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Abstract. In this paper we present some properties of the so-
lutions of a system of differential equation with maxima. Exis-
tence, uniqueness, inequalities of Čaplygin type and data depen-
dence (monotony, continuity) results for the solution of the Cauchy
problem of this system are obtained using weakly Picard operator
technique.
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1. Introduction

In this work, we study the solutions of the nonlinear differential
system with maxima of the type

(1.1) y′(t) = A(t)y(t) + f(t, y(t), max
a≤ξ≤t

y(ξ))

as a perturbed equations of

(1.2) x′(t) = A(t)x(t).

Existence and uniqueness, inequalities of Čaplygin type and data de-
pendence (monotony, continuity) results for the solution of the Cauchy
problem of the system (1.1) shall be obtain using weakly Picard oper-
ator technique.

Differential equations with maxima arise naturally when solving prac-
tical phenomenon problems, in particular, in those which appear in the
study of systems with automatic regulation and automatic control of
various technical systems. In connections with many possible applica-
tions it is absolutely necessary to be developed qualitative theory of
differential equations with maxima (see the monograph [1] and papers
[2], [3], [4], [5], [9]).

We consider the following Cauchy problem

(1.3) y′(t) = A(t)y(t) + f(t, y(t), max
a≤ξ≤t

y(ξ)), t ∈ [a,∞[,

(1.4) y(a) = y0.
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Let Rn be the Euclidian n-space. For u = (u1, . . . , un)T ∈ Rn,
let ‖u‖ := max{|u1| , . . . , |un|} be the norm of u. For a matrix A ∈
Mn×n(R), A = (aij), we define the norm |A| of A by |A| := sup

‖u‖≤1

‖Au‖.

Then |A| = max
1≤i≤n

n∑
j=1

|aij| .

Throughtout this paper we consider that y0 ∈ Rn, f ∈ C([a,∞[×Rn×
Rn,Rn) and X(t) is the fundamental matrix of the system (1.2).

We remark that if y ∈ C1([a,∞[,Rn) is a solution of the problem
(1.3)–(1.4), then y is a solution of
(1.5)

y(t) = X(t)X−1(a)y0+

∫ t

a

X(t)X−1(s)f(s, y(s), max
a≤ξ≤s

y(ξ))ds, t ∈ [a,∞[

and if y ∈ C([a,∞[,Rn) is a solution of (1.5), then y ∈ C1([a,∞[,Rn)
and is a solution of (1.3)–(1.4).

Also, if y ∈ C1([a,∞[,Rn) is a solution of the problem (1.3), then y
is a solution of
(1.6)

y(t) = X(t)X−1(a)y(a)+

∫ t

a

X(t)X−1(s)f(s, y(s), max
a≤ξ≤s

y(ξ))ds, t ∈ [a,∞[

and if y ∈ C([a,∞[,Rn) is a solution of (1.6) then y ∈ C1([a,∞[,Rn)
and is a solution of (1.3).

Let us consider the following operators:

Bf , Ef : C([a,∞[,Rn) → C([a,∞[,Rn),

defined by

Bf (y)(t) := X(t)X−1(a)y0 +

∫ t

a

X(t)X−1(s)f(s, y(s), max
a≤ξ≤s

y(ξ))ds,

and

Ef (y)(t) := X(t)X−1(a)y(a) +

∫ t

a

X(t)X−1(s)f(s, y(s), max
a≤ξ≤s

y(ξ))ds.

For y0 ∈ Rn, we consider Xy0 := {y ∈ C([a,∞[,Rn)| y(a) = y0}.
We remark that

C([a,∞[,Rn) = ∪
y0∈Rn

Xy0

is a partition of C([a,∞[,Rn).
The following lemma is important for our further considerations.

Lemma 1.1. (I.A. Rus, [8]) For y0 ∈ Rn and f ∈ C([a,∞[×Rn ×
Rn,Rn), the following conditions hold:

(a) Bf (C([a,∞[,Rn)) ⊂ Xy0 and Ef (Xy0) ⊂ Xy0 , ∀y0 ∈ Rn;
(b) Bf |Xy0

= Ef |Xy0
, ∀y0 ∈ Rn.
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In this paper we prove that the operator Ef is weakly Picard operator
(see [7]), and we study the equation (1.3) in the terms of the weakly
Picard operators theory.

2. Weakly Picard operators

We start this section by presenting some notions and results from
the weakly Picard operators theory.

Let (X, d) be a metric space and A : X → X an operator. We shall
use the following notations:

FA := {x ∈ X | A(x) = x} - the fixed point set of A;
I(A) := {Y ⊂ X | A(Y ) ⊂ Y, Y 6= ∅} - the family of the nonempty

invariant subsets of A;
We will denote by H the Pompeiu-Housdorff functional, H : P (X)×

P (X) → R+ ∪ {+∞} defined as

H(Y, Z) := max{sup
y∈Y

inf
z∈Z

d(y, z), sup
z∈Z

inf
y∈Y

d(y, z)}

Definition 2.1. Let (X, d) be a metric space. An operator A : X → X
is a Picard operator (PO) if there exists x∗ ∈ X such that:

(i) FA = {x∗};
(ii) the sequence (An(x0))n∈N converges to x∗ for all x0 ∈ X.

Definition 2.2. Let (X, d) be a metric space. An operator A : X → X
is a weakly Picard operator (WPO) if the sequence (An(x))n∈N con-
verges for all x ∈ X, and its limit (which may depend on x) is a fixed
point of A.

Definition 2.3. If A is weakly Picard operator then we consider the
operator A∞ defined by

A∞ : X → X, A∞(x) := lim
n→∞

An(x).

Remark 2.4. It is clear that A∞(X) = FA.

Definition 2.5. Let A be a weakly Picard operator and c > 0. The
operator A is c -weakly Picard operator if

d(x,A∞(x)) ≤ cd(x,A(x)), ∀x ∈ X.

For the theory of weakly Picard operator, see [6], [7], [8].

3. Cauchy problem

Let us consider the following Banach space (BC([a,∞[,Rn), ‖·‖)
where BC([a,∞[,Rn) := {y ∈ C([a,∞[,Rn)| y is bounded} with
‖y‖ := max

t∈[a,∞]
{|y1(t)| , . . . , |yn(t)|}. We have the following existence and

uniqueness theorem
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Theorem 3.1. We suppose that:

(i) there exists Lf : [a,∞[→ R+ with
∫∞

a
Lf (s)ds < ∞ such that

‖f(t, u1, u2)− f(t, v1, v2)‖ ≤ Lf (t) max{|u1 − v1| , |u2 − v2|},
∀t ∈ [a,∞[ and ui, vi ∈ Rn, i = 1, 2.

(ii) ‖X(t)X−1(s)‖ ≤ K, for a ≤ s ≤ t < ∞;

(iii)
∫ t

a
‖f(s, 0, 0)‖ ds < ∞;

(iv) K
∫ t

a
Lf (s)ds < 1.

Then the problem (1.3)–(1.4) has, in BC([a,∞[,Rn), a unique so-
lution and this solution is the uniform limit of the successive approxi-
mations.

Proof. The problem (1.3)–(1.4) is equivalent with the fixed point equa-
tion

Bf (y) = y, y ∈ BC([a,∞[,Rn).

We show that the space BC([a,∞[,Rn) is invariant for the operator
Bf .

If x ∈ BC([a,∞[,Rn), then

|Bf (x)(t)|

≤
∣∣X(t)X−1(a)y0

∣∣ +

∫ t

a

∣∣X(t)X−1(a)
∣∣
∣∣∣∣f(s, y(s), max

a≤ξ≤s
y(ξ))− f(s, 0, 0)

∣∣∣∣ ds

+

∫ t

a

∣∣X(t)X−1(a)
∣∣ |f(s, 0, 0)| ds

≤ Ky0 +

∫ t

a

KLf (s) max

{
|y(s)| ,

∣∣∣∣max
a≤ξ≤s

y(ξ)

∣∣∣∣
}

ds +

∫ t

a

K |f(s, 0, 0)| ds < ∞.

So Bf (BC([a,∞[,Rn)) ⊆ BC([a,∞[,Rn).
On the other hand we have that (see [4])

|Bf (y1)(t)−Bf (y2)(t)|

=

∣∣∣∣X(t)X−1(a)y0 +

∫ t

a

X(t)X−1(s)f(s, y1(s), max
a≤ξ≤s

y1(ξ))ds

−X(t)X−1(a)y0 −
∫ t

a

X(t)X−1(s)f(s, y2(s), max
a≤ξ≤s

y2(ξ))ds

∣∣∣∣

≤
∫ t

a

Lf (s)
∣∣X(t)X−1(s)

∣∣ max

{
|y1(s)−y2(s)| ,

∣∣∣∣∣max
a≤ξ≤s

y1(ξ)−max y2(ξ)
a≤ξ≤s

∣∣∣∣∣

}
ds

≤ K

∫ t

a

Lf (s) max

{
|y1(s)−y2(s)| , max

a≤ξ≤s
|y1(ξ)−y2(ξ)|

}
ds

≤
(

K

∫ t

a

Lf (s)ds

)
‖y1 − y2‖ ,∀t ∈ [a,∞[, ∀y1, y2 ∈ BC([a,∞[,Rn).
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So,

‖Bf (y1)−Bf (y2)‖ ≤
(

K

∫ t

a

Lf (s)ds

)
‖y1 − y2‖ ,

∀t ∈ [a,∞[,∀y1, y2 ∈ BC([a,∞[,Rn), i.e., Bf is a contraction w.r.t.
the norm ‖·‖ on BC([a,∞[,Rn). The proof follows from the Banach
fixed point theorem. ¤

Remark 3.2. In the conditions of Theorem 3.1, the operator Bf is
Picard operator. But

Bf |Xy0
= Ef |Xy0

, ∀y0 ∈ Rn.

Hence, the operator Ef is weakly Picard operator and FEf
∩ Xy0 =

{y∗y0
},∀y0 ∈ Rn, where FEf

= {y∗y0
∈ Xy0|Ef (y

∗
y0

) = y∗y0
} and y∗y0

is the
unique solution of the problem (1.3)–(1.4).

From the WPO theory, we present in the following sections inequal-
ities of Čaplygin type and data dependence results for the solution of
the system of differential equations.

4. Inequalities of Čaplygin type

From the weakly Picard operator theory we have

Theorem 4.1. (Theorem of Čaplygin type) We suppose that:

(a) the hypothesis of Theorem 3.1 are satisfied;
(b) f(t, ·, ·) : R2n → Rn is increasing, i.e., ui ≤ vi ⇒ f(t, u1, u2) ≤

f(t, v1, v2), ∀t ∈ [a,∞[ and ui, vi ∈ Rn, i = 1, 2.

Let y be a solution of equation (1.3) and x a solution of the inequality

x′(t) ≤ A(t)x(t) + f(t, x(t), max
a≤ξ≤t

x(ξ)), t ∈ [a,∞[.

Then

x(a) ≤ y(a) implies that x ≤ y.

Proof. In the terms of the operator Ef , we have

y = Ef (y) and x ≤ Ef (x),

and y(a) ≤ x(a).
From Remark 3.2, Ef is weakly Picard operator. From the condition

(b), E∞
f is increasing ([7]). If y0 ∈ Rn, then we denote by ỹ0 the

following function

ỹ0 : [a,∞[→ Rn, ỹ0(t) = y0, ∀t ∈ [a,∞[.

We have

x ≤ Ef (x) ≤ . . . ≤ E∞
f (x) = E∞

f (x̃(a)) ≤ E∞
f (ỹ(a)) = y.

¤
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5. Data dependence: monotony

The following concept is important for our further considerations.

Lemma 5.1. (Comparison principle, [6]) Let (X, d,≤) an ordered met-
ric space and A,B,C : X → X be such that

(a) A ≤ B ≤ C;
(b) the operator A,B,C, are WPOs;
(c) the operator B is increasing.

Then x ≤ y ≤ z imply that A∞(x) ≤ B∞(y) ≤ C∞(z).

From this abstract result we have

Theorem 5.2. Let fi ∈ C([a,∞[×R2n,Rn), i = 1, 2, be as in Theorem
3.1. We suppose that:

(i) f1 ≤ f2 ≤ f3;
(ii) f2(t, ·, ·) : R2n → Rn is increasing;

Let yi ∈ BC1([a,∞[,Rn) be a solution of the equation

y′i(t) = A(t)yi(t) + fi(t, y(t), max
a≤ξ≤t

y(ξ)), t ∈ [a,∞[ and i = 1, 2, 3.

If y1(a) ≤ y2(a) ≤ y3(a), then y1 ≤ y2 ≤ y3.

Proof. From Theorem 3.1 we have that the operator Efi
, i = 1, 2, 3, are

WPOs. From the condition (ii) the operator Ef2 is monotone increas-
ing. From the condition (i) it follows that

Ef1 ≤ Ef2 ≤ Ef3 .

Let ỹi(a) ∈ BC([a,∞[,Rn) be defined by ỹi(a)(t) = yi(a), ∀t ∈ [a,∞[.
It is clear that

ỹ1(a)(t) ≤ ỹ2(a)(t) ≤ ỹ3(a)(t), ∀t ∈ [a,∞[.

From Lemma 5.1 we have that

E∞
f1

(ỹ1(a)) ≤ E∞
f2

(ỹ2(a)) ≤ E∞
f3

(ỹ3(a)).

But yi = E∞
fi (ỹi(a)), and y1 ≤ y2 ≤ y3. ¤

6. Data dependence: continuity

Consider the Cauchy problem (1.3)–(1.4) and suppose the conditions
of Theorem 3.1 are satisfied. Denote by y∗(·; y0, f) the solution of this
problem.

In order to study the continuous dependence of the fixed points we
will use the following result:

Theorem 6.1. (I.A. Rus, [7]) Let (X, d) be a complete metric space
and A,B : X → X two operators. We suppose that

(i) the operator A is a α-contraction;
(ii) FB 6= ∅;
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(iii) there exists η > 0 such that

d(A(x), B(x)) ≤ η, ∀x ∈ X.

Then, if FA = {x∗A} and x∗B ∈ FB, we have

d(x∗A, x∗B) ≤ η

1− α
.

Then, accordingly to Theorem 6.1 we have the result as follows.

Theorem 6.2. Let yi
0, fi, i = 1, 2 be as in Theorem 3.1. Furthermore,

we suppose that there exists ηi ∈ Rn
+, i = 1, 2 with

∫ t

a
η2(s)ds < ∞ such

that

(i) ‖y1
0 − y2

0‖ ≤ η1;
(ii) ‖X(t)X−1(s)‖ ≤ K for a ≤ s ≤ t < ∞;
(iii) ‖f1(t, u, v)− f2(t, u, v)‖ ≤ η2(t), ∀t ∈ [a,∞[, u ∈ Rn.

Then

∥∥y∗1(t; y
1
0, f1)− y∗2(t; y

2
0, f2)

∥∥ ≤ Kη1 + K
∫ t

a
η2(s)ds

1−K
∫ t

a
Lf (s)ds

,

where y∗i (t; x
i
0, fi), i = 1, 2 are the solution of the problem (1.3)–(1.4)

with respect to yi
0, fi and Lf = max {Lf1 , Lf2} .

Proof. Consider the operators Byi
0,fi

, i = 1, 2. From Theorem 3.1 these
operators are contractions.

Additionally
∥∥∥By1

0 ,f1
(y)−By2

0 ,f2
(y)

∥∥∥ ≤ Kη1 + K

∫ t

a

η2(s)ds, ∀y ∈ BC([a,∞[,Rn).

Now the proof follows from the Theorem 6.1, with A :=By1
0 ,f1

, B =

By2
0 ,f2

, η = Kη1 + K
∫ t

a
η2(s)ds and α := K

∫ t

a
Lf (s)ds, where Lf =

max {Lf1 , Lf2} . ¤
We shall use the c-WPOs techniques to give some data dependence

results.

Theorem 6.3. (I.A. Rus, [7]) Let (X, d) be a metric space and Ai :
X → X, i = 1, 2. Suppose that

(i) the operator Ai is ci-weakly Picard operator, i=1, 2;
(ii) there exists η > 0 such that

d(A1(x), A2(x)) ≤ η, ∀x ∈ X.

Then H(FA1 , FA2) ≤ η max {c1, c2} .

Based upon Theorem 6.3 we have the next result.

Theorem 6.4. Let f1 and f2 be as in Theorem 3.1. Let SEf1
, SEf2

be
the solution sets of system (1.3) corresponding to f1 and f2. Suppose
that

(i) ‖X(t)X−1(s)‖ ≤ K for a ≤ s ≤ t < ∞;
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(ii) there exists η ∈ Rn
+,

∫ t

a
η(s)ds < ∞ such that

(6.1) ‖f1(t, u, v)− f2(t, u, v)‖ ≤ η(t) for all t ∈ [a,∞[, u ∈ Rn.

Then

H‖·‖C
(SEf1

, SEf2
) ≤ K

∫ t

a
η(s)ds

1−K
∫ t

a
Lf (s)ds

,

where Lf = max {Lf1 , Lf2} and H‖·‖ denotes the Pompeiu-Housdorff
functional with respect to ‖·‖ on BC([a,∞[,Rn).

Proof. In the condition of Theorem 3.1, the operators Ef1 and Ef2 are
ci-weakly Picard operators, i = 1, 2. Let Xy0 := {y ∈ BC([a,∞[,Rn)| y(a) =
y0}. It is clear that Ef1|Xy0

= Bf1 , Ef2|Xy0
= Bf2 . Therefore,

∥∥E2
f1

(y)− Ef1(y)
∥∥ ≤

(
K

∫ t

a

Lf1(s)ds

)
‖Ef1(y)− y‖ , ∀y ∈ BC([a,∞[,Rn),

∥∥E2
f2

(y)− Ef2(y)
∥∥ ≤

(
K

∫ t

a

Lf2(s)ds

)
‖Ef2(y)− y‖ , ∀y ∈ BC([a,∞[,Rn).

Now, choosing y1
0 = K

∫ t

a
Lf1(s)ds and y2

0 = K
∫ t

a
Lf2(s)ds, we get

that Ef1 and Ef2 are ci-weakly Picard operators, i = 1, 2 with c1 =
(1− y1

0)
−1 and c2 = (1− y2

0)
−1. From (6.1) we obtain that

‖Ef1(y)− Ef2(y)‖ ≤ K

∫ t

a

η(s)ds, ∀y ∈ BC([a,∞[,Rn).

Applying Theorem 6.3 we have that

H‖·‖(SEf1
, SEf2

) ≤ K
∫ t

a
η(s)ds

1−K
∫ t

a
Lf (s)ds

,

where Lf = max {Lf1 , Lf2} and H‖·‖ is the Pompeiu-Housdorff func-
tional with respect to ‖·‖ on BC([a,∞[,Rn). ¤
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