DIFFERENTIABILITY WITH RESPECT TO DELAYS FOR A LOTKA-VOLTERRA SYSTEM*

DIANA OTROCOL ${ }^{\dagger}$

Abstract

We study the differentiability with respect to delays by using the weakly Picard operators' technique.

1. Introduction

Consider the following Lotka-Volterra differential system with delays

$$
\begin{gather*}
x_{i}^{\prime}(t)=f_{i}\left(t, x_{1}(t), x_{2}(t), x_{1}\left(t-\tau_{1}\right), x_{2}\left(t-\tau_{2}\right)\right), i=1,2, t \in\left[t_{0}, b\right] \tag{1}\\
\left\{\begin{array}{l}
x_{1}(t)=\varphi(t), t \in\left[t_{0}-\tau_{1}, t_{0}\right], \\
x_{2}(t)=\psi(t), t \in\left[t_{0}-\tau_{2}, t_{0}\right] .
\end{array}\right.
\end{gather*}
$$

Suppose that we have satisfied the following conditions:
$\left(\mathrm{H}_{1}\right) t_{0}<b, \tau, \tau_{1}, \tau_{2}>0, \tau_{1}<\tau_{2}<\tau, \tau_{1}, \tau_{2} \in J, J=\left[t_{0}, \tau\right]$ a compact interval;
$\left(\mathrm{H}_{2}\right) f_{i} \in C^{1}\left(\left[t_{0}, b\right] \times \mathbb{R}^{4}, \mathbb{R}\right), i=1,2 ;$
$\left(\mathrm{H}_{3}\right)$ there exists $L_{f}>0$ such that

$$
\left\|\frac{\partial f_{i}}{\partial u_{j}}\left(t, u_{1}, u_{2}, u_{3}, u_{4}\right)\right\|_{\mathbb{R}} \leq L_{f}
$$

for all $t \in\left[t_{0}, b\right], u_{j} \in R, j=\overline{1,4}, i=1,2$;
$\left(\mathrm{H}_{4}\right) \varphi \in C\left(\left[t_{0}-\tau, t_{0}\right], \mathbb{R}\right), \psi \in C\left(\left[t_{0}-\tau, t_{0}\right], \mathbb{R}\right) ;$
In the above conditions, from the Theorem 1, in [4], we have that the problem (1)-(2) has a unique solution, $\left(x_{1}(t), x_{2}(t)\right)$.

2. Weakly Picard operators

In this paper we need some notions and results from the weakly Picard operator theory (for more details see I. A. Rus [9], [8], M. Şerban [14]).

Let (X, d) be a metric space and $A: X \rightarrow X$ an operator. We shall use the following notations:
$F_{A}:=\{x \in X \mid A(x)=x\}$ - the fixed point set of $A ;$
$I(A):=\{Y \in P(X) \mid A(Y) \subset Y\}$ - the family of the nonempty invariant subset of A;

[^0]$A^{n+1}:=A \circ A^{n}, A^{0}=1_{X}, A^{1}=A, n \in \mathbb{N}$ - the iterant operators of A, where 1_{X} is the identity operator;
$P(X):=\{Y \subset X \mid Y \neq \emptyset\}$ - the set of the parts of $X ;$
Definition 1. Let (X, d) be a metric space. An operator $A: X \rightarrow X$ is a Picard operator $(P O)$ if there exists $x^{*} \in X$ such that:
(i) $F_{A}=\left\{x^{*}\right\}$;
(ii) the sequence $\left(A^{n}\left(x_{0}\right)\right)_{n \in \mathbb{N}}$ converges to x^{*} for all $x_{0} \in X$.

Definition 2. Let (X, d) be a metric space. An operator $A: X \rightarrow X$ is a weakly Picard operator (WPO) if the sequence $\left(A^{n}(x)\right)_{n \in \mathbb{N}}$ converges for all $x \in X$, and its limit (which may depend on x) is a fixed point of A.

Theorem 3. Let (X, d) be a metric space and $A: X \rightarrow X$ an operator. The operator A is WPO (c-WPO) if and only if there exists a partition of X,

$$
X=\cup_{\lambda \in \Lambda} X_{\lambda}
$$

such that:
(a) $X_{\lambda} \in I(A), \lambda \in \Lambda, I(A)$-the family of nonempty invariant subsets of A;
(b) $\left.A\right|_{X_{\lambda}}: X_{\lambda} \rightarrow X_{\lambda}$ is a Picard (c-Picard) operator for all $\lambda \in \Lambda$.

Theorem 4. (Fibre contraction principle). Let (X, d) and (Y, ρ) be two metric spaces and $A: X \times X \rightarrow X \times X, A=(B, C),(B: X \rightarrow X, C:$ $X \times Y \rightarrow Y$) a triangular operator. We suppose that
(i) (Y, ρ) is a complete metric space;
(ii) the operator B is $P O$;
(iii) there exists $L \in[0,1)$ such that $C(x, \cdot): Y \rightarrow Y$ is a L-contraction, for all $x \in X$;
(iv) if $\left(x^{*}, y^{*}\right) \in F_{A}$, then $C\left(\cdot, y^{*}\right)$ is continuous in x^{*}.

Then the operator A is $P O$.

3. Main Result

Now we prove that

$$
x_{i}(t, \cdot) \in C^{1}(J), \text { for all } t \in\left[t_{0}-\tau, b\right], i=1,2
$$

For this we consider the system

$$
\begin{equation*}
x_{i}^{\prime}(t)=f_{i}\left(t, x_{1}(t), x_{2}(t), x_{1}\left(t-\tau_{1}\right), x_{2}\left(t-\tau_{2}\right)\right), i=1,2 \tag{3}
\end{equation*}
$$

where $t \in\left[t_{0}, b\right], x_{1} \in C\left[t_{0}-\tau_{1}, b\right] \cap C^{1}\left[t_{0}, b\right], x_{2} \in C\left[t_{0}-\tau_{2}, b\right] \cap C^{1}\left[t_{0}, b\right]$.
From the above considerations, we can formulate the following theorem
Theorem 5. Consider the problem (3)-(2), in the conditions ($\left.H_{1}\right)$-(H_{4}). Then the problem (3)-(2) has a unique solution $\left(x_{1}^{*}, x_{2}^{*}\right), x_{1}^{*} \in C\left[t_{0}-\tau_{1}, b\right] \cap$ $C^{1}\left[t_{0}, b\right], x_{2}^{*} \in C\left[t_{0}-\tau_{2}, b\right] \cap C^{1}\left[t_{0}, b\right]$ and the solution is differentiable on τ_{1} and τ_{2}.

Proof. In what follows we consider the following integral equations:
(4)

$$
\begin{aligned}
& x_{1}\left(t, \tau_{1}, \tau_{2}\right)= \\
& =\left\{\begin{array}{l}
\varphi(t), t \in\left[t_{0}-\tau_{1}, t_{0}\right], \\
\varphi\left(t_{0}\right)+\int_{t_{0}}^{t} f_{1}\left(s, x_{1}\left(s, \tau_{1}, \tau_{2}\right), x_{2}\left(s, \tau_{1}, \tau_{2}\right), x_{1}\left(s-\tau_{1}, \tau_{1}, \tau_{2}\right), x_{2}\left(s-\tau_{2}, \tau_{1}, \tau_{2}\right)\right) d s, t \in\left[t_{0}, b\right]
\end{array}\right. \\
& x_{2}\left(t, \tau_{1}, \tau_{2}\right)= \\
& =\left\{\begin{array}{l}
\psi(t), t \in\left[t_{0}-\tau_{2}, t_{0}\right], \\
\psi\left(t_{0}\right)+\int_{t_{0}}^{t} f_{2}\left(s, x_{1}\left(s, \tau_{1}, \tau_{2}\right), x_{2}\left(s, \tau_{1}, \tau_{2}\right), x_{1}\left(s-\tau_{1}, \tau_{1}, \tau_{2}\right), x_{2}\left(s-\tau_{2}, \tau_{1}, \tau_{2}\right)\right) d s, t \in\left[t_{0}, b\right] .
\end{array}\right.
\end{aligned}
$$

Now, let take the operator

$$
A_{f}: C\left[t_{0}-\tau_{1}, b\right] \times C\left[t_{0}-\tau_{2}, b\right] \rightarrow C\left[t_{0}-\tau_{1}, b\right] \times C\left[t_{0}-\tau_{2}, b\right],
$$

given by the relation

$$
A_{f}\left(x_{1}, x_{2}\right)=\left(A_{f_{1}}\left(x_{1}, x_{2}\right), A_{f_{2}}\left(x_{1}, x_{2}\right)\right)
$$

where

$$
\begin{aligned}
& A_{f_{1}}\left(x_{1}, x_{2}\right)\left(t, \tau_{1}, \tau_{2}\right)= \\
& =\left\{\begin{array}{l}
\varphi(t), t \in\left[t_{0}-\tau_{1}, t_{0}\right] \\
\varphi\left(t_{0}\right)+\int_{t_{0}}^{t} f_{1}\left(s, x_{1}\left(s, \tau_{1}, \tau_{2}\right), x_{2}\left(s, \tau_{1}, \tau_{2}\right), x_{1}\left(s-\tau_{1}, \tau_{1}, \tau_{2}\right), x_{2}\left(s-\tau_{2}, \tau_{1}, \tau_{2}\right)\right) d s, t \in\left[t_{0}, b\right],
\end{array}\right. \\
& A_{f_{2}}\left(x_{1}, x_{2}\right)\left(t, \tau_{1}, \tau_{2}\right)= \\
& =\left\{\begin{array}{l}
\psi(t), t \in\left[t_{0}-\tau_{2}, t_{0}\right], \\
\psi\left(t_{0}\right)+\int_{t_{0}}^{t} f_{2}\left(s, x_{1}\left(s, \tau_{1}, \tau_{2}\right), x_{2}\left(s, \tau_{1}, \tau_{2}\right), x_{1}\left(s-\tau_{1}, \tau_{1}, \tau_{2}\right), x_{2}\left(s-\tau_{2}, \tau_{1}, \tau_{2}\right)\right) d s, t \in\left[t_{0}, b\right] .
\end{array}\right.
\end{aligned}
$$

Let $X:=C\left[t_{0}-\tau_{1}, b\right] \times C\left[t_{0}-\tau_{2}, b\right]$ and $\|\cdot\|_{C}$, the Chebyshev norm on X. It is clear, from the proof of the Theorem 1 ([4]), that in the conditions $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$, the operator A_{f} is a Picard operator.

Let $\left(x_{1}^{*}, x_{2}^{*}\right)$ the only fixed point of A_{f}.
We consider the subset $X_{1} \subset X$,

$$
X_{1}=\left\{\left(x_{1}, x_{2}\right) \in X \left\lvert\, \frac{\partial x_{i}}{\partial t} \in C\left[t_{0}-\tau, b\right]\right., i=1,2\right\} .
$$

We remark that $\left(x_{1}^{*}, x_{2}^{*}\right) \in X_{1}, A\left(X_{1}\right) \subset X_{1}, A:\left(X_{1},\|\cdot\|_{C}\right) \rightarrow\left(X_{1},\|\cdot\|_{C}\right)$ is PO.

We suppose that there exists $\frac{\partial x_{i}^{*}}{\partial \tau_{1}}, \frac{\partial x_{i}^{*}}{\partial \tau_{2}}, i=1,2$.
Then, from (4) we have that:

Proof.

$$
\begin{aligned}
& \frac{\partial x_{i}^{*}\left(t, \tau_{1}\right)}{\partial \tau_{1}}= \\
& =\int_{t_{0}}^{t} \frac{\partial f_{i}\left(s, x_{1}^{*}\left(s, \tau_{1}\right), x_{2}^{*}\left(s, \tau_{1}\right), x_{1}^{*}\left(s-\tau_{1}, \tau_{1}\right), x_{2}^{*}\left(s-\tau_{2}, \tau_{1}\right)\right)}{\partial u_{1}} \cdot \frac{\partial x_{1}^{*}\left(s, \tau_{1}\right)}{\partial \tau_{1}} d s+ \\
& +\int_{t_{0}}^{t} \frac{\partial f_{i}\left(s, x_{1}^{*}\left(s, \tau_{1}\right), x_{2}^{*}\left(s, \tau_{1}\right), x_{1}^{*}\left(s-\tau_{1}, \tau_{1}\right), x_{2}^{*}\left(s-\tau_{2}, \tau_{1}\right)\right)}{\partial u_{2}} \cdot \frac{\partial x_{2}^{*}\left(s, \tau_{1}\right)}{\partial \tau_{1}} d s+ \\
& +\int_{t_{0}}^{t} \frac{\partial f_{i}\left(s, x_{1}^{*}\left(s, \tau_{1}\right), x_{2}^{*}\left(s, \tau_{1}\right), x_{1}^{*}\left(s-\tau_{1}, \tau_{1}\right), x_{2}^{*}\left(s-\tau_{2}, \tau_{1}\right)\right)}{\partial u_{3}} \\
& \cdot\left[\frac{\partial x_{1}^{*}\left(s-\tau_{1}, \tau_{1}\right)}{\partial t}(-1)+\frac{\partial x_{1}^{*}\left(s-\tau_{1}, \tau_{1}\right)}{\partial \tau_{1}}\right] d s+ \\
& +\int_{t_{0}}^{t} \frac{\partial f_{i}\left(s, x_{1}^{*}\left(s, \tau_{1}\right), x_{2}^{*}\left(s, \tau_{1}\right), x_{1}^{*}\left(s-\tau_{1}, \tau_{1}\right), x_{2}^{*}\left(s-\tau_{2}, \tau_{1}\right)\right)}{\partial u_{4}} \cdot \frac{\partial x_{2}^{*}\left(s-\tau_{2}, \tau_{1}\right)}{\partial \tau_{1}} d s
\end{aligned}
$$

where $t \in\left[t_{0}, b\right], i=1,2$.
This relation suggests us to consider the following operator

$$
C_{f}: X \times X \rightarrow X
$$

where

$$
\begin{aligned}
& C_{f}\left(x_{1}, x_{2}, u, v\right)\left(t, \tau_{1}\right)=0, \text { for all } t \in\left[t_{0}-\tau_{2}, t_{0}\right] \\
& C_{f}\left(x_{1}, x_{2}, u, v\right)\left(t, \tau_{1}\right)=0, \text { for all } t \in\left[t_{0}-\tau_{1}, t_{0}\right]
\end{aligned}
$$

and
Proof.

$$
\begin{aligned}
& C_{f}\left(x_{1}, x_{2}, u, v\right)\left(t, \tau_{1}\right):= \\
& =\int_{t_{0}}^{t} \frac{\partial f_{i}\left(s, x_{1}\left(s, \tau_{1}\right), x_{2}\left(s, \tau_{1}\right), x_{1}\left(s-\tau_{1}, \tau_{1}\right), x_{2}\left(s-\tau_{2}, \tau_{1}\right)\right)}{\partial u_{1}} u\left(s, \tau_{1}\right) d s+ \\
& +\int_{t_{0}}^{t} \frac{\partial f_{i}\left(s, x_{1}\left(s, \tau_{1}\right), x_{2}\left(s, \tau_{1}\right), x_{1}\left(s-\tau_{1}, \tau_{1}\right), x_{2}\left(s-\tau_{2}, \tau_{1}\right)\right)}{\partial u_{2}} v\left(s, \tau_{1}\right) d s+ \\
& +\int_{t_{0}}^{t} \frac{\partial f_{i}\left(s, x_{1}\left(s, \tau_{1}\right), x_{2}\left(s, \tau_{1}\right), x_{1}\left(s-\tau_{1}, \tau_{1}\right), x_{2}\left(s-\tau_{2}, \tau_{1}\right)\right)}{\partial u_{3}} \\
& \cdot\left[\bar{u}\left(s-\tau_{1}, \tau_{1}\right) \cdot(-1)-u\left(s-\tau_{1}, \tau_{1}\right)\right] d s+ \\
& +\int_{t_{0}}^{t} \frac{\partial f_{i}\left(s, x_{1}\left(s, \tau_{1}\right), x_{2}\left(s, \tau_{1}\right), x_{1}\left(s-\tau_{1}, \tau_{1}\right), x_{2}\left(s-\tau_{2}, \tau_{1}\right)\right)}{\partial u_{4}} v\left(s-\tau_{2}, \tau_{1}\right) d s
\end{aligned}
$$

for all $t \in\left[t_{0}, b\right]$.
We denoted here

$$
\begin{aligned}
u(t) & =\frac{\partial x_{1}(t)}{\partial \tau_{1}}, v(t)=\frac{\partial x_{2}(t)}{\partial \tau_{1}}, \bar{u}\left(t-\tau_{1}\right)=\frac{\partial x_{1}\left(t-\tau_{1}\right)}{\partial t} \\
u\left(t-\tau_{1}\right) & =\frac{\partial x_{1}\left(t-\tau_{1}\right)}{\partial \tau_{1}}, v\left(t-\tau_{2}\right)=\frac{\partial x_{2}\left(t-\tau_{2}\right)}{\partial \tau_{1}}
\end{aligned}
$$

In this way we have the triangular operator

$$
\begin{aligned}
D & : X \times X \rightarrow X \times X \\
\left(x_{1}, x_{2}, u, v\right) & \rightarrow\left(A_{f}\left(x_{1}, x_{2}\right), C_{f}\left(x_{1}, x_{2}, u, v\right)\right)
\end{aligned}
$$

where A_{f} is a Picard operator and $C_{f}\left(x_{1}, x_{2}, \cdot \cdot \cdot\right): X \rightarrow X$ is an L-contraction, with $L=\frac{4 L_{f}}{\rho}$, where ρ is the Bielecki constant we use in [4].

From the fibre contraction theorem we have that the operator D is Picard operator and $F_{D}=\left(x_{1}^{*}, x_{2}^{*}, u^{*}, v^{*}\right)$.

Let $\left(x_{1}^{*}, x_{2}^{*}, u^{*}, v^{*}\right)$ the only fixed point of the operator D. Then the sequences

$$
\begin{aligned}
& \left(x_{1, n+1}, x_{2, n+1}\right):=A\left(x_{1, n}, x_{2, n}\right), n \in \mathbb{N} \\
& \left(u_{n+1}, v_{n+1}\right):=C\left(x_{1, n}, x_{2, n}, u_{n}, v_{n}\right), n \in \mathbb{N}
\end{aligned}
$$

converge uniformly (with respect to $t \in X$) to $\left(x_{1}^{*}, x_{2}^{*}, u^{*}, v^{*}\right) \in F_{D}$, for all $x_{1,0}, x_{2,0}, u_{0}, v_{0} \in X$.

If we take

$$
\begin{aligned}
x_{1,0} & =0, x_{2,0}=0 \\
u_{0} & =\frac{\partial x_{1,0}}{\partial \tau_{1}}=0, v_{0}=\frac{\partial x_{2,0}}{\partial \tau_{1}}=0
\end{aligned}
$$

then

$$
\begin{aligned}
& u_{1}=\frac{\partial x_{1,1}}{\partial \tau_{1}} \\
& v_{1}=\frac{\partial x_{2,1}}{\partial \tau_{1}}
\end{aligned}
$$

By induction, we obtain that

$$
\begin{aligned}
& u_{n}=\frac{\partial x_{1, n}}{\partial \tau_{1}}, \forall n \in \mathbb{N} \\
& v_{n}=\frac{\partial x_{2, n}}{\partial \tau_{1}}, \forall n \in \mathbb{N}
\end{aligned}
$$

So

$$
\begin{gathered}
x_{1, n} \xrightarrow{\text { unif }} x_{1}^{*} \text { as } n \rightarrow \infty, \\
x_{2, n} \xrightarrow{\text { unif }} x_{2}^{*} \text { as } n \rightarrow \infty, \\
\frac{\partial x_{1, n}}{\partial \tau_{1}} \xrightarrow{\text { unif }} u^{*} \text { as } n \rightarrow \infty, \\
\frac{\partial x_{2, n}}{\partial \tau_{1}} \xrightarrow{\text { unif }} v^{*} \text { as } n \rightarrow \infty .
\end{gathered}
$$

From the above consideration we have that there exist $\frac{\partial x_{i}^{*}}{\partial \tau_{1}}, i=1,2$ and

$$
\begin{aligned}
\frac{\partial x_{1}^{*}}{\partial \tau_{1}} & =u^{*} \\
\frac{\partial x_{2}^{*}}{\partial \tau_{1}} & =v^{*}
\end{aligned}
$$

Analogously we can prove the differentiability with respect to τ_{2}.

References

[1] Berinde V., Generalized Contractions and Applications (in Romanian), Ph. D. Thesis, Univ. "Babeş-Bolyai" Cluj-Napoca, 1993.
[2] Buică A., Existence and continuous dependence of solutions of some functionaldifferential equations, Seminar on Fixed Point Theory, Cluj-Napoca, 1995, 1-14.
[3] Mureşan V., Functional-Integral Equations, Editura Mediamira, Cluj-Napoca, 2003.
[4] Otrocol D., Data dependence for the solution of a Lotka-Volterra system with two delays, Mathematica, Tome 48 (71), no. 1 (2006), 61-68.
[5] Otrocol D., Lotka-Volterra system with two delays via weakly Picard operators, Nonlinear Analysis Forum, 10 (2) (2005), 193-199.
[6] Rus I. A., Principles and applications of the fixed point theory (in Romanian), Editura Dacia, Cluj-Napoca, 1979.
[7] Rus I. A., Generalized contractions, Seminar on Fixed Point Theory, "Babeş-Bolyai" University, 1983, pp. 1-130.
[8] Rus I. A., Weakly Picard mappings, Comment. Math. Univ. Caroline, 34 (1993), 769-773.
[9] Rus I. A., Functional-differential equations of mixed type, via weakly Picard operators, Seminar of Fixed Point Theory, Cluj-Napoca, Vol. 3, 2002, 335-346.
[10] Rus I. A., Generalized Contractions and Applications, Cluj University Press, 2001.
[11] Rus I. A., Weakly Picard operators and applications, Seminar on Fixed Point Theory, Cluj-Napoca, Vol. 2 (2001), 41-58.
[12] Rus I. A., Egri E., Boundary value problems for iterative functional-differential equations, Studia Univ. "Babeş-Bolyai", Matematica, Vol. LI, No 2, 2006, pp. 109-126.
[13] Saito Y., Hara T., Ma W., Necessary and sufficient conditions for permanence and global stability of a Lotka-Volterra system with two delays, J. Math. Anal. Appl., 236 (1999), 534-556.
[14] Şerban M. A., Fiber φ-contractions, Studia Univ. "Babeş-Bolyai", Mathematica, 44 (1999), no. 3, 99-108.

[^0]: 1991 Mathematics Subject Classification. 34L05, 47H10.
 Key words and phrases. Lotka-Volterra system, weakly Picard operator, delay, differentiability.
 *This work has been supported by MEdC-ANCS under grant ET 3233/17.10.2005.
 \dagger "Tiberiu Popoviciu" Institute of Numerical Analysis, P.O.Box. 68-1, Cluj-Napoca, Romania.

