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Abstract

The effect of thermal dispersion in the conjugate steady free convection flow

of a nanofluid in a vertical channel is investigated numerically using a single

phase model. Considering the laminar and fully developed flow regime a simpli-

fied mathematical model is obtained. In the particular cases when solid phase

and thermal dispersion effects are neglected the problem was solved analyti-

cally. The numerical solution is shown to be in excellent agreement with the

close form analytical solution. Nusselt number enhancement with the Grashof

number, volume fraction, aspect ratio parameter and thermal diffusivity con-

stant increasing has been found.
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1 Introduction

Heat transfer in channels occurs in many industrial processes and natural phenom-

ena. It has been the subject of many studies for different flow configurations. We

mention some practical applications of convective heat transfer in channels: design of

cooling systems for electronic devices, insulation, ventilation, grain storage, geother-

mal energy recover, solar energy collection, etc. Some classical papers, such as by

Aung [1], Aung et al. [2], Barletta [3], Kumar et al. [8], Vajravelu and Sastri [12],
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are concerned with the evaluation of the temperature and velocity profiles for the

vertical parallel-flow fully developed regime. Enhancement of heat transfer is es-

sential in improving performances and compactness of electronic devices. Usual

cooling agents (water, oil, etc.) have relatively small thermal conductivities and

therefore heat transfer is not very efficient. Suspensions of nanoparticles in flu-

ids improve physical properties and increase the heat transfer. Small fraction of

nanoparticles added in a base fluid leads to a large increase of the fluid thermal

conductivity. Good description and classification of the nanofluids characteristics

can be found in papers such as: Daungthongsuk and Wongwises [5], Wang and Mu-

jumdar [14] and Kumar et al. [9]. The chaotic movement of the nanoparticles and

sleeping between the fine particles and fluid generate the thermal dispersion effect and

this leads to an increase in the energy exchange rates in fluid. Xuan and Roetzel [13]

proposed a thermal dispersion model for a single phase nanofluid. Thermal disper-

sion effects in nanofluids flow in enclosure using a single phase model were analyzed

by Khanafer et al. [7] and Kumar et al. [9] for a differentially heated rectangular

cavity, Khaled and Vafai [6] studied the heat transfer enhancement through control

of thermal dispersion effects in a horizontal channel, while Mokmeli and Saffar-Avval

[10] numerically studied nanofluid heat transfer in a straight tube. In all these paper

the enhancement of heat transfer due to nanofluids special properties was reported.

In the present paper, the effect of the thermal dispersion on the steady free convec-

tion flow in a long vertical channel, using the fully developed flow assumptions, is

investigated using a single phase thermal dispersion model similar with the model

considered by Khanafer et al. [7].

2 Basic equations

Consider the fully developed steady flow of an incompressible nanofluid in vertical

channel. The left wall of the channel have a thickness b and thus we have to consider

a conjugate heat transfer problem. The geometry of the problem, the boundary condi-

tions, and the coordinate system is shown in

Fig. 1.

The fluid flows up in the channel driven by buoyancy forces, so that the flow is

due only to the difference in temperature gradient. The flow being fully developed

the following relations apply here v = 0 and ∂v/∂y = 0, where v is the velocity in the

transversal direction. Thus, from the continuity equation, we get ∂u/∂x = 0 so that

the velocity along the channel is u = u(y). Based on the fact that the flow is fully

developed we can assume that the temperature depends only by y, i.e., T = T (y).

The physical properties of the nanofluid are considered constant except for density,

which is given by the Boussinesq approximation.

We use in this study the heat capacity and the thermal expansion coefficient of
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Figure 1: Geometry of the problem and the coordinate system

the nanofluid given in Kanafer et al. [7] as:

(ρCp)nf = (1− φ)(ρCp)f + φ(ρCp)s, (2.1)

(ρβ)nf = (1− φ)ρfβf + φρsβs, (2.2)

where ρ is the density, cp is the specific heat at constant pressure, φ is the volume

fraction of suspension particles, β is the expansion coefficient, while subscripts nf , f

and s stand for nanofluid, fluid and solid, respectively.

For the effective viscosity we consider the model proposed by Brinkman [4], which

is valid for high volume fraction (φ > 0.05):

µnf =
µf

(1− φ)2.5
, (2.3)

where µ is the dinamyc viscosity.

The effective stagnant thermal conductivity is approximated by the Maxwell-

Garnetts model, see Wang and Mujumdar [14], which applies for spherical type par-

ticles:
knf
kf

=
ks + 2kf − 2φ(kf − ks)

ks + 2kf + φ(kf − ks)
, (2.4)

where k is the thermal conductivity.

The effective thermal conductivity includes also the thermal dispersion enhance-

ment

keff = knf + kd, (2.5)
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where the term due to thermal dispersion, kd, is given by, see Khaled and Vafai [6]:

kd = C(ρCp)nf |u|φL, (2.6)

where L is the thickness of the channel and C is a constant depending on the diameter

of the nanoparticle and its surface geometry.

We limit the study in this paper to water based nanofluids containing Cu nanopar-

ticles. Nanofluids thermo-physical properties are shown in the Table 1, see Oztop and

Abu-Nada [11].

Property H2O Cu

Cp(J/kgK) 4179 385

ρ(kg/m3) 997.1 8933

k(W/mK) 0.613 400

α× 107(m2/s) 1.47 1163.1

β × 10−5(1/K) 21 1.67

Table 1: Physical properties of fluid and Cu nanoparticles

In the assumption of the fully developed flow the governing equations for the flow

and heat transfer have the following form:

αs

d2Ts

dy2
+

q′′′0
(ρCp)s

= 0; (2.7)

µnf

d2u

dy2
+ (ρβ)nfg(Tf − T0) = 0; (2.8)

d

dy
(keff

dTf

dy
) = 0; (2.9)

subject to the boundary conditions:

Ts|y=0 = TH ; Tf |y=L = TC ; (2.10)

Tf |y=b = Ts|y=b; (2.11)

ks
∂Ts

∂y
|y=b = knf

∂Tf

∂y
|y=b; (2.12)

u(b) = u(L) = 0; (2.13)

where g is the gravitational acceleration, T is the temperature, u is the velocity, q′′′0
is the heat generation and α is the thermal diffusivity.

In order to solve equations (2.7)-(2.9), subject to the boundary conditions (2.10)-

(2.13), we introduce the following non-dimensional variables used also by Kumar et

al. [8]:

Θs =
ks(Ts − T0)

q′′′0 L
2

, Θf =
ks(Tf − T0)

q′′′0 L
2

, Y =
y

L
, U =

u

Uc

, (2.14)
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where Uc and T0 are the characteristic velocity and temperature given by:

T0 =
TH + TC

2
, Uc =

gβf (
q′′′
0
L2

ks
)L2

νf
. (2.15)

Using (2.14) in equations (2.7)-(2.9) we obtain the following dimensionless ordinary

differential equations:
d2Θs

dY 2
+ 1 = 0; (2.16)

d2U

dY 2
+ λφΘf = 0; (2.17)

d

dY
[(kφ + Cφ|U |)

dΘf

dY
] = 0; (2.18)

subject to

Θs|Y=0 = q; (2.19)

Θs|Y=r = Θf |Y=r; (2.20)

dΘs

dY
|Y=r = K

dΘf

dY
|Y=r; (2.21)

Θf |Y=1 = −q; (2.22)

U(r) = U(1) = 0; (2.23)

where:

r =
b

L
, λφ = (1− φ)2.5[(1− φ) + φ

ρsβs

ρfβf

], q =
ks(TH − TC)

2q′′′0 L
2

, (2.24)

K =
knf
ks

, kφ =
knf/kf

1− φ+ φ (ρCp)s
(ρCp)f

, Cφ = CφPrGr (2.25)

are constants depending on the properties of the nanofluid and Pr = νf/αf , Gr =

gβfq
′′′

0 L
3/ν2

f are Prandtl number and Grashof number, respectively.

The physical quantity of interest in this problem is the Nusselt number, which for

the conjugate wall is defined as:

Nu =
hL

kf
|y=b (2.26)

where the convective heat transfer coefficient, h, is obtained from the relation:

− keff
dT

dy
|y=b = h(T |y=b − T0). (2.27)

Substituting (2.27) in (2.26) the dimensionless form of the Nusselt number becomes:

Nu = −
knf
kf

1

Θf |Y=r

dΘf

dY
|Y=r (2.28)
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3 Results and discussions

In the case when thermal dispersion effect is neglected, i.e. C = 0, the problem has

an analytical solution, which is given by

Θs(Y ) = −
Y 2

2
+ (r +Ka1)Y + q; (3.1)

Θf (Y ) = a1Y − a1 − q; (3.2)

U(Y ) = −λφ[a1
Y 3

6
− (a1 + q)

Y 2

2
] + a2Y + a3; (3.3)

where:

a1 =
1
2
r2 + 2q

r(1−K)− 1
; a2 =

λφ

6
[a1(r

2 − 2r − 2)− 3q(r + 1)];

a3 =
λφ

6
r[−a1(r − 2) + 3q].

In this particular case, the Nusselt number, has the form Nu = −aknf/kf , where

a = a1/(a1r − a1 − q), and depends only by thermal characteristics of the nanofluid.

Equations (2.16)-(2.23) were solved numerically using finite difference discretiza-

tion for different volume fractions of Cu nanoparticles, φ = 0, 0.05, 0.1 and 0.2, and

thermal conductivity ratio parameter, K = 0.001, 0.01 and 0.1. In this study we

consider fixed values for q and r (i.e. q = 1, r = 0.1) and, following Khaled and Vafai

[6], the values for constant Cφ were taken 0, 100, 250, 500, 1000, 5000 and 10000.

We compared the numerical method with the analytical solutions (3.1)-(3.3) and

a very good agreement was found. In Figs. 2 to 4 the analytical solutions are also

presented using a dot marker. Thus, we are confident that the numerical method

works fine.

Tables 2 to 4 show the Nusselt number for different values of the above parameters.

We mention that the value of Nusselt number increases with the increase of constant

Cφ and thermal conductivity parameter K. Due to the conjugate heat transfer and

thermal dispersion Nusselt number does not present a monotone behavior in respect

with volume fraction φ.

Table 5 presents the variation of the maximum temperature in solid with Cφ and

K. The maximum of the temperature in solid increases with the decrease of Cφ and

K.

Figs. 2 to 4 present the velocity and temperature profiles for φ = 0.2 and different

values of Cφ and K. The reversed character of the flow becomes less important with

the increasing of parameter Cφ for K = 0.001 (see Fig. 2a) while for K = 0.1 the flow

is down for large values of Cφ (see Fig. 2b). Figs. 3 and 4 present the temperature

profiles for K = 0.1 and K = 0.001 in solid and nanofluid. We observe a decrease of

the temperature in solid and an increase of the temperature near the cold wall with

the increase of Cφ for both values of K.

6



Cφ φ

0.05 0.1 0.2

0 2.593686 2.984831 3.912962

100 4.383934 4.209832 4.597601

250 8.156642 7.365368 6.165330

500 12.796259 11.836095 9.605016

1000 19.102887 18.263184 15.442523

5000 31.875747 34.480343 37.022310

10000 34.522407 38.455023 45.131964

Table 2: Values of Nusselt number for K = 0.1

Cφ φ

0.05 0.1 0.2

0 2.567849 2.955098 3.873984

100 3.878139 3.912190 4.532541

250 5.801081 5.747647 5.559927

500 7.698974 7.757198 7.510472

1000 9.637866 10.024039 10.138831

5000 12.575802 14.017470 16.581315

10000 13.106638 14.830093 18.361529

Table 3: Values of Nusselt number for K = 0.01
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Figure 2: Velocity profile for different values of parameter Cφ
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Figure 3: Temperature profile in solid (left) and fluid (right) for different values of

parameter Cφ and K = 0.1
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Figure 4: Temperature profile in solid (left) and fluid (right) for different values of

parameter Cφ and K = 0.001
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