{E_{-n}(x)}{2 \sin x}\right| .
\end{aligned}
$$

Therefore, using Lemma 8 we obtain

$$
\begin{aligned}
\left\|f-g_{n}^{c}\right\|_{L^{1}} \leq & M_{r \varepsilon}\left[2 \sum_{k=n}^{\infty} A_{k} \int_{0}^{\pi} \frac{d x}{|x|}+(n+1)\left(\left|c_{n+1}\right|+\left|c_{-(n+1)}\right|\right) \int_{0}^{\pi} \frac{d x}{|x|}\right] \\
& +\frac{\left|c_{n}\right|+\left|c_{-n}\right|+\left|c_{n+1}\right|+\left|c_{-(n+1)}\right|}{2} \int_{0}^{\pi} \frac{d x}{|\sin x|} \\
& +\left(\left|c_{n}\right|+\left|c_{n+2}\right|\right) \int_{0}^{\pi}\left|\frac{E_{n}(x)}{2 \sin x}\right| d x \\
& +\left(\left|c_{-(n+2)}\right|+\left|c_{-n}\right|\right) \int_{0}^{\pi}\left|\frac{E_{-n}(x)}{2 \sin x}\right| d x \\
\leq & M_{r \varepsilon}\left[2 \sum_{k=n}^{\infty} A_{k} \log k+(n+1)\left(\left|c_{n+1}\right|+\left|c_{-(n+1)}\right|\right) o(\log n)\right] \\
& +\frac{\left|c_{n}\right|+\left|c_{-n}\right|+\left|c_{n+1}\right|+\left|c_{-(n+1)}\right|}{2} o(\log n) \\
& +\left(\left|c_{n}\right|+\left|c_{n+2}\right|\right) o(n)+\left(\left|c_{-(n+2)}\right|+\left|c_{-n}\right|\right) o(n) .
\end{aligned}
$$

Now we note that

$$
\sum_{k=n}^{\infty} A_{k} \log k \leq \sum_{k=n}^{\infty} k^{2} A_{k}=o(1)
$$

and

$$
\begin{aligned}
(n+1)\left|c_{ \pm(n+1)}\right| \log n & \leq(n+1)^{3}\left|\frac{c_{ \pm(n+1)}}{n+1}\right| \\
& \leq(n+1)^{3} \sum_{k=n+1}^{\infty}\left|\triangle\left(\frac{c_{ \pm k}}{k}\right)\right| \\
& \leq(n+1)^{3} \sum_{k=n+1}^{\infty} \sum_{j=k}^{\infty}\left|\triangle^{2}\left(\frac{c_{ \pm j}}{j}\right)\right| \\
& =(n+1)^{3} \sum_{j=n+1}^{\infty}(j-n)\left|\triangle^{2}\left(\frac{c_{ \pm j}}{j}\right)\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{j=n+1}^{\infty} j^{4}\left|\triangle^{2}\left(\frac{c_{ \pm j}}{j}\right)\right| \\
& \leq \sum_{j=n+1}^{\infty} j^{4} \frac{A_{j}}{j^{2}}=\sum_{j=n+1}^{\infty} j^{2} A_{j}=o(1)
\end{aligned}
$$

as $n \rightarrow \infty$.
Subsequently, we get

$$
\left\|f-g_{n}^{c}\right\|_{L^{1}}=o(1) \quad \text { as } \quad n \rightarrow \infty
$$

Using the latest equality and the fact that $g_{n}^{c}(x)$ is a polynomial it follows that $f \in L^{1}(0, \pi]$.

Finally, we will prove 16 . Namely, using some facts used above we have

$$
\begin{aligned}
& \int_{0}^{\pi}\left|f(x)-S_{n}(x)\right| d x \leq \\
& \leq \int_{0}^{\pi}\left|f(x)-g_{n}^{c}(x)\right| d x+\int_{0}^{\pi}\left|g_{n}^{c}(x)-S_{n}(x)\right| d x \\
& \leq \int_{0}^{\pi}\left|f(x)-g_{n}^{c}(x)\right| d x+\int_{0}^{\pi} \left\lvert\, \frac{i}{2 \sin x}\left[c_{n} e^{i(n+1) x}-c_{-n} e^{-i(n+1) x}+c_{n+1} e^{i n x}\right.\right. \\
&\left.-c_{-(n+1)} e^{-i n x}+\left(c_{n}-c_{n+2}\right) E_{n}(x)+\left(c_{-(n+2)}-c_{-n}\right) E_{-n}(x)\right] \mid d x \\
& \leq \int_{0}^{\pi}\left|f(x)-g_{n}^{c}(x)\right| d x+\left[\left|c_{n}\right|+\left|c_{-n}\right|+\left|c_{n+1}\right|+\left|c_{-(n+1)}\right|\right] \int_{0}^{\pi} \frac{d x}{2|\sin x|} \\
&+\left(\left|c_{n}\right|+\left|c_{n+2}\right|\right) \int_{0}^{\pi}\left|\frac{E_{n}(x)}{2 \sin x}\right| d x+\left(\left|c_{-(n+2)}\right|+\left|c_{-n}\right|\right) \int_{0}^{\pi}\left|\frac{E_{-n}(x)}{2 \sin x}\right| d x \\
& \leq \int_{0}^{\pi}\left|f(x)-g_{n}^{c}(x)\right| d x+\left[\left|c_{n}\right|+\left|c_{-n}\right|+\left|c_{n+1}\right|+\left|c_{-(n+1)}\right|\right] o(\log n) \\
& \quad+\left[\left|c_{n}\right|+\left|c_{n+2}\right|+\left|c_{-(n+2)}\right|+\left|c_{-n}\right|\right] o(n) \\
&= o(1)+o(1)+o(1)=o(1), n \rightarrow \infty .
\end{aligned}
$$

The proof of theorem is completed.

Acknowledgements. The author would like to thank the anonymous referee for her/his remarks which improved the presentation of this paper. Also, many thanks goes for my ex-supervisor, Professor Naim L. Braha, for his advices.

## REFERENCES

[1] B. Ram, Convergence of certain cosine sums in the metric space L, Proc. Amer. Math. Soc., 66 (1977), pp. 258-260. 저
[2] B. Ram, Integrability of Ress-Stanojević sums, Acta Sci. Math., 42 (1980), pp. 153-155.
[3] C. S. Rees and Č. V. Stanojević, Necessary and sufficient condition for intergrability of certain cosine sums, J. Math. Anal. Appl., 43 (1973), pp. 579-586. [^]
[4] L. Leindler, Additions to the Telyakovski乞 class S, J. Ineq. Pure and Appl. Math., 4 (2003) Art. 35.
[5] N. K. Bary, A treatise on trigonometric series (London: Pergamon Press) Vol.II, 1964.
[6] S. A. Telyakovskĭ̌, On a sufficient condition of Sidon for integrability of trigonometric series, Math. Zametki, (in Russian) 14 (1973), pp. 317-328.
[7] S. S. Bhatia and B. Ram, The extensions of the F. Móricz's theorems, Proc. Amer. Math. Soc. 124 (1996), no. 6, pp. 1821-904. 『
[8] S. Kumari and B. Ram, $L^{\perp}$-convergence of certain trigonometric sums, Indian J. Pure Appl. Math. 20 (9), 908-914, 1989.
[9] J. Kaur and S. S. Bhatia, Convergence of modified complex trigonometric sums in the metric space L, Lobachevskii J. Math., 31 (2010), No. 3, pp. 290-294. 즉
[10] J. Kaur and S. S. Bhatia, A class of $L^{1}$ convergence of new modified cosine sum, Southeast Asian Bull. Math., 36 (6) (2012), pp. 831-836.
[11] K. KaUR, S. S. Bhatia and B. Ram, Integrability and $L^{1}$ convergence of modified sine sums, Georgian. Math. J. 11 (1) (2004), pp. 99-104. 즈
[12] T. Kano, Coefficients of some trigonometric series, J. Fac. Sci. Shinshu Univ., 3 (1968), pp. 153-162.
[13] Xh. Z. Krasniqi, $L^{1}$-convergence of a set of modified sums, An. Univ. Oradea Fasc. Mat., Tomus XXII (2015), No. 1, pp. 41-46.
[14] Xh. Z. Krasniqi, Some new modified cosine sums and $L^{1}$-convergence of cosine trigonometric series, Arch. Math. (Brno), Tomus 49 (2013), pp. 43-50.
[15] Хн. Z. Krasniqi, On $L^{1}$-convergence of Rees-Stanojevic's sums with coefficients from the class K, Matematiche (Catania), Vol. LXV-Fasc. II (2010), pp. 25-32. ©
[16] Ż. Tomovski, On a theorem of S. S. Bhatia and B. Ram, Math. Commun, 8, 187-193, 2003.

Received by the editors: December 20, 2015.


[^0]:    *Department of Mathematics and Informatics, Faculty of Education, University of Prishtina "Hasan Prishtina", Avenue "Mother Theresa" 5, 10000 Prishtina, Kosovo, e-mail: xhevat.krasniqi@uni-pr.edu.

