
SOME PROPERTIES OF SOLUTIONS OF A
FUNCTIONAL-DIFFERENTIAL EQUATION OF

SECOND ORDER WITH DELAY

VERONICA ANA ILEA∗ AND DIANA OTROCOL∗∗

Abstract. Existence, uniqueness, data dependence (monotony,
continuity, differentiability with respect to parameter) and Ulam-
Hyers stability results for the solutions of a system of functional-
differential equations with delays are proved. The techniques used
are Perov’s fixed point theorem and weakly Picard operator theory.

1. Introduction

Functional-differential equations with delay arise when modeling bi-
ological, physical, engineering and other processes whose rate of change
of state at any moment of time t is determined not only by the present
state, but also by past state.

The description of certain phenomena in physics has to take into
account that the rate of propagation is finite. For example, oscilla-
tion in a vacuum tube can be described by the following equation in
dimensionless variables [4], [9]

x′′(t) + 2rx′(t) + ω2x(t) + 2qx′(t− 1) = ϵx′3(t− 1).

In this equation, time delay is due to the fact that the time necessary
for electrons to pass from the cathode to the anode in the tube is finite.
The same equation has been used in the theory of stabilization of ships
[9]. The dynamics of an autogenerator with delay and second-order
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filter was described in [1] by the equation

x′′(t) + 2δx′(t) + x(t) = f(x(t− h)).

The model of ship course stabilization under conditions of uncertainty
may be described by the following equation [3],

Ix′′(t) +Hx′(t) = −KΨ(t) + b0ξ
′
0(t), x(t0) = x0, x

′(t0) = 0,

with x(t) being the angle of the deviation from course, Ψ(t) the turning
angle of the rudder and ξ0(t) the stochastic disturbance. In the process
of mathematical modeling often small delays are neglected, that is why
false conclusions appear. As an example we can give the following
equation [4],

x′′(t) + x′(t) + x(t) = a[x′′(t− h) + x′(t− h) + x(t− h)],

which is asymptotically stable for h = 0, but unstable for arbitrary
h > 0. Here a > 1. If h = 0 the above system is asymptotically stable.
The characteristic equation is ∆(z) = (z2 + z + 1)(1 − ae−hz) = 0
and has the following zeros with positive real part if h > 0 : zk =
1
h
(lna + 2kπi), i2 = −1, k = 0,±1, . . .. So the trivial solution is

unstable for any h > 0.
In this paper we continue the research in this field and develop the

study of the following general functional differential equation with delay

(1.1)

{
x′′(t) = f(t, x(t), x′(t), x(t− h), x′(t− h)), t ∈ [a, b]
x(t) = φ(t), t ∈ [a− h, a].

Existence, uniqueness, data dependence (monotony, continuity, differ-
entiability with respect to parameter) and Ulam-Hyers stability results
of solution for the Cauchy problem are obtained. Our results are es-
sentially based on Perov’s fixed point theorem and weakly Picard op-
erator technique, which will be presented in Section 2. More results
about functional and integral differential equations using these tech-
niques can be found in [2], [5]-[7]. The problem (1.1) is equivalent to
the following system

(1.2)

{
x′(t) = z(t), t ∈ [a, b]
z′(t) = f(t, x(t), z(t), x(t− h), z(t− h)), t ∈ [a, b],

with the initial conditions

(1.3)

{
x(t) = φ(t), t ∈ [a− h, a]
z(t) = φ′(t), t ∈ [a− h, a].

By a solution of the system (1.2) we understand a function
(
x
z

)
∈

C([a− h, b],R2) ∩ C1([a, b],R2) that verifies the system.
We suppose that
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(C1) a < b, h > 0;
(C2) f ∈ C([a, b]× R4,R), φ ∈ C1([a− h, a],R);
(C3) there exists L1, L2 > 0 such that ∀t ∈ [a, b], ui, vi, ũi, ṽi ∈ R,

i=1, 2, we have

|f(t, u1, v1, u2, v2)− f(t, ũ1, ṽ1, ũ2, ṽ2)| ≤
≤ L1 max (|u1 − ũ1| , |u2 − ũ2|) + L2max (|v1 − ṽ1| , |v2 − ṽ2|) .

If
(
x
z

)
∈ C([a− h, b],R2) ∩ C1([a, b],R2) is a solution of the problem

(1.2)-(1.3) then
(
x
z

)
is a solution of the following integral system

(1.4)

(
x

z

)
(t) =

{ (
φ
φ′

)
(t), for t ∈ [a− h, a]( φ(a)+

∫ t
a z(s)ds

φ′(a)+
∫ t
a f(s,x(s),z(s),x(s−h),z(s−h))ds

)
, for t ∈ [a, b].

If
(
x
z

)
∈ C([a−h, b],R2) is a solution of (1.4) then

(
x
z

)
∈ C([a−h, b],

R2) ∩ C1([a, b],R2) and
(
x
z

)
is a solution of (1.2)-(1.3).

Moreover, the system (1.2) is equivalent to the functional integral
system

(1.5)

(
x

z

)
(t) =

{ (
x
z

)
(t), for t ∈ [a− h, a]( x(a)+

∫ t
a z(s)ds

z(a)+
∫ t
a f(s,x(s),z(s),x(s−h),z(s−h))ds

)
, for t ∈ [a, b].

We consider the operatorsB,E : C([a−h, b],R2) → C([a−h, b],R2), B =(B1(xz)
B2(xz)

)
, E =

(E1(xz)
E2(xz)

)
defined by B

(
x
z

)
(t) :=the right hand side of

(1.4), for t ∈ [a − h, b] and E
(
x
z

)
(t) :=the right hand side of (1.5),

for t ∈ [a− h, b].

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary
results which are used throughout this paper, see [10]–[18]. Let (X, d)
be a metric space and A : X → X an operator. We shall use the
following notations:
FA := {x ∈ X | A(x) = x} - the fixed points set of A;
I(A) := {Y ⊂ X | A(Y ) ⊂ Y, Y ̸= ∅} - the family of the nonempty

invariant subset of A;
An+1 := A ◦ An, A0 = 1X , A

1 = A, n ∈ N.

Definition 2.1. Let (X, d) be a metric space. An operator A : X → X
is a Picard operator (PO) if there exists x∗ ∈ X such that:

(i) FA = {x∗};
(ii) the sequence (An(x0))n∈N converges to x∗ for all x0 ∈ X.
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Definition 2.2. Let (X, d) be a metric space. An operator A : X → X
is a weakly Picard operator (WPO) if the sequence (An(x))n∈N con-
verges for all x ∈ X, and its limit (which may depend on x) is a fixed
point of A.

Definition 2.3. If A is weakly Picard operator then we consider the
operator A∞ defined by

A∞ : X → X, A∞(x) := lim
n→∞

An(x).

Remark 2.4. It is clear that A∞(X) = FA.

Definition 2.5. Let A be a weakly Picard operator and c > 0. The
operator A is c-weakly Picard operator if

d(x,A∞(x)) ≤ cd(x,A(x)), ∀x ∈ X.

The following concept is important for our further considerations.

Definition 2.6. Let (X, d) be a metric space and f : X → X be an
operator. The fixed point equation

(2.1) x = f(x)

is Ulam-Hyers stable if there exists a real number cf > 0 such that: for
each ε > 0 and each solution y∗ of the inequation

d(y, f(y)) ≤ ε

there exists a solution x∗ of the equation (2.1) such that

d(y∗, x∗) ≤ cfε.

Now we have

Theorem 2.7. [18] If f : X → X is c-WPO, then the equation

x = f(x)

is Ulam-Hyers stable.

Another result from the WPO theory is the following (see, e.g., [12]).

Theorem 2.8. (Fibre contraction principle). Let (X, d) and (Y, ρ) be
two metric spaces and A : X × Y → X × Y, A = (B,C), ( B : X →
X, C : X × Y → Y ) a triangular operator. We suppose that

(i) (Y, ρ) is a complete metric space;
(ii) the operator B is Picard operator;
(iii) there exists l ∈ [0, 1) such that C(x, ·) : Y → Y is a l-contraction,

for all x ∈ X;
(iv) if (x∗, y∗) ∈ FA, then C(·, y∗) is continuous in x∗.
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Then the operator A is Picard operator.

Throughout this paper we denote by Mmm(R+) the set of all m×m
matrices with positive elements and by I the identity m ×m matrix.
A square matrix Q with nonnegative elements is said to be convergent
to zero if Qk → 0 as k → ∞. It is known that the property of being
convergent to zero is equivalent to each of the following three conditions
(see [10], [11]):

(a) I −Q is nonsingular and (I −Q)−1 = I +Q+Q2 + · · · (where
I stands for the unit matrix of the same order as Q);

(b) the eigenvalues of Q are located inside the open unit disc of the
complex plane;

(c) I −Q is nonsingular and (I −Q)−1 has nonnegative elements.

We finish this section by recalling the following fundamental result
(see [8], [10]).

Theorem 2.9. (Perov’s fixed point theorem). Let (X, d) with d(x, y) ∈
Rm, be a complete generalized metric space and A : X → X an opera-
tor. We suppose that there exists a matrix Q ∈Mmm(R+), such that

(i) d(A(x), A(y)) ≤ Qd(x, y), for all x, y ∈ X;
(ii) Qn → 0 as n→ ∞.

Then

(a) FA = {x∗};
(b) An(x) = x∗ as n→ ∞, ∀x ∈ X;
(c) d(An(x), x∗) ≤ (I −Q)−1Qnd(x0, A(x0)).

3. Main results

In this section we present existence, uniqueness and data dependence
(monotony, continuity, differentiability with respect to parameter) re-
sults of solution for the Cauchy problem (1.2)-(1.3).

3.1. Existence and uniqueness. Using Perov’s fixed point theorem
we obtain existence and uniqueness theorem for the solution of the
problem (1.2)-(1.3).

Theorem 3.1. We suppose that:

(i) the conditions (C1)-(C3) are satisfied;

(ii) Qn → 0 as n→ ∞, where Q = (b− a)

(
0 1
L1 L2

)
.

Then:

(a) the problem (1.2)-(1.3) has a unique solution
(
x∗

z∗

)
∈ C1([a, b],R2);



6 VERONICA ANA ILEA AND DIANA OTROCOL

(b) for all
(
x0

z0

)
∈ C1([a, b],R2), the sequence

(
xn

zn

)
n∈N defined by

(
xn+1

zn+1

)
=

B
(
xn

zn

)
, converges uniformly to

(
x∗

z∗

)
, for all t ∈ [a, b], and∥∥∥∥(xnzn

)
−

(
x∗

z∗

)∥∥∥∥ ≤ (I −Q)−1Qn

∥∥∥∥(x0z0
)
−
(
x1

z1

)∥∥∥∥ ;
(c) the operator B is Picard operator in (C([a− h, b],R2),

unif−→);

(d) the operator E is weakly Picard operator in (C([a−h, b],R2),
unif−→).

Proof. Consider on the space X := C([a− h, b],R2) the norm∥∥∥∥(u1v1
)
−

(
u2
v2

)∥∥∥∥ := max

(
|u1 − u2|
|v1 − v2|

)
,

which endows X with the uniform convergence.

LetX(χ
χ′) =

{(
x
z

)
∈ X|

(
x
z

)∣∣
[a−h,a]

=
(
χ
χ′

)
, for

(
χ
χ′

)
∈ C([a− h, a],R2)

}
.

Then X = ∪
(χ
χ′)∈C([a−h,a],R2)

X(χ
χ′) is a partition of X and from [13] we

have

(1) B(X) ⊂ X(χ
χ′), B(X(χ

χ′)) ⊂ X(χ
χ′);

(2) B|X
(χ
χ′)

= E|X
(χ
χ′)
.

On the other hand, for t ∈ [a− h, a] ∪ [a, b]∥∥∥∥∥
(
B1

(
x1

z1

)
B2

(
x1

z1

))−
(
B1

(
x2

z2

)
B2

(
x2

z2

))∥∥∥∥∥ ≤ (b− a)

(
0 1
L1 L2

)∥∥∥∥(x1z1
)
−

(
x2
z2

)∥∥∥∥ ,
whence B is a contraction in (X, ∥·∥) withQ = (b−a)

(
0 1
L1 L2

)
. Ap-

plying Perov’s theorem we obtain (a), (b) and (c). Moreover the opera-

tor B is c-PO and E is c-WPO with c =

[
1− (b− a)

(
0 1
L1 L2

)]−1

.

�

3.2. Inequalities of Čaplygin type. Now we establish the Čaplygin
type inequalities.

Theorem 3.2. We suppose that

(i) the conditions (a), (b) and (c) in Theorem 3.1 are satisfied;

(ii) ui, vi, ũi, ṽi ∈ R,
(
ui

vi

)
≤

(
ũi

ṽi

)
, i = 1, 2 imply that

f(t, u1, v1, u2, v2) ≤ f(t, ũ1, ṽ1, ũ2, ṽ2), ∀t ∈ [a, b].
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Let
(
x∗

z∗

)
be a solution of (1.2) and

(
y∗

w∗

)
be a solution of the system{

y′(t) ≤ w(t), t ∈ [a, b]
w′(t) ≤ f(t, y(t), w(t), y(t− h), w(t− h)), t ∈ [a, b].

Then (
y∗

w∗

)∣∣∣∣
[a−h,a]

≤
(
x∗

z∗

)∣∣∣∣
[a−h,a]

implies that

(
y∗

w∗

)
≤

(
x∗

z∗

)
.

Proof. We have that(
x∗

z∗

)
= E

(
x∗

z∗

)
,

(
y∗

w∗

)
≤ E

(
y∗

w∗

)
.

From Theorem 3.1, (c), E is weakly Picard operator. From condition
(ii), we obtain that E∞ is increasing ([12]). So(

y∗

w∗

)
≤ E∞

(
y∗

w∗

)
= E∞

(
ỹ∗

w̃∗

)
≤ E∞

(
x̃∗

z̃∗

)
=

(
x∗

z∗

)
where

(
x̃∗

z̃∗

)
∈ X(xz)|[a−h,a]

. �

3.3. Data dependence: monotony. In this subsection we study the
monotony of the solution of the problem (1.2)-(1.3) with respect to φ
and f .

Theorem 3.3. (Comparison theorem) Let fi ∈ C([a, b] × R4,R), i =
1, 2, 3, be as in Theorem 3.1. We suppose that

(i) f1 ≤ f2 ≤ f3;
(ii) f2(t, ·, ·, ·, ·) : R4 → R is increasing, ∀t ∈ [a, b].

Let
(
x∗
i

z∗i

)
be a solution of the system

(3.1)

{
x′(t) = z(t), t ∈ [a, b]
z′(t) = fi(t, x(t), z(t), x(t− h), z(t− h)), t ∈ [a, b].

Then (
x∗1
z∗1

)∣∣∣∣
[a−h,a]

≤
(
x∗2
z∗2

)∣∣∣∣
[a−h,a]

≤
(
x∗3
z∗3

)∣∣∣∣
[a−h,a]

imply that
(
x∗
1

z∗1

)∣∣∣
[a−h,b]

≤
(
x∗
2

z∗2

)∣∣∣
[a−h,b]

≤
(
x∗
3

z∗3

)∣∣∣
[a−h,b]

.

Proof. We consider the operators Ei corresponding to each system
(3.1). The operators Ei, i = 1, 2, 3 are weakly Picard operators. Taking
into consideration the condition (ii), E2 is increasing. From (i) we have
E1 ≤ E2 ≤ E3. On the other hand we have that(

x∗i
z∗i

)
= E∞

i

(
x̃∗i
z̃∗i

)
, i = 1, 2, 3.
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where
(
x̃∗

z̃∗

)
∈ X(xz)|[a−h,a]

. The proof follows from the abstract compari-

son Lemma (see [12]). �
3.4. Data dependence: continuity. Consider the problem (1.2)-
(1.3) with the dates fi ∈ C([a, b]×R4,R), i = 1, 2 and suppose that fi
satisfy the conditions from Theorem 3.1 with the same Lipshitz con-
stants. We obtain the data dependence result.

Theorem 3.4. Let fi ∈ C([a, b]×R4,R), φi ∈ C([a−h, a],R), i = 1, 2,
be as in Theorem 3.1. We suppose that

(i) there exists η1, η2 > 0 such that∣∣∣∣(φ1

φ′
1

)
(t)−

(
φ2

φ′
2

)
(t)

∣∣∣∣ ≤ (
η1
η2

)
, ∀t ∈ [a− h, a];

(ii) there exists η3 > 0 such that

|f1(t, u1, u2, u3, u4)− f2(t, u1, u2, u3, u4)| ≤ η3, ∀t ∈ [a, b], ui ∈ R, i=1, 4.

Then∥∥∥∥(x∗z∗
)
(·, φ1, φ

′
1, f1)−

(
x∗

z∗

)
(·, φ2, φ

′
2, f2)

∥∥∥∥ ≤ (I−Q)−1

(
η1

η2 + (b− a)η3

)
,

where
(
x∗

z∗

)
(·, φ, φ′, f) denote the unique solution of (1.2)-(1.3).

Proof. Consider the operators Bφi,fi , i = 1, 2. From Theorem 3.1 it
follows that∥∥∥∥Bφ1,f1

(
x1
z1

)
−Bφ1,f1

(
x2
z2

)∥∥∥∥ ≤ Q

∥∥∥∥(x1z1
)
−
(
x2
z2

)∥∥∥∥ , ∀(xizi
)

∈ X.

Additionally,∥∥∥∥Bφ1,f1

(
x

z

)
−Bφ2,f2

(
x

z

)∥∥∥∥ ≤
(

η1
η2 + (b− a)η3

)
.

Thus∥∥∥∥(x∗z∗
)
(·, φ1, φ

′
1, f1)−

(
x∗

z∗

)
(·, φ2, φ

′
2, f2)

∥∥∥∥
=

∥∥∥∥Bφ1,f1

((
x∗

z∗

)
(·, φ1, φ

′
1, f1)

)
−Bφ2,f2

((
x∗

z∗

)
(·, φ2, φ

′
2, f2)

)∥∥∥∥
≤

∥∥∥∥Bφ1,f1

((
x∗

z∗

)
(·, φ1, φ

′
1, f1)

)
−Bφ1,f1

((
x∗

z∗

)
(·, φ2, φ

′
2, f2)

)∥∥∥∥
+

∥∥∥∥Bφ1,f1

((
x∗

z∗

)
(·, φ2, φ

′
2, f2)

)
−Bφ2,f2

((
x∗

z∗

)
(·, φ2, φ

′
2, f2)

)∥∥∥∥
≤ Q

∥∥∥∥(x∗z∗
)
(·, φ1, φ

′
1, f1)−

(
x∗

z∗

)
(·, φ2, φ

′
2, f2)

∥∥∥∥+

(
η1

η2 + (b− a)η3

)
,
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and since Qn → ∞, as n → ∞ implies that (I −Q)−1 ∈ M22(R+), we
finally obtain∥∥∥∥(x∗z∗

)
(·, φ1, φ

′
1, f1)−

(
x∗

z∗

)
(·, φ2, φ

′
2, f2)

∥∥∥∥ ≤ (I−Q)−1

(
η1

η2 + (b− a)η3

)
.

�
3.5. Data dependence: differentiability. Consider the following
differential system with parameter

(3.2)

{
x′(t) = z(t), t ∈ [a, b]
z′(t) = f(t, x(t), z(t), x(t− h), z(t− h);λ), t ∈ [a, b], λ ∈ J,

with the initial conditions

(3.3)

{
x(t) = φ(t), t ∈ [a− h, a]
z(t) = φ′(t), t ∈ [a− h, a],

where J ⊂ R is a compact interval.
Suppose that the following conditions are satisfied:

(C1) a < b, h > 0, J ⊂ R a compact interval;
(C2) f ∈ C([a, b]× R4 × J,R);
(C3) φ ∈ C1([a− h, a],R);
(C4) there exists Lf > 0, such that∣∣∣∣∂f(t, u1, u2, u3, u4;λ)∂ui

∣∣∣∣ ≤ L1, u1, u3 ∈ R, i = 1, 3, λ ∈ J ;∣∣∣∣∂f(t, u1, u2, u3, u4;λ)∂ui

∣∣∣∣ ≤ L2, u2, u4 ∈ R, i = 2, 4, λ ∈ J ;

(C5) for Q = (b− a)

(
0 1
L1 L2

)
we have Qn → 0 as n→ ∞.

Then, from Theorem 3.1, we have that the problem (1.2)-(1.3) has a
unique solution,

(
x∗

z∗

)
∈ C1([a, b],R2).We prove that

(
x∗

z∗

)
∈ C1(J,R2), ∀ t ∈

[a−h, b].
For this we consider the system

(3.4){
x′(t;λ) = z(t;λ), t ∈ [a, b], λ ∈ J
z′(t;λ) = f(t, x(t;λ), z(t;λ), x(t− h;λ), z(t− h;λ);λ), t ∈ [a, b], λ ∈ J

with
(
x∗

z∗

)
∈ C([a− h, b]× J,R2) ∩ C1([a, b]× J,R2).

Theorem 3.5. Consider the problem (3.4)-(3.3) and suppose the con-
ditions (C1)–(C5) hold. Then,

(i) (3.4)-(3.3) has a unique solution
(
x∗

z∗

)
(·, λ), in C([a−h, b]×J,R2);

(ii)
(
x∗

z∗

)
(·, λ) ∈ C1(J,R2), ∀t ∈ [a−h, b].
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Proof. The problem (3.4)-(3.3) is equivalent with the following functional-
integral system
(3.5)(
x

z

)
(t;λ) =

(
φ(a) +

∫ t

a
z(s;λ)ds

φ′(a) +
∫ t

a
f(s, x(s;λ), z(s;λ), x(s− h;λ), z(s− h;λ);λ)ds

)
,

for t ∈ [a, b] and

(3.6)

(
x

z

)
(t;λ) =

(
φ

φ′

)
(t), for t ∈ [a− h, a].

Now let us take the operator A : C([a− h, b]× J,R2) → C([a− h, b]×
J,R2), defined by

A

(
x

z

)
(t;λ) :=

(
A1

(
x
z

)
A2

(
x
z

)) := the right hand side of (3.5), for t ∈ [a, b] and

A

(
x

z

)
(t;λ) :=

(
A1

(
x
z

)
A2

(
x
z

)) := the right hand side of (3.6), for t ∈ [a−h, a].

Let X = C([a− h, b]× J,R2).
It is clear, from the proof of the Theorem 3.1, that in the condition

(C1)–(C5), the operatorA : (X, ∥·∥) → (X, ∥·∥) is Picard operator.
Let

(
x∗

z∗

)
be the unique fixed point of A.

Supposing that there exists

(∂x∗

∂λ
∂z∗

∂λ

)
, from (3.5)-(3.6), we obtain that

∂x∗

∂λ
=

∫ t

a

∂z(s;λ)

∂λ
ds

and

∂z∗

∂λ
=

∫ t

a

∂f(s, x(s;λ), z(s;λ), x(s− h;λ), z(s− h;λ);λ)

∂u1

∂x(s;λ)

∂λ
ds

+

∫ t

a

∂f(s, x(s;λ), z(s;λ), x(s− h;λ), z(s− h;λ);λ)

∂u2

∂z(s;λ)

∂λ
ds

+

∫ t

a

∂f(s, x(s;λ), z(s;λ), x(s− h;λ), z(s− h;λ);λ)

∂u3

∂x(s− h;λ)

∂λ
ds

+

∫ t

a

∂f(s, x(s;λ), z(s;λ), x(s− h;λ), z(s− h;λ);λ)

∂u4

∂z(s− h;λ)

∂λ
ds

+

∫ t

a

∂f(s, x(s;λ), z(s;λ), x(s− h;λ), z(s− h;λ);λ)

∂λ
ds,

for all t ∈ [a, b], λ ∈ J.
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This relation suggest us to consider the following operator

C : X ×X → X,((
x12
z12

)
,

(
u13
u24

))
→ C

((
x12
z12

)
,

(
u13
u24

))
,

where C
((

x12

z12

)
,
(
u13

u24

))
(t;λ)= 0 for t ∈ [a− h, a], λ ∈ J and

C

((
x12
z12

)
,

(
u13
u24

))
(t;λ) :=

(C1

((
x12

z12

)
,
(
u13

u24

))
C2

((
x12

z12

)
,
(
u13

u24

)))

where

C1

((
x12
z12

)
,

(
u13
u24

))
(t;λ) :=

∫ t

a

∂z(s;λ)

∂λ
ds

and

C2

((
x12
z12

)
,

(
u13
u24

))
(t;λ)

:=

∫ t

a

∂f(s, x(s;λ), z(s;λ), x(s− h;λ), z(s− h;λ);λ)

∂u1
u1(s;λ)ds

+

∫ t

a

∂f(s, x(s;λ), z(s;λ), x(s− h;λ), z(s− h;λ);λ)

∂u2
u2(s;λ)ds

+

∫ t

a

∂f(s, x(s;λ), z(s;λ), x(s− h;λ), z(s− h;λ);λ)

∂u3
u3(s− h;λ)ds

+

∫ t

a

∂f(s, x(s;λ), z(s;λ), x(s− h;λ), z(s− h;λ);λ)

∂u4
u4(s− h;λ)ds

+

∫ t

a

∂f(s, x(s;λ), z(s;λ), x(s− h;λ), z(s− h;λ);λ)

∂λ
ds,

for t ∈ [a, b], λ ∈ J.Here we use the notations u1(s;λ) :=
∂x(s;λ)

∂λ
, u2(s;λ) :=

∂z(s;λ)
∂λ

, u3(s− h;λ) := ∂x(s−h;λ)
∂λ

and u4(s− h;λ) := ∂z(s−h;λ)
∂λ

.
In this way we have the triangular operator D : X × X → X ×

X,
((

x12

z12

)
,
(
u13

u24

))
→

(
A
(
x12

z12

)
, C

((
x12

z12

)
,
(
u13

u24

)))
, where A is Picard op-

erator and C(
(
x12

z12

)
,
(·
·

)
) : X → X is QC -contraction with QC =

(b− a)

(
0 1
L1 L2

)
.
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From Theorem 2.8 the operator D is Picard operator, i.e. the se-
quences (

xn+1
12

zn+1
12

)
:=A

(
xn12
zn12

)
,(

un+1
13

un+1
24

)
:=C

((
xn12
zn12

)
,

(
un13
un24

))
,

n ∈ N, converge uniformly, with respect to t ∈ [a − h, b], λ ∈ J, to((
xn
12

zn12

)
,
(
un
13

un
24

))
∈ FD, for all

(x0
12

z012

)
,
(u0

13

u0
24

)
∈ X.

If we take
(x0

12

z012

)
=

(
0
0

)
and

(u0
13

u0
24

)
=

( ∂x012
∂λ

∂z012
∂λ

)
=

(
0
0

)
then

(u1
13

u1
24

)
=

( ∂x112
∂λ

∂z112
∂λ

)
.

By induction we prove that(
un13
un24

)
=

(∂xn
12

∂λ
∂zn12
∂λ

)
, ∀n ∈ N.

So,
(
xn
12

zn12

) unif→
(
x∗
12

z∗12

)
, as n → ∞ and

( ∂xn12
∂λ

∂zn12
∂λ

) unif→
(
u∗
13

u∗
24

)
, as n → ∞.

From a Weierstrass argument we get that there exists

(∂x∗
12

∂λ
∂z∗12
∂λ

)
, i = 1, 2

and

(∂x∗
12

∂λ
∂z∗12
∂λ

)
=

(
u∗13
u∗24

)
.

�

3.6. Ulam-Hyers stability. We start this section by presenting the
Ulam-Hyers stability concept (see [16], [17]). For f ∈ C([a, b]×R4,R),
ε > 0 and ψ ∈ C([a− h, b],R+), h > 0, we consider the system

(3.7)

{
x′(t) = z(t), t ∈ [a, b]
z′(t) = f(t, x(t), z(t), x(t− h), z(t− h)), t ∈ [a, b]

and the following inequations

(3.8)

{
|x′(t)− z(t)| ≤ ε, t ∈ [a, b]
|z′(t)− f(t, x(t), z(t), x(t− h), z(t− h))| ≤ ε, t ∈ [a, b],

(3.9)

{
|x′(t)− z(t)| ≤ ψ(t), t ∈ [a, b]
|z′(t)− f(t, x(t), z(t), x(t− h), z(t− h))| ≤ ψ(t), t ∈ [a, b].

Definition 3.6. The system (3.7) is Ulam-Hyers stable if there exists a
real number c > 0 such that for each ε > 0 and for each solution

(
y
w

)
∈
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C2([a−h, b],R2) of (3.8) there exists a solution
(
x
z

)
∈ C2([a−h, b],R2)

of (3.7) with ∣∣∣∣(yw
)
(t)−

(
x

z

)
(t)

∣∣∣∣ ≤ cε, ∀t ∈ [a− h, b].

Theorem 3.7. We suppose that:

(i) the conditions (C1)-(C3) are satisfied;

(ii) Qn → 0 as n→ ∞, where Q = (b− a)

(
0 1
L1 L2

)
.

Then the system (1.2) is Ulam-Hyers stable.

Proof. The system (1.2) is equivalent with the functional integral sys-
tem (1.5). We consider the operator E : C([a − h, b],R2) → C([a −
h, b],R2), defined by E

(
x
z

)
(t) :=the right hand side of (1.5), for t ∈

[a− h, b]. So (
x

z

)
= E

(
x

z

)
(t), t ∈ [a− h, b].

From Theorem 3.1, E is c-WPO with c =

[
1− (b− a)

(
0 1
L1 L2

)]−1

.

Applying Theorem 2.7 we obtain that (1.2) is Ulam-Hyers stable. �
Remark 3.8. Another proof for the above theorem can be done using
Gronwall lemma ([7], [15]-[18]).
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