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Abstract. We study the differentiability with respect to delays by us-
ing the weakly Picard operators’ technique.

1. Introduction

Consider the following Lotka-Volterra differential system with delays

(1) x′i(t) = fi(t, x1(t), x2(t), x1(t− τ1), x2(t− τ2)), i = 1, 2, t ∈ [t0, b]

(2)

{

x1(t) = ϕ(t), t ∈ [t0 − τ1, t0],
x2(t) = ψ(t), t ∈ [t0 − τ2, t0].

Suppose that we have satisfied the following conditions:
(H1) t0 < b, τ, τ1, τ2 > 0, τ1 < τ2 < τ, τ1, τ2 ∈ J, J = [t0, τ ] a compact

interval;
(H2) fi ∈ C1([t0, b] × R

4,R), i = 1, 2;
(H3) there exists Lf > 0 such that

∥

∥

∥

∥

∂fi

∂uj
(t, u1, u2, u3, u4)

∥

∥

∥

∥

R

≤ Lf ,

for all t ∈ [t0, b], uj ∈ R, j = 1, 4, i = 1, 2;
(H4) ϕ ∈ C([t0 − τ, t0],R), ψ ∈ C([t0 − τ, t0],R);
In the above conditions, from the Theorem 1, in [4], we have that the

problem (1)–(2) has a unique solution, (x1(t), x2(t)).

2. Weakly Picard operators

In this paper we need some notions and results from the weakly Picard
operator theory (for more details see I. A. Rus [9], [8], M. Şerban [14]).

Let (X, d) be a metric space and A : X → X an operator. We shall use
the following notations:
FA := {x ∈ X | A(x) = x} - the fixed point set of A;
I(A) := {Y ∈ P (X) | A(Y ) ⊂ Y } - the family of the nonempty invariant

subset of A;
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An+1 := A ◦ An, A0 = 1X , A
1 = A, n ∈ N - the iterant operators of A,

where 1X is the identity operator;
P (X) := {Y ⊂ X | Y 6= ∅} - the set of the parts of X;

Definition 1. Let (X, d) be a metric space. An operator A : X → X is a
Picard operator (PO) if there exists x∗ ∈ X such that:

(i) FA = {x∗};
(ii) the sequence (An(x0))n∈N converges to x∗ for all x0 ∈ X.

Definition 2. Let (X, d) be a metric space. An operator A : X → X is a
weakly Picard operator (WPO) if the sequence (An(x))n∈N converges for all
x ∈ X, and its limit ( which may depend on x ) is a fixed point of A.

Theorem 3. Let (X, d) be a metric space and A : X → X an operator. The
operator A is WPO (c-WPO) if and only if there exists a partition of X,

X = ∪
λ∈Λ

Xλ

such that:
(a) Xλ ∈ I(A), λ ∈ Λ, I(A)-the family of nonempty invariant subsets of

A;
(b) A|Xλ

: Xλ → Xλ is a Picard (c-Picard) operator for all λ ∈ Λ.

Theorem 4. ( Fibre contraction principle ). Let (X, d) and (Y, ρ) be two
metric spaces and A : X × X → X × X, A = (B,C), ( B : X → X, C :
X × Y → Y ) a triangular operator. We suppose that

(i) (Y, ρ) is a complete metric space;
(ii) the operator B is PO;
(iii) there exists L ∈ [0, 1) such that C(x, ·) : Y → Y is a L-contraction,

for all x ∈ X;
(iv) if (x∗, y∗) ∈ FA, then C(·, y∗) is continuous in x∗.
Then the operator A is PO.

3. Main result

Now we prove that

xi(t, ·) ∈ C1(J), for all t ∈ [t0 − τ, b], i = 1, 2.

For this we consider the system

(3) x′i(t) = fi(t, x1(t), x2(t), x1(t− τ1), x2(t− τ2)), i = 1, 2

where t ∈ [t0, b], x1 ∈ C[t0 − τ1, b] ∩ C
1[t0, b], x2 ∈ C[t0 − τ2, b] ∩ C

1[t0, b].
From the above considerations, we can formulate the following theorem

Theorem 5. Consider the problem (3)–(2), in the conditions (H1)-(H4).
Then the problem (3)–(2) has a unique solution (x∗1, x

∗

2), x
∗

1 ∈ C[t0 − τ1, b]∩
C1[t0, b], x

∗

2 ∈ C[t0 − τ2, b]∩C
1[t0, b] and the solution is differentiable on τ1

and τ2.
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Proof. In what follows we consider the following integral equations:
(4)
x1(t, τ1, τ2) =

=

{

ϕ(t), t ∈ [t0 − τ1, t0],

ϕ(t0)+
∫ t

t0
f1(s,x1(s,τ1,τ2),x2(s, τ1,τ2),x1(s−τ1,τ1,τ2),x2(s−τ2,τ1,τ2))ds, t ∈ [t0,b],

x2(t, τ1, τ2) =

=

{

ψ(t), t ∈ [t0 − τ2, t0],

ψ(t0)+
∫ t

t0
f2(s,x1(s,τ1,τ2),x2(s, τ1,τ2),x1(s−τ1,τ1,τ2),x2(s−τ2,τ1,τ2))ds, t ∈ [t0,b].

Now, let take the operator

Af : C[t0 − τ1, b] × C[t0 − τ2, b] → C[t0 − τ1, b] × C[t0 − τ2, b],

given by the relation

Af (x1, x2) = (Af1
(x1, x2), Af2

(x1, x2))

where

Af1
(x1, x2)(t, τ1, τ2) =

=

{

ϕ(t), t ∈ [t0 − τ1, t0]

ϕ(t0)+
∫ t

t0
f1(s,x1(s,τ1,τ2),x2(s, τ1,τ2),x1(s−τ1,τ1,τ2),x2(s−τ2,τ1,τ2))ds, t ∈ [t0,b],

Af2
(x1, x2)(t, τ1, τ2) =

=

{

ψ(t), t ∈ [t0 − τ2, t0],

ψ(t0)+
∫ t

t0
f2(s,x1(s,τ1,τ2),x2(s, τ1,τ2),x1(s−τ1,τ1,τ2),x2(s−τ2,τ1,τ2))ds, t ∈ [t0,b].

Let X := C[t0 − τ1, b] × C[t0 − τ2, b] and ‖·‖C , the Chebyshev norm on
X. It is clear, from the proof of the Theorem 1 ([4]), that in the conditions
(H1)–(H4), the operator Af is a Picard operator.

Let (x∗1, x
∗

2) the only fixed point of Af .
We consider the subset X1 ⊂ X,

X1 = {(x1, x2) ∈ X |
∂xi

∂t
∈ C[t0 − τ, b], i = 1, 2}.

We remark that (x∗1, x
∗

2) ∈ X1, A(X1) ⊂ X1, A : (X1, ‖·‖C) → (X1, ‖·‖C)
is PO.

We suppose that there exists
∂x∗i
∂τ1

,
∂x∗i
∂τ2

, i = 1, 2.

Then, from (4) we have that: �
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Proof.

∂x∗i (t, τ1)

∂τ1
=

=

∫ t

t0

∂fi(s, x
∗

1(s, τ1), x
∗

2(s, τ1), x
∗

1(s−τ1, τ1), x
∗

2(s−τ2, τ1))

∂u1

·
∂x∗1(s, τ1)

∂τ1
ds+

+

∫ t

t0

∂fi(s, x
∗

1(s, τ1), x
∗

2(s, τ1), x
∗

1(s−τ1, τ1), x
∗

2(s−τ2, τ1))

∂u2

·
∂x∗2(s, τ1)

∂τ1
ds+

+

∫ t

t0

∂fi(s, x
∗

1(s, τ1), x
∗

2(s, τ1), x
∗

1(s− τ1, τ1), x
∗

2(s− τ2, τ1))

∂u3

·

·

[

∂x∗1(s− τ1, τ1)

∂t
(−1) +

∂x∗1(s− τ1, τ1)

∂τ1

]

ds+

+

∫ t

t0

∂fi(s, x
∗

1(s, τ1), x
∗

2(s, τ1), x
∗

1(s−τ1, τ1), x
∗

2(s−τ2, τ1))

∂u4

·
∂x∗2(s− τ2, τ1)

∂τ1
ds,

where t ∈ [t0, b], i = 1, 2.
This relation suggests us to consider the following operator

Cf : X ×X → X

where

Cf (x1, x2, u, v)(t, τ1) = 0, for all t ∈ [t0 − τ2, t0]

Cf (x1, x2, u, v)(t, τ1) = 0, for all t ∈ [t0 − τ1, t0]

and �

Proof.

Cf (x1, x2, u, v)(t, τ1) :=

=

∫ t

t0

∂fi(s, x1(s, τ1), x2(s, τ1), x1(s− τ1, τ1), x2(s− τ2, τ1))

∂u1

u(s, τ1)ds+

+

∫ t

t0

∂fi(s, x1(s, τ1), x2(s, τ1), x1(s− τ1, τ1), x2(s− τ2, τ1))

∂u2

v(s, τ1)ds+

+

∫ t

t0

∂fi(s, x1(s, τ1), x2(s, τ1), x1(s− τ1, τ1), x2(s− τ2, τ1))

∂u3

·

· [u(s− τ1, τ1) · (−1) − u(s− τ1, τ1)] ds+

+

∫ t

t0

∂fi(s, x1(s, τ1), x2(s, τ1), x1(s− τ1, τ1), x2(s− τ2, τ1))

∂u4

v(s− τ2, τ1)ds,

for all t ∈ [t0, b].
We denoted here

u(t) =
∂x1(t)

∂τ1
, v(t) =

∂x2(t)

∂τ1
, u(t− τ1) =

∂x1(t− τ1)

∂t
,

u(t− τ1) =
∂x1(t− τ1)

∂τ1
, v(t− τ2) =

∂x2(t− τ2)

∂τ1
.
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In this way we have the triangular operator

D : X ×X → X ×X

(x1, x2, u, v) → (Af (x1, x2), Cf (x1, x2, u, v))

whereAf is a Picard operator and Cf (x1, x2, ·, ·) : X → X is an L-contraction,

with L =
4Lf

ρ
, where ρ is the Bielecki constant we use in [4].

From the fibre contraction theorem we have that the operator D is Picard
operator and FD = (x∗1, x

∗

2, u
∗, v∗).

Let (x∗1, x
∗

2, u
∗, v∗) the only fixed point of the operator D. Then the

sequences

(x1,n+1, x2,n+1) := A(x1,n, x2,n), n ∈ N,

(un+1, vn+1) := C(x1,n, x2,n, un, vn), n ∈ N,

converge uniformly (with respect to t ∈ X) to (x∗1, x
∗

2, u
∗, v∗) ∈ FD, for all

x1,0, x2,0, u0, v0 ∈ X.

If we take

x1,0 = 0, x2,0 = 0,

u0 =
∂x1,0

∂τ1
= 0, v0 =

∂x2,0

∂τ1
= 0,

then

u1 =
∂x1,1

∂τ1
,

v1 =
∂x2,1

∂τ1
.

By induction, we obtain that

un =
∂x1,n

∂τ1
, ∀n ∈ N,

vn =
∂x2,n

∂τ1
, ∀n ∈ N.

So

x1,n
unif
→ x∗1 as n→ ∞,

x2,n
unif
→ x∗2 as n→ ∞,

∂x1,n

∂τ1

unif
→ u∗ as n→ ∞,

∂x2,n

∂τ1

unif
→ v∗ as n→ ∞.
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From the above consideration we have that there exist
∂x∗i
∂τ1

, i = 1, 2 and

∂x∗1
∂τ1

= u∗,

∂x∗2
∂τ1

= v∗.

Analogously we can prove the differentiability with respect to τ2. �
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