TY - JOUR
AU - Păvăloiu, Ion
PY - 2001/02/01
Y2 - 2024/03/01
TI - On a Halley-Steffensen method for approximating the solutions of scalar equations
JF - Rev. Anal. Numér. Théor. Approx.
JA - Rev. Anal. Numér. Théor. Approx.
VL - 30
IS - 1
SE - Articles
DO - 10.33993/jnaat301-683
UR - https://ictp.acad.ro/jnaat/journal/article/view/2001-vol30-no1-art9
SP - 69-74
AB - <p>In the present paper we show that the Steffensen method for solving the scalar equation \(f\left( x\right) =0\), applied to equation<br>\[<br>h\left( x\right) =\tfrac{f\left( x\right) }{\sqrt{f^{\prime}\left( x\right) }}=0,<br>\]<br>leads to bilateral approximations for the solution. Moreover, the convergence order is at least 3, i.e. as in the case of the Halley method.</p>
ER -