DIFFERENTIABILITY WITH RESPECT TO DELAYS FOR A LOTKA-VOLTERRA SYSTEM*

DIANA OTROCOL[†]

ABSTRACT. We study the differentiability with respect to delays by using the weakly Picard operators' technique.

1. INTRODUCTION

Consider the following Lotka-Volterra differential system with delays

(1)
$$x'_i(t) = f_i(t, x_1(t), x_2(t), x_1(t - \tau_1), x_2(t - \tau_2)), \ i = 1, 2, \ t \in [t_0, b]$$

(2)
$$\begin{cases} x_1(t) = \varphi(t), \ t \in [t_0 - \tau_1, t_0], \\ x_2(t) = \psi(t), \ t \in [t_0 - \tau_2, t_0]. \end{cases}$$

Suppose that we have satisfied the following conditions:

(H₁) $t_0 < b$, $\tau, \tau_1, \tau_2 > 0$, $\tau_1 < \tau_2 < \tau$, $\tau_1, \tau_2 \in J$, $J = [t_0, \tau]$ a compact interval;

(H₂) $f_i \in C^1([t_0, b] \times \mathbb{R}^4, \mathbb{R}), \ i = 1, 2;$

(H₃) there exists $L_f > 0$ such that

$$\left\|\frac{\partial f_i}{\partial u_j}(t, u_1, u_2, u_3, u_4)\right\|_{\mathbb{R}} \le L_f,$$

for all $t \in [t_0, b], u_j \in R, j = \overline{1, 4}, i = 1, 2;$

(H₄) $\varphi \in C([t_0 - \tau, t_0], \mathbb{R}), \ \psi \in C([t_0 - \tau, t_0], \mathbb{R});$

In the above conditions, from the Theorem 1, in [4], we have that the problem (1)-(2) has a unique solution, $(x_1(t), x_2(t))$.

2. Weakly Picard operators

In this paper we need some notions and results from the weakly Picard operator theory (for more details see I. A. Rus [9], [8], M. Şerban [14]).

Let (X, d) be a metric space and $A : X \to X$ an operator. We shall use the following notations:

 $F_A := \{x \in X \mid A(x) = x\}$ - the fixed point set of A;

 $I(A) := \{Y \in P(X) \mid A(Y) \subset Y\}$ - the family of the nonempty invariant subset of A;

¹⁹⁹¹ Mathematics Subject Classification. 34L05, 47H10.

Key words and phrases. Lotka-Volterra system, weakly Picard operator, delay, differentiability.

^{*}This work has been supported by MEdC-ANCS under grant ET 3233/17.10.2005.

[†] "Tiberiu Popoviciu" Institute of Numerical Analysis, P.O.Box. 68-1, Cluj-Napoca, Romania.

 $A^{n+1} := A \circ A^n, \ A^0 = 1_X, \ A^1 = A, \ n \in \mathbb{N}$ - the iterant operators of A, where 1_X is the identity operator;

 $P(X) := \{Y \subset X \mid Y \neq \emptyset\}$ - the set of the parts of X;

Definition 1. Let (X,d) be a metric space. An operator $A : X \to X$ is a Picard operator (PO) if there exists $x^* \in X$ such that:

(i) $F_A = \{x^*\};$ (ii) the sequence $(A^n(x_0))_{n \in \mathbb{N}}$ converges to x^* for all $x_0 \in X$.

Definition 2. Let (X, d) be a metric space. An operator $A : X \to X$ is a weakly Picard operator (WPO) if the sequence $(A^n(x))_{n \in \mathbb{N}}$ converges for all $x \in X$, and its limit (which may depend on x) is a fixed point of A.

Theorem 3. Let (X, d) be a metric space and $A : X \to X$ an operator. The operator A is WPO (c-WPO) if and only if there exists a partition of X,

$$X = \underset{\lambda \in \Lambda}{\cup} X_{\lambda}$$

such that:

(a) $X_{\lambda} \in I(A), \ \lambda \in \Lambda, \ I(A)$ -the family of nonempty invariant subsets of A;

(b) $A|_{X_{\lambda}} : X_{\lambda} \to X_{\lambda}$ is a Picard (c-Picard) operator for all $\lambda \in \Lambda$.

Theorem 4. (Fibre contraction principle). Let (X, d) and (Y, ρ) be two metric spaces and $A: X \times X \to X \times X$, A = (B, C), $(B: X \to X, C: X \times Y \to Y)$ a triangular operator. We suppose that

(i) (Y, ρ) is a complete metric space;

(ii) the operator B is PO;

(iii) there exists $L \in [0,1)$ such that $C(x, \cdot) : Y \to Y$ is a L-contraction, for all $x \in X$;

(iv) if $(x^*, y^*) \in F_A$, then $C(\cdot, y^*)$ is continuous in x^* . Then the operator A is PO.

3. Main result

Now we prove that

$$x_i(t, \cdot) \in C^1(J)$$
, for all $t \in [t_0 - \tau, b]$, $i = 1, 2$.

For this we consider the system

(3)
$$x'_i(t) = f_i(t, x_1(t), x_2(t), x_1(t - \tau_1), x_2(t - \tau_2)), \ i = 1, 2$$

where $t \in [t_0, b]$, $x_1 \in C[t_0 - \tau_1, b] \cap C^1[t_0, b]$, $x_2 \in C[t_0 - \tau_2, b] \cap C^1[t_0, b]$. From the above considerations, we can formulate the following theorem

Theorem 5. Consider the problem (3)-(2), in the conditions $(H_1)-(H_4)$. Then the problem (3)-(2) has a unique solution $(x_1^*, x_2^*), x_1^* \in C[t_0 - \tau_1, b] \cap C^1[t_0, b], x_2^* \in C[t_0 - \tau_2, b] \cap C^1[t_0, b]$ and the solution is differentiable on τ_1 and τ_2 .

 $\mathbf{2}$

Proof. In what follows we consider the following integral equations: (4)

$$\begin{split} x_1(t,\tau_1,\tau_2) &= \\ &= \begin{cases} \varphi(t), \ t \in [t_0 - \tau_1, t_0], \\ \varphi(t_0) + \int_{t_0}^t f_1(s_t x_1(s_t \tau_1, \tau_2), x_2(s, \tau_1, \tau_2), x_1(s - \tau_1, \tau_1, \tau_2), x_2(s - \tau_2, \tau_1, \tau_2)) ds, t \in [t_0, b], \\ x_2(t,\tau_1,\tau_2) &= \\ &= \begin{cases} \psi(t), \ t \in [t_0 - \tau_2, t_0], \\ \psi(t_0) + \int_{t_0}^t f_2(s_t x_1(s_t \tau_1, \tau_2), x_2(s, \tau_1, \tau_2), x_1(s - \tau_1, \tau_1, \tau_2), x_2(s - \tau_2, \tau_1, \tau_2)) ds, t \in [t_0, b]. \end{cases}$$

Now, let take the operator

$$A_f: C[t_0 - \tau_1, b] \times C[t_0 - \tau_2, b] \to C[t_0 - \tau_1, b] \times C[t_0 - \tau_2, b],$$

given by the relation

$$A_f(x_1, x_2) = (A_{f_1}(x_1, x_2), A_{f_2}(x_1, x_2))$$

where

$$\begin{split} &A_{f_1}(x_1, x_2)(t, \tau_1, \tau_2) = \\ &= \begin{cases} \varphi(t), \ t \in [t_0 - \tau_1, t_0] \\ \varphi(t_0) + \int_{t_0}^t f_1(s_t x_1(s_t \tau_1, \tau_2), x_2(s, \tau_1, \tau_2), x_1(s - \tau_1, \tau_1, \tau_2), x_2(s - \tau_2, \tau_1, \tau_2)) ds, t \in [t_0, b], \end{cases} \\ &A_{f_2}(x_1, x_2)(t, \tau_1, \tau_2) = \\ &= \begin{cases} \psi(t), \ t \in [t_0 - \tau_2, t_0], \\ \psi(t_0) + \int_{t_0}^t f_2(s_t x_1(s, \tau_1, \tau_2), x_2(s, \tau_1, \tau_2), x_1(s - \tau_1, \tau_1, \tau_2), x_2(s - \tau_2, \tau_1, \tau_2)) ds, t \in [t_0, b]. \end{cases} \end{split}$$

Let $X := C[t_0 - \tau_1, b] \times C[t_0 - \tau_2, b]$ and $\|\cdot\|_C$, the Chebyshev norm on X. It is clear, from the proof of the Theorem 1 ([4]), that in the conditions $(H_1)-(H_4)$, the operator A_f is a Picard operator.

Let (x_1^*, x_2^*) the only fixed point of A_f .

We consider the subset $X_1 \subset X$,

$$X_1 = \{ (x_1, x_2) \in X \mid \frac{\partial x_i}{\partial t} \in C[t_0 - \tau, b], \ i = 1, 2 \}.$$

We remark that $(x_1^*, x_2^*) \in X_1$, $A(X_1) \subset X_1$, $A : (X_1, \|\cdot\|_C) \to (X_1, \|\cdot\|_C)$ is PO. $\partial x^* = \partial x^*$

We suppose that there exists
$$\frac{\partial x_i^*}{\partial \tau_1}$$
, $\frac{\partial x_i^*}{\partial \tau_2}$, $i = 1, 2$.
Then, from (4) we have that:

Proof.

$$\begin{split} &\frac{\partial x_i^*(t,\tau_1)}{\partial \tau_1} = \\ &= \int_{t_0}^t \frac{\partial f_i(s,x_1^*(s,\tau_1),x_2^*(s,\tau_1),x_1^*(s-\tau_1,\tau_1),x_2^*(s-\tau_2,\tau_1))}{\partial u_1} \cdot \frac{\partial x_1^*(s,\tau_1)}{\partial \tau_1} ds + \\ &+ \int_{t_0}^t \frac{\partial f_i(s,x_1^*(s,\tau_1),x_2^*(s,\tau_1),x_1^*(s-\tau_1,\tau_1),x_2^*(s-\tau_2,\tau_1))}{\partial u_2} \cdot \frac{\partial x_2^*(s,\tau_1)}{\partial \tau_1} ds + \\ &+ \int_{t_0}^t \frac{\partial f_i(s,x_1^*(s,\tau_1),x_2^*(s,\tau_1),x_1^*(s-\tau_1,\tau_1),x_2^*(s-\tau_2,\tau_1))}{\partial u_3} \cdot \\ &\cdot \left[\frac{\partial x_1^*(s-\tau_1,\tau_1)}{\partial t} (-1) + \frac{\partial x_1^*(s-\tau_1,\tau_1)}{\partial \tau_1} \right] ds + \\ &+ \int_{t_0}^t \frac{\partial f_i(s,x_1^*(s,\tau_1),x_2^*(s,\tau_1),x_1^*(s-\tau_1,\tau_1),x_2^*(s-\tau_2,\tau_1))}{\partial u_4} \cdot \frac{\partial x_2^*(s-\tau_2,\tau_1)}{\partial \tau_1} ds, \end{split}$$

where $t \in [t_0, b]$, i = 1, 2. This relation suggests us to consider the following operator

$$C_f: X \times X \to X$$

where

$$C_f(x_1, x_2, u, v)(t, \tau_1) = 0, \text{ for all } t \in [t_0 - \tau_2, t_0]$$

$$C_f(x_1, x_2, u, v)(t, \tau_1) = 0, \text{ for all } t \in [t_0 - \tau_1, t_0]$$

and

Proof.

$$\begin{split} C_f(x_1, x_2, u, v)(t, \tau_1) &:= \\ &= \int_{t_0}^t \frac{\partial f_i(s, x_1(s, \tau_1), x_2(s, \tau_1), x_1(s - \tau_1, \tau_1), x_2(s - \tau_2, \tau_1))}{\partial u_1} u(s, \tau_1) ds + \\ &+ \int_{t_0}^t \frac{\partial f_i(s, x_1(s, \tau_1), x_2(s, \tau_1), x_1(s - \tau_1, \tau_1), x_2(s - \tau_2, \tau_1))}{\partial u_2} v(s, \tau_1) ds + \\ &+ \int_{t_0}^t \frac{\partial f_i(s, x_1(s, \tau_1), x_2(s, \tau_1), x_1(s - \tau_1, \tau_1), x_2(s - \tau_2, \tau_1)))}{\partial u_3} \cdot \\ &\cdot [\overline{u}(s - \tau_1, \tau_1) \cdot (-1) - u(s - \tau_1, \tau_1)] ds + \\ &+ \int_{t_0}^t \frac{\partial f_i(s, x_1(s, \tau_1), x_2(s, \tau_1), x_1(s - \tau_1, \tau_1), x_2(s - \tau_2, \tau_1)))}{\partial u_4} v(s - \tau_2, \tau_1) ds, \end{split}$$

for all $t \in [t_0, b]$.

We denoted here

$$u(t) = \frac{\partial x_1(t)}{\partial \tau_1}, \ v(t) = \frac{\partial x_2(t)}{\partial \tau_1}, \ \overline{u}(t-\tau_1) = \frac{\partial x_1(t-\tau_1)}{\partial t},$$
$$u(t-\tau_1) = \frac{\partial x_1(t-\tau_1)}{\partial \tau_1}, \ v(t-\tau_2) = \frac{\partial x_2(t-\tau_2)}{\partial \tau_1}.$$

In this way we have the triangular operator

$$D: X \times X \to X \times X$$

$$(x_1, x_2, u, v) \to (A_f(x_1, x_2), C_f(x_1, x_2, u, v))$$

where A_f is a Picard operator and $C_f(x_1, x_2, \cdot, \cdot) : X \to X$ is an *L*-contraction, with $L = \frac{4L_f}{\rho}$, where ρ is the Bielecki constant we use in [4].

From the fibre contraction theorem we have that the operator D is Picard operator and $F_D = (x_1^*, x_2^*, u^*, v^*)$.

Let (x_1^*, x_2^*, u^*, v^*) the only fixed point of the operator D. Then the sequences

$$(x_{1,n+1}, x_{2,n+1}) := A(x_{1,n}, x_{2,n}), \ n \in \mathbb{N},$$
$$(u_{n+1}, v_{n+1}) := C(x_{1,n}, x_{2,n}, u_n, v_n), \ n \in \mathbb{N},$$

converge uniformly (with respect to $t \in X$) to $(x_1^*, x_2^*, u^*, v^*) \in F_D$, for all $x_{1,0}, x_{2,0}, u_0, v_0 \in X$.

If we take

$$\begin{aligned} x_{1,0} &= 0, \ x_{2,0} &= 0, \\ u_0 &= \frac{\partial x_{1,0}}{\partial \tau_1} = 0, \ v_0 &= \frac{\partial x_{2,0}}{\partial \tau_1} = 0, \end{aligned}$$

then

$$u_1 = \frac{\partial x_{1,1}}{\partial \tau_1},$$
$$v_1 = \frac{\partial x_{2,1}}{\partial \tau_1}.$$

By induction, we obtain that

$$u_n = \frac{\partial x_{1,n}}{\partial \tau_1}, \, \forall n \in \mathbb{N},$$
$$v_n = \frac{\partial x_{2,n}}{\partial \tau_1}, \, \forall n \in \mathbb{N}.$$

 So

$$\begin{aligned} x_{1,n} & \stackrel{unif}{\to} x_1^* \text{ as } n \to \infty, \\ x_{2,n} & \stackrel{unif}{\to} x_2^* \text{ as } n \to \infty, \\ \frac{\partial x_{1,n}}{\partial \tau_1} & \stackrel{unif}{\to} u^* \text{ as } n \to \infty, \\ \frac{\partial x_{2,n}}{\partial \tau_1} & \stackrel{unif}{\to} v^* \text{ as } n \to \infty. \end{aligned}$$

From the above consideration we have that there exist $\frac{\partial x_i^*}{\partial \tau_1}$, i = 1, 2 and

$$egin{array}{rcl} rac{\partial x_1^*}{\partial au_1}&=&u^*,\ rac{\partial x_2^*}{\partial au_1}&=&v^*. \end{array}$$

Analogously we can prove the differentiability with respect to τ_2 .

References

- Berinde V., Generalized Contractions and Applications (in Romanian), Ph. D. Thesis, Univ. "Babeş-Bolyai" Cluj-Napoca, 1993.
- [2] Buică A., Existence and continuous dependence of solutions of some functionaldifferential equations, Seminar on Fixed Point Theory, Cluj-Napoca, 1995, 1–14.
- [3] Mureşan V., Functional-Integral Equations, Editura Mediamira, Cluj-Napoca, 2003.
- [4] Otrocol D., Data dependence for the solution of a Lotka-Volterra system with two delays, Mathematica, Tome 48 (71), no. 1 (2006), 61–68.
- [5] Otrocol D., Lotka-Volterra system with two delays via weakly Picard operators, Nonlinear Analysis Forum, 10 (2) (2005), 193–199.
- [6] Rus I. A., Principles and applications of the fixed point theory (in Romanian), Editura Dacia, Cluj-Napoca, 1979.
- [7] Rus I. A., Generalized contractions, Seminar on Fixed Point Theory, "Babeş-Bolyai" University, 1983, pp. 1-130.
- [8] Rus I. A., Weakly Picard mappings, Comment. Math. Univ. Caroline, 34 (1993), 769–773.
- [9] Rus I. A., Functional-differential equations of mixed type, via weakly Picard operators, Seminar of Fixed Point Theory, Cluj-Napoca, Vol. 3, 2002, 335-346.
- [10] Rus I. A., Generalized Contractions and Applications, Cluj University Press, 2001.
- [11] Rus I. A., Weakly Picard operators and applications, Seminar on Fixed Point Theory, Cluj-Napoca, Vol. 2 (2001), 41–58.
- [12] Rus I. A., Egri E., Boundary value problems for iterative functional-differential equations, Studia Univ. "Babeş-Bolyai", Matematica, Vol. LI, No 2, 2006, pp. 109–126.
- [13] Saito Y., Hara T., Ma W., Necessary and sufficient conditions for permanence and global stability of a Lotka-Volterra system with two delays, J. Math. Anal. Appl., 236 (1999), 534–556.
- [14] Şerban M. A., Fiber φ-contractions, Studia Univ. "Babeş-Bolyai", Mathematica, 44 (1999), no. 3, 99-108.