LOTKA-VOLTERRA SYSTEM WITH TWO DELAYS VIA WEAKLY PICARD OPERATORS

Diana Otrocol

Faculty of Mathematics and Computer Science
Babeş-Bolyai University
Str. Kogălniceanu, nr. 1, RO-400084 Cluj-Napoca, Romania
E-mail : dotrocol@math.ubbcluj.ro

Abstract. In this paper we apply the weakly Picard operators technique to study a Lotka-Volterra system with two delays.

1. Introduction

The purpose of this paper is to study the following Lotka-Volterra system with delays

\[x_i'(t) = f_i(t, x_1(t), x_2(t), x_1(t - \tau_1), x_2(t - \tau_2)), \quad t \in [t_0, b], \quad i = 1, 2; \]

\[\begin{cases}
 x_1(t) = \varphi(t), & t \in [t_0 - \tau_1, t_0], \\
 x_2(t) = \psi(t), & t \in [t_0 - \tau_2, t_0],
\end{cases} \]

where

(H1) \(\tau_1 \leq \tau_2, \; t_0 < b; \)
(H2) \(X \) is an ordered Banach space, \(f_i \in C([t_0, b] \times X \times X \times X, X); \)
(H3) there exists \(L_f > 0 \) such that:

\[|f_i(t, u_1, u_2, u_3, u_4) - f_i(t, v_1, v_2, v_3, v_4)| \leq L_f \left(\sum_{k=1}^{4} |u_k - v_k| \right), \]

for all \(t \in [t_0, b], \; u_k, v_k \in \mathbb{R}, \; k = 1, 2, 3, 4, \; i = 1, 2; \)
(H4) \(\varphi \in C([t_0 - \tau_1, t_0]), \; \psi \in C([t_0 - \tau_2, t_0]). \)

Some problems concerning problem (1)+(2) were studied by Y. Muroya [2], Y. Saito, T. Hara and W. Ma [8], D. Otrocol [3, 4].

The problem (1)+(2) with \(x_1 \in C([t_0 - \tau_1, b] \cap C^1[t_0, b], \; x_2 \in C([t_0 - \tau_2, b] \cap C^1[t_0, b] \)

is equivalent with

\[x_1(t) = \begin{cases}
 \varphi(t), & t \in [t_0 - \tau_1, t_0], \\
 \varphi(t_0) + \int_{t_0}^{t} f_1(s, x_1(s), x_2(s), x_1(s - \tau_1), x_2(s - \tau_2))ds, & t \in [t_0, b],
\end{cases} \]
\(x_2(t) = \begin{cases}
\psi(t), & t \in [t_0 - \tau_1, t_0], \\
\psi(t_0) + \int_{t_0}^{t} f_2(s, x_1(s), x_2(s), x_1(s - \tau_1), x_2(s - \tau_2)) \, ds, & t \in [t_0, b],
\end{cases} \)

where \(x_1 \in C[t_0 - \tau_1, b] \) and \(x_2 \in C[t_0 - \tau_2, b] \).

The system (1) is equivalent with

\(x_1(t) = \begin{cases}
x_1(t_0), & t \in [t_0 - \tau_1, t_0], \\
x_1(t_0) + \int_{t_0}^{t} f_1(s, x_1(s), x_2(s), x_1(s - \tau_1), x_2(s - \tau_2)) \, ds, & t \in [t_0, b],
\end{cases} \)

\(x_2(t) = \begin{cases}
x_2(t_0), & t \in [t_0 - \tau_2, t_0], \\
x_2(t_0) + \int_{t_0}^{t} f_2(s, x_1(s), x_2(s), x_1(s - \tau_1), x_2(s - \tau_2)) \, ds, & t \in [t_0, b].
\end{cases} \)

Consider the following operators

\(A_f, B_f : C[t_0 - \tau_1, b] \times C[t_0 - \tau_2, b] \to C[t_0 - \tau_1, b] \times C[t_0 - \tau_2, b], \)

where \(A_f(x_1, x_2) \) is defined by the second part of (3) and \(B_f(x_1, x_2) \) is defined by the second part of (4).

Remark 1. Let \(\varphi \in C([t_0 - \tau_1, t_0], X) \) and \(\psi \in C([t_0 - \tau_2, t_0], X) \). Then we consider \(X_\varphi := \{ x_1 \in C([t_0 - \tau_1, b], X) \mid x_1|_{[t_0-\tau_1,t_0]} = \varphi \} \), \(X_\psi := \{ x_2 \in C([t_0 - \tau_2, b], X) \mid x_2|_{[t_0-\tau_2,t_0]} = \psi \} \).

We remark that \(X = \bigcup_{\varphi, \psi} X_\varphi \times X_\psi \) is a partition of \(X \) and \(X_\varphi \times X_\psi \) is an invariant subset of \(A_f \) and of \(B_f \) for all \(\varphi \in C([t_0 - \tau_1, t_0]) \) and \(\psi \in C([t_0 - \tau_2, t_0]) \).

This remark suggests us to consider the theory of weakly Picard operators.

2. Weakly Picard operators

Ioan A. Rus introduced the Picard operators class (PO) and the weakly Picard operators class (WPO) for the operators defined on a metric space and he gave basic notations, definitions and many results in this field in many papers [5-7].

In what follows we shall consider some of these results that are useful in our paper.

Let \((X, d) \) be a metric space and \(A : X \to X \) be an operator. We denote

\[
\begin{align*}
P(X) & := \{ Y \subset X \mid Y \neq \emptyset \}; \\
F_A & := \{ x \in X \mid A(x) = x \} - \text{the fixed point set of } A; \\
I(A) & := \{ Y \in P(X) \mid A(Y) \subset Y \}; \\
A^{n+1} & := A \circ A^n, \quad A^0 = 1_X, \quad A^1 = A, \quad n \in \mathbb{N}.
\end{align*}
\]
Definition 1. The operator A is a Picard operator (PO) if there exists $x^* \in X$ such that:
(i) $F_A = \{x^*\}$;
(ii) the sequence $(A^n(x_0))_{n \in \mathbb{N}}$ converges to x^* for all $x_0 \in X$.

Definition 2. The operator A is a weakly Picard operator (WPO) if the sequence $(A^n(x))_{n \in \mathbb{N}}$ converges, for all $x \in X$, and the limit (which may depend on x) is a fixed point of A.

Definition 3. If A is WPO, then we consider the operator $A^\infty : X \to X$, defined by
$$A^\infty(x) := \lim_{n \to \infty} A^n(x).$$

Remark 2. $A^\infty(X) = F_A$.

Remark 3. If A is a WPO and $F_A = \{x^*\}$, then by definition the operator A is a PO.

Remark 4. If A is a PO, then
$$F_{A^n} = F_A = \{x^*\}, \text{ for all } n \in \mathbb{N}.$$

Remark 5. If A is a WPO, then
$$F_{A^n} = F_A \neq \emptyset, \text{ for all } n \in \mathbb{N}.$$

Let (X, d, \leq) be an ordered metric space and $A : X \to X$ an operator. We have

Lemma 1. Let (X, d, \leq) be an ordered metric space and $A : X \to X$ an operator such that:
(i) A is monotone increasing;
(ii) A is WPO.
Then the operator A^∞ is monotone increasing.

Lemma 2. (Abstract comparison lemma) Let (X, d, \leq) be an ordered metric space and $A, B, C : X \to X$ such that:
(i) $A \leq B \leq C$;
(ii) the operators A, B, C are WPOs;
(iii) the operator B is monotone increasing.
Then
$$x \leq y \leq z \implies A^\infty(x) \leq A^\infty(y) \leq A^\infty(z).$$

Remark 6. Let A, B, C as in the Lemma 2. Moreover, we suppose that $F_B = \{x_B^*\}$ i.e., B is a Picard operator. Then we have
$$A^\infty(x) \leq x_B^* \leq C^\infty(x), \forall x \in X.$$ But $A^\infty(X) = F_A$, $C^\infty(X) = F_C$. Thus we have
$$F_A \leq x_B^* \leq F_C.$$
Lemma 3. (Abstract Gronwall lemma) Let \((X,d,\leq)\) be an ordered metric space and \(A : X \to X\) an operator. We suppose that:

(i) \(A\) is a Picard operator;
(ii) \(A\) is monotone increasing.

If we denote by \(x^*_A\), the unique fixed point of \(A\), then

(a) \(x \leq A(x) \implies x \leq x^*_A\);
(b) \(x \geq A(x) \implies x \geq x^*_A\).

3. Main results

Consider the problem (1)+(2). We have

Theorem 4. [4, Theorem 1] We suppose that:

(a) the conditions \((H_1)-(H_4)\) are satisfied,
(b) \(4L + 1 < 1\).

Then the problem (1)+(2) has a unique solution. Moreover, if \((x_1^*, x_2^*)\) is the unique solution of (1)+(2), then

\[
(x_1^*, x_2^*) = \lim_{n \to \infty} A^n_f(x_1, x_2), \text{ for all } x_1 \in C[t_0 - \tau_1, b], x_2 \in C[t_0 - \tau_2, b].
\]

Remark 7. From Theorem 4 it follows that the operator \(A_f |_{X_\varphi \times X_\psi} : X_\varphi \times X_\psi \to X_\varphi \times X_\psi\) is PO. But

\[
A_f |_{X_\varphi \times X_\psi} = B_f |_{X_\varphi \times X_\psi},
\]

and

\[
X := \bigcup_{\varphi, \psi} X_\varphi \times X_\psi, \quad X_\varphi \times X_\psi \in I(A_f), \quad X_\varphi \times X_\psi \in I(B_f).
\]

So, the operator \(B_f\) is WPO.

Theorem 5. We suppose that

(a) the conditions \((H_1)-(H_4)\) are satisfied,
(b) \(f_i(t, \cdot, \cdot, \cdot)\) is monotone increasing for all \(t \in [t_0, b]\), \(i = 1, 2\).

Let \((x_1^1, x_2^1), (x_1^2, x_2^2)\) be two solutions of the equation (1). If \(x_1^1(t) \leq x_1^2(t)\) with \(t \in [t_0 - \tau_1, b]\) and \(x_2^1(t) \leq x_2^2(t)\) with \(t \in [t_0 - \tau_2, b]\), then \(x_1^1 \leq x_1^2\) and \(x_2^1 \leq x_2^2\).

Proof. From Remark 7 we have that \(B_f\) is WPO.

Let \((x_1^1, x_2^1), (x_1^2, x_2^2)\) be two solutions of the equations (1), i.e., two fixed points of \(B_f\).

We suppose that

\[
x_1^1 \big|_{[t_0 - \tau_1, t_0]} \leq x_1^2 \big|_{[t_0 - \tau_1, t_0]},
\]
\[
x_2^1 \big|_{[t_0 - \tau_2, t_0]} \leq x_2^2 \big|_{[t_0 - \tau_2, t_0]}.
\]

Then there exist \(\tilde{x}_1^1 \in X_{x_1^1|_{[t_0 - \tau_1, t_0]}}\) and \(\tilde{x}_2^1 \in X_{x_2^1|_{[t_0 - \tau_2, t_0]}}\) such as \((\tilde{x}_1^1, \tilde{x}_2^1) \leq (\tilde{x}_1^2, \tilde{x}_2^2)\).

It is clear that \((x_1^1, x_2^1) = B_f^\varphi(x_1^1, x_2^1)\).
From the condition (b), the operator B_f is monotone increasing. By Lemma 1 we have that

$$(x_1^1, x_1^2) \leq (x_2^1, x_2^2) \implies B_f^\infty(x_1^1, x_1^2) \leq B_f^\infty(x_2^1, x_2^2).$$

So, $(x_1^1, x_1^2) \leq (x_2^1, x_2^2)$.

Theorem 6. Consider the following differential equations

$$x'_i(t) = f_i^j(t, x_i(t), x_2(t), x_1(t-\tau_1), x_2(t-\tau_2)), \; t \in [t_0, b], \; i = 1, 2, j = 1, 2, 3. \; (5)$$

We suppose that

(a) f_i^j satisfies the conditions (H_1)-$H_3), \; i = 1, 2, j = 1, 2, 3$ and $f_i^1 \leq f_i^2 \leq f_i^3$,

(b) $f_i^j(t, \cdot, \cdot, \cdot, \cdot, \cdot)$ is monotone increasing.

Let (x_1^1, x_1^2) be a solution of the system (5), $j = 1, 2, 3.$ If $x_1^1(t) \leq x_1^2(t) \leq x_1^3(t)$ with $t \in [t_0-\tau_1, b]$ and $x_2^1(t) \leq x_2^2(t) \leq x_2^3(t)$ with $t \in [t_0-\tau_2, b]$, then $x_1^1 \leq x_1^2 \leq x_1^3$ and $x_2^1 \leq x_2^2 \leq x_2^3$.

Proof. We consider the operators B_f^j, $j = 1, 2, 3.$ These operators are WPOs. Condition (b) implies that the operator B_f^j is monotone increasing.

We suppose that

$$x_1^1 |_{[t_0-\tau_1, t_0]} \leq x_1^2 |_{[t_0-\tau_1, t_0]} \leq x_1^3 |_{[t_0-\tau_1, t_0]};$$

$$x_2^1 |_{[t_0-\tau_2, t_0]} \leq x_2^2 |_{[t_0-\tau_2, t_0]} \leq x_2^3 |_{[t_0-\tau_2, t_0]}.$$

Then there exist $\tilde{x}_1^1 \in X_{x_1^1 |_{[t_0-\tau_1, t_0]}}$ and $\tilde{x}_2^1 \in X_{x_2^1 |_{[t_0-\tau_2, t_0]}}$ such as $(\tilde{x}_1^1, \tilde{x}_1^2) \leq (\tilde{x}_2^1, \tilde{x}_2^2) \leq (x_1^1, x_1^2).$ It is clear that $(\tilde{x}_1^1, \tilde{x}_1^2) = B_f^\infty(\tilde{x}_2^1, \tilde{x}_2^2), \; j = 1, 2, 3.$

It follows from Lemma 2 that $B_f^1(x_1^1, x_1^2) \leq B_f^2(x_1^1, x_1^2) \leq B_f^3(x_1^1, x_1^2)$.

From the abstract Gronwall lemma we have

Theorem 7. We suppose that

(a) the conditions (H_1)-$H_4)$ are satisfied,

(b) $f_i(t, \cdot, \cdot, \cdot, \cdot, \cdot)$ is monotone increasing for all $t \in [t_0, b], \; i = 1, 2$.

Let (x_1, x_2) be a solution of the system (1) and (y_1, y_2) a solution of the inequality

$$y'_i(t) \leq f_i(t, y_1(t), y_2(t), y_1(t-\tau_1), y_2(t-\tau_2)), \; t \in [t_0, b], \; i = 1, 2.$$

Then

$$y_1 |_{[t_0-\tau_1, t_0]} \leq x_1 |_{[t_0-\tau_1, t_0]} \implies y_1 \leq x_1,$$

$$y_2 |_{[t_0-\tau_2, t_0]} \leq x_2 |_{[t_0-\tau_2, t_0]} \implies y_2 \leq x_2.$$
Proof. In the terms of the operator B_f, we have

$$(x_1, x_2) = B_f(x_1, x_2) \text{ and } (y_1, y_2) \leq B_f(y_1, y_2)$$

On the other hand, from the condition (b), the operator B_f^∞ is monotone increasing and we have

$$(y_1, y_2) \leq B_f^\infty(y_1, y_2) = B_f^\infty\left(\tilde{y}_1 \mid_{[t_0-\tau_1, t_0]}, \tilde{y}_2 \mid_{[t_0-\tau_2, t_0]}\right)$$

$$\leq B_f^\infty\left(\tilde{x}_1 \mid_{[t_0-\tau_1, t_0]}, \tilde{x}_2 \mid_{[t_0-\tau_2, t_0]}\right) = (x_1, x_2).$$

So, $(y_1, y_2) \leq (x_1, x_2)$.

Example 1. (D. Otrocol, [3]) Consider the following system with two delays:

$$\begin{align*}
 x_1'(t) & = x_1(t-2) + x_2(t-5) \\
 x_2'(t) & = x_1(t-2) - x_2(t-5), \quad t \in [0, 5]
\end{align*}$$

with initial condition

$$\begin{align*}
 x_1(t) & = 1, \quad t \in [-2, 0] \\
 x_2(t) & = 0, \quad t \in [-5, 0].
\end{align*}$$

The exact solution for this problem is

$$(x_1(t), x_2(t)) = \begin{cases}
 (t + 1, t), & \text{if } t \in [0, 2] \\
 \left(\frac{t^2}{2} - t + 3, \frac{t^2}{2} - t + 2\right), & \text{if } t \in [2, 4] \\
 \left(\frac{(t-2)^3}{6} - \frac{(t-2)^2}{2} + 3t - 26, \frac{(t-2)^3}{6} - \frac{(t-2)^2}{2} + 3t - \frac{16}{3}\right), & \text{if } t \in [4, 5].
\end{cases}$$

Let (y_1, y_2) be a solution of the inequalities

$$\begin{align*}
 y_1'(t) & \leq y_1(t-2) + y_2(t-5) \\
 y_2'(t) & \leq y_1(t-2) - y_2(t-5), \quad t \in [0, 5].
\end{align*}$$

Then, it follows from Theorem 7 that

$$\begin{align*}
 y_1 \mid_{[-2,0]} & \leq x_1 \mid_{[-2,0]} \Rightarrow y_1 \leq x_1, \\
 y_2 \mid_{[-5,0]} & \leq x_2 \mid_{[-5,0]} \Rightarrow y_2 \leq x_2.
\end{align*}$$
References

