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Abstract. The paper is devoted to the study of the following D.V. Ionescu’s problem

{ =2 (t) = fu(t, wa(t), w2(t), 21 (), 22 (1)), t € [a, ]
—z3(t) = fa(t, w1 (), w2(t), 21 (), w2 (1))

with polylocal conditions

{ z1(a) = z2(b) =0

Existence, uniqueness and data dependence (monotony, continuity, differentiability with re-
spect to parameter) results of solution for the Cauchy problem are obtained using Perov
fixed point theorem and weakly Picard operator theory.
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1. INTRODUCTION

Let there be given real numbers a < ¢ < b and two functions fi, fo :
[a, b] x R* — R. We consider the boundary value problem for the system of
functional-differential equations

{ _xlll(t) - fl(t7x1(t)aw2(t)7x
_:B/Q,(t) - fg(t,l'l(t),.%'g(t),l‘
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with polylocal conditions

(¢) (1.2)
)

Boundary value problems that arise from different areas of applied math-
ematics and physics have received a lot of attention in the literature in the
last decades (see for example [2], [3], [5], [6], [7] and references therein). In
[9], D.V. Ionescu study the problem (1.1)-(1.2) using the successive approxi-
mation method. Several results of D.V. lonescu have been cited and extended
by: O Arama [1], Gh. Coman [4], V. Ilea and D. Otrocol [8], G. Micula [10],
A. Petrusel and I.A. Rus [12], etc. Our approach is based on the Perov fixed
point theorem [11] and weakly Picard operator theory [15]-[17] in the following
conditions

(C1) fi, f2 € CY([a,b] x RY,R);

(Cq) there exists L; > 0 such that

4
’fi(t)ul)u27u37u4) - fi(t7’l)1,’l)2,7)3,1)4)’ S LZZ ”U,] - Uj )
j=1

for all t € [a,b],uj,v; €R, i=1,2,j=1,4.

2. JONESCU’S PROBLEM IN THE LINEAR CASE

In this section we study the existence and uniqueness theorem for the prob-
lem

{ —a{(t) = x1(t),t € [a, D] (2.1)
X

(¢) (2.2)
)

where x; : [a,b] = R, i=1,2.

Theorem 2.1. We suppose that x; € C(la,b],R), i =1,2. Then the problem
(2.1)-(2.2) has a unique solution x=(T1,22) € C*([a,b],R?) and

(o) = [ s (i)
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where G(t, s) is the Green function of the problem

—w5(t) = xa(t)
—z5(t) = xa(t)
z1(a) = x2(b) =0
z1(c) = za(c

G(t,s) has the following form

GW)Z( 0 Galts)

where fort € (a,c)

“‘?ff’” 0
Gi(t,s) = ( (ta)b-a) g ) ,
e
(S—Z)_(s—t) 0
Ga(t,s) = ( (ma)bt) oy )
g
and fort € (c,b)
(S*ZZ(sft) 0
Gi(t,s) = ( s—t 7('5_2)_(2_5) ) ;
) b
(s=a)o-1) 0
Galt,s) = 0 (s—a)(b-1) ) .
o

From Theorem 2.1 it follows that the problem (1.1)-(1.2) is equivalent with
the system

() = [ (frmme it e

In order to study the system (2.3), we shall use the weakly Picard operator
technique. In the next section we present some notions and results from this

theory.
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3. PICARD AND WEAKLY PICARD OPERATORS

In this section, we introduce notation, definitions, and preliminary facts
which are used throughout this paper (see [15]-[17]). Let (X, d) be a metric
space and A : X — X an operator. We shall use the following notations:

Fy:={x € X | A(x) =z} - the fixed point set of A;

I(A):={Y Cc X | A(Y) CY,Y # (0} - the family of the nonempty invariant
subset of A;

Al = Ao A" A' =1y, A'=A, neN.

Definition 3.1. Let (X, d) be a metric space. An operator A: X — X is a
Picard operator (PO) if there exists 2* € X such that:

(i) Fa={z"};
(ii) the sequence (A™(zp))nen converges to x* for all zg € X.

Definition 3.2. Let (X, d) be a metric space. An operator A: X — X is a
weakly Picard operator (WPO) if the sequence (A™(z))nen converges for all
x € X, and its limit (which may depend on z) is a fixed point of A.

Throughout this paper we denote by M, (R ) the set of all m xm matrices
with positive elements and by I the identity m x m matrix. A square matrix
@ with nonnegative elements is said to be convergent to zero if Q¥ — 0 as
k — oo. It is known that the property of being convergent to zero is equivalent
to each of the following three conditions (see [13], [14]):

(a) I—Q is nonsingular and (I —Q)~! = I+ Q+Q*+--- (where I stands
for the unit matrix of the same order as Q);

(b) the eigenvalues of @ are located inside the unit disc of the complex
plane;

(c) I — @ is nonsingular and (I — Q)~! has nonnegative elements.

We finish this section by recalling the following fundamental result
Theorem 3.3. (Perov’s fixed point theorem). Let (X,d) with d(z,y) € R™,

be a complete generalized metric space and A : X — X an operator. We
suppose that there exists a matriz Q € Mym(Ry), such that

(i) d(A(x), A(y)) < Qd(x,y), for all z,y € X;

(ii) @™ — 0 as n — oo.

Then

F ;
(b) A™(x) =2* asn — oo and

d(A™(z),2*) < (I - Q)~'Q"d(x0, A(x0)).
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4. EXISTENCE AND UNIQUENESS

In this section we use Perov’s fixed point theorem to obtain existence and
uniqueness theorem for the solution of the problem (1.1)-(1.2).

We consider the Banach space X = (C'([a,b],R?),||"||c1) where |||/, is
the Chebyshev norm defined by

(1, 22) = (Y1, 92) o = (@1, 22) = (Y1, 92) [l + || (21, 25) — (¥1,90) | o
and the operator A : X — X defined by
(t)>
(t)

A(zq, xo)(t (1, 2)
) = ()
- [ (HenOn A0S0,
fa(s,21(s), xa(s), 1 (s), ¥5(s))
We consider the problem (1.1)-(1.2) in the conditions (C;) and (C3). The
problem (1.1)-(1.2) is equivalent with the fixed point equation

A(xy,12)(t) = (21, 12), 2; € C([a,b],R), i =1,2.
For t € [a, b] we have
|[Ax (1, 22)(8) — Ar(y1, y2) (1]

b
= /G(tS)[fl(s,ﬂfl(S),xz(S)yﬂfi(S),xé(S))—f1(87y1(8)7y2(8),yi(8),y’2(5))]d8

b
/ Gi(t,s)ds| Ly
<

;(b Cl)2< } i >L1 ||($1,l‘2)—(y17y2)||cl_

At the same time we have

a1, 20~ Aaln )] < 50-0P (] | Yoo llore) = (.l

< max

< max (I(@1,@2) = (g1, 92) oo + || (21, 25) — (W, 98)]| )

2
For t € [a,b] we have
d d

%Al(xh xQ)(t) — aAl(yla y2)(t)‘

gG(t $)[f1(s, 21(s), a(s), 1 (s), 25(5))f1 (s, y1(s), v2(s), Y1 (5), ya(s))]ds

I/\\

b
0
[ aias)ds| L (o) — )l + (a4 2) - 03]

Ly (1, 22) — (y1,92) |

b9
< /a aGl(ta S)dS
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< g(b— a) ( (1] 1 ) Ly |[(@1, 22) = (y1,92) [l or -

Analogous we have

Hd d

A2, m2)(8) = = As(n, yz)(t)H

o0

Then

®)[l )
[ A2(z1, 22)(t) — A2(y1, y2(t)]|
3 L, L 3 L1 L [(z1,22) = (y1,92) [l o1
<(se-or (7 7 )rse-o (5 1)) frsy e )

with Q := <§(b—a>2<g I > +3(b_a)<L01 0 ))

So, we have the following existence and uniqueness theorem

<30-0( g 1)Ll - e
< ([ A1 (21, 22)(t) — A1 (y1, y2(t

Theorem 4.1. We suppose that:
(i) the conditions (Cy) and (Cy) are satisfied;
(il) @™ — 0 as n — oo.

Then
(a) the problem (1.1)-(1.2) has a unique solution

1= (z1,22) € C'([a,b], R?);
(b) for all (m?,mg) € C([a,b],R?), the sequence (a7, xH)nen defined by
(zit 2y t) = A(af, B),
converges uniformly to (5*61,;'2), for all t € [a,b], and

|@tas) = G|, < - @@ [[(00.48) = (ah.ad)]| o

5. DATA DEPENDENCE: CONTINUITY

Consider the problem (1.1)-(1.2) with the dates f = (f1, f2),9 = (91, 92)
and suppose that the conditions from Theorem 4.1 are satisfied.
Let f,g € C%([a,b] x R* R?). For simplicity we denote

3 o 3 s
= [ Z(b—a)? L+ (b — 1~ , 5.1
Qf (2( a) ( Lg L{ > 2( a) < 0 Lg )) (5.1)

g9 g g g
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and
Q :=max{Qs,Qq}.
where maz is taken w.r.t. the ordered relation of My (R).
Theorem 5.1. Let f = (f1, f2) and g = (g1, 92) satisfy the condition (Cy).
Furthermore, we suppose that there exist n:= (n1,1m2) € Ri, such that
| fi(t, ur, uz, us, ua) — gi(t, u1, ug, us, ug)| < ni,

i=1,2,Vt € [a,b], u; €R, j=1,4.
Then

|l 2(t: ) = 2(t:9) ler < (I = Qp) ',
where T(t; ) and Z(t; g) are the solution of the problem (1.1)-(1.2) with respect
to f and g, with f; = (f1, f2), 9i = (91, 92)-

Proof. Consider the operators Ay and A,. From Theorem 4.1 it follows that
| Ap(z1,22)—Ag(y1,92) [r < Q || (z1,22) = (y1,92) llor, (w1,22), (y1,92) € X.

We have now
| 2i(t; £i) = 2it; 63) lor =1 A, (@i(t; £3)) — Agy(2i(t; 95)) o <
<|| A (@i(t; 1) = A (@it 90)) ler + || Ap, (23t 92) — Ag, (@i(t: 9)) llen <
< Qy |l zi(ts f3) — 2ilt; 90) llen +mivi = 1,2.
Because Q™ — 0 as n — oo imply that
(I -Q)' € Mn(R?),

so we have i i
| zi(t; fi) — 2i(t; i) len < (T — Q) ™'

6. DATA DEPENDENCE: DIFFERENTIABILITY

In this section we present the dependence by parameter A of the solution of
the problem (1.1)-(1.2).
We shall use the following theorem

Theorem 6.1. (Fibre contraction principle). Let (X,d) and (Y,p) be two
metric spaces and A : X xY — X xY, A= (B,C), (B: X — X, C:
X xY =Y ) a triangular operator. We suppose that

(i) (Y,p) is a complete metric space;
(ii) the operator B is Picard operator;
(iii) there exists | € [0,1) such that C(x,-) : Y — Y is a l-contraction, for
allz e X;
(iv) if (z*,y*) € Fa, then C(-,y*) is continuous in x*.
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Then the operator A is Picard operator.

Consider the following differential system with parameter:

—a"(t) = f(t, 21(t), 22(t), 21(£), 25(); A), € [a, ], (6.1)
zi(a) = x2(b) =0
z1(c) = xa(c) (6.2)
1 (c) = z5(c).

where x = (z1,x2) and f = (f1, f2)-
We suppose that

(C1) a,beR,ce (a,b) given, A € J C R a compact interval;
(CQ) f = (flvf?) € 02([6L, b] X R4 X J7]R2);
(Cs) there exists L; > 0 such that

Ofi(t, u1, ug, us, us; A) <L;
Ou; 12—

for all t € [a,b], u; € R, i=1,2, j =1,4;
(Cy) for @ = max{Qy¢,Qy} with

3 I 3 i
= Z(p— 2 1 1 (b — 1 1
Qy (2( a) < oo ) +5(—a) ( 0 L

and (), analogous, we have Q" — 0 as n — oo.

In the above conditions, from Theorem 4.1 we have that the problem (1.1)-
(1.2) has a unique solution, Z(+; ) = (z1(+; A), Z2(-; A)), for any A € R. In what
follows we shall prove that z(t;-) € C2(J,R2), for all ¢ € [a, b].

For this we consider the system

—a"(t) = f(t, z1(t; \), 22(t; A), 21 (6 A), 25(8 A); M), (6.3)
for all t € [a,b], A € J,x = (v1,22) € CY([a,b] x J,R?), f = (f1, fo).
The system (6.3) is equivalent with

1) [ G (F105 15 N2 0, 24 (52), (s )
<x2(t)> _/“ Gl )<f2(5al‘1(8;>\),932(5;)\)7:6'1(5;A),xé(s;A);A)>d(é 4)

Let X := (C*([a,b] x J,R?), || o1) with the Chebyshev norm
(1, 22) = (1, 92)llor = (@1, 22) = (1, 92) oo + || (@, 25) — (w1, 90)] |, -
Now we consider the operator B : C1([a,b] x J,R?) — C1([a,b] x J,R?) where

B(xi,z2)(t; A) = ( g;gi:izggi: i; ) := second part of (6.4).
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It is clear, from the proof of the Theorem 4.1, that in the conditions (Cy)-
(Cy), the operator B is Picard operator, since

1B(y1,y2) — B(z1, 22)[| o < @ [(y1,y2) — (21, 22) [l
Y(y1,12), (21, 22) € C*([a,b] x J,R?).
Let 2 = (fl, 9;2) be the unique fixed point of B.

We suppose that there exists %,i = 1,2. From condition (C3) we have
8371 t;\) 8f, (s,1(s; A), a(s; A), 2 (55 M), 25 (55 A); A) 91 (55 0)
G : ds
8U1 o\

af, (s,21(s; \), (53 N), 2 (5; M), 25 (85 A); A) - Dza(s; \)
/ G 8U2 . o\ ds

8f2 (s,z1(s;A), z2(s; A), ) (s;A), 25(s;A); A) 8;:,1(5;)\)
/ G 8u3 . o\ ds

8U4 8/\

/ Gt 8fl (s,z1(s; ), x2(s; gz\ L (83 0), h (85 N); )\)ds

/ Gt 8f2 (s, 21(85 ), w253 A), 21 (855 A), 25(55A);A) 8;:,2(5;)\)d8

fort € [a,b], A€ J, i=1,2.
This relation suggest us to consider the following operator

C: X xX— )(7 (Il,x27y17y2) - C($1,$2ay173/2)a
defined by
C(‘Tla'IZaylayQ)(t')\) =
/ Gt (9fZ (s,21(s;N), x2(s50), 24 (5 N), 25 (83 A); A) (s \)ds

8’&1
/ Gt 8]‘} (s,21(s5N), z2(s; (5\323:1(3 s A), 25(s; M) A) (s \)ds
/ Gt 5T, s $3< N 2SN nds

/ Gt o) TN, s 3349:1(5 2SN s

/ Gt 8fZ s,x1(8; M), wa(s; /8\1\ (83 A), 2h(s3N); /\)ds
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where y;(t; \) :== % and y.(t; ) == 81"5(;”\) for t € [a,b],A € J,i=1,2.In

this way we have the triangular operator
A: X x X — X x X,
A(z1, 2, y1,y2) = (B(21,22) (6 A), C21, T2, Y1, Y2) (15 A))

where B is a Picard operator and C(z1,x2,,+) : X — X is Q-contraction.
Indeed we have

| €@, ua) (5 0) = O, oo v2) (BN, < Ql(urw) = (01,02) e

Yu = (ui,u2),v = (v1,v2) € X, t € [a,b],\ € J.

Since Q" — 0 as n — oo, from the theorem of fibre contraction (see [15])
follows that the operator A is Picard operator and has a unique fixed point

(:5‘1,52,3}1,52) € X x X. So the sequences
(@7 ey it gy = (B(af, 28), O, 25, y7, 45)),n € N

converges uniformly (with respect to ¢ € [a,b], A € J) to (a&kl, Ta, y*l, 132) € Fy,
for any (29, 29), (19,49) € X. If we take

0z oz}
0 0 1 -
z; =0,y = 8)3 =0, then y; = (9)3’221’2'
By induction we prove that
ox™ ) _
Yy = (9)1 ,VneN,i=1,2.
Thus
xy unif T;, asn — o00,i=1,2
ox™ if ok N
;}f unif Yi, asn — 00,1 = 1,2.
. O
These imply that there exists N and
Za()\) = yz(t7)‘)a L= 172

So, we have

Theorem 6.2. Suppose that conditions (C;)-(Cy) hold. Then,
(i) the problem (1.1)-(1.2) has a unique solution

z = (Z1,22) € C*(Ja,b] x J,R?);
(ii) z(t;-) € CL(J,R2),V¢ € [a, b).
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