Mixed convection in a vertical channel subject to Robin boundary condition

F. Pătrulescu1, T. Groşan2, A.V. Lar3

1Tiberiu Popoviciu Institute of Numerical Analysis
P.O. Box 68-1, 400110 Cluj-Napoca, Romania, fpatrulescu@ictp.acad.ro
2Faculty of Mathematics and Computer Science Babes-Bolyai University, Cluj-Napoca, Romania
3Scoala Cojocna, Cluj, Romania

Abstract

The steady mixed convection flow in a vertical channel is investigated for laminar and fully developed flow regime. In the modelling of the heat transfer the viscous dissipation term was also considered. Temperature on the right wall is assumed constant while a mixed boundary condition (Robin boundary condition) is considered on the left wall. The governing equations are expressed in non-dimensional form and then solved both analytically and numerically. It was found that there is a decrease in reversal flow with an increase in the mixed convection parameter.

2010 Mathematics Subject Classification : 76D05,80A20

Keywords: viscous fluid, forced convection, heat transfer, fully developed flow

1 Introduction

Heat transfer in channels occurs in many industrial processes and natural phenomena. It has been, therefore, the subject of many detailed, mostly numerical studies for different flow configurations. Most of the interest in this subject is due to its practical applications, for example, in the design of cooling systems for electronic devices and in the field of solar energy collection. Some of the published papers, such as by Aung [1], Aung et al. [2], Aung and Worku [3, 4], Barletta [5, 6], and Boulama and Galanis [7], are concerned with the evaluation of the temperature and velocity profiles for the vertical parallel-flow fully developed regime. As is well known, heat exchangers technology involves convective flows in vertical channels. In most cases, these flows imply conditions of uniform heating of a channel, which can be modelled either by uniform wall temperature (UWT) or uniform wall heat flux (UHF) thermal boundary conditions. In the present paper, new types of boundary conditions are considered. The right wall is kept at constant temperature while a convective heat flux is considered on the left wall (see, Bejan[8]):

\[\left(\frac{k}{\partial y} \right)_{y=0} + h_a (T_a - T)_{y=0} = 0 \] (1)

where \(k \) is the thermal conductivity, \(h_a \) is the external heat transfer coefficient and \(T_a \) is the external temperature (see Figure 1). This kind of boundary condition is appropriate to express mathematically heat loosing in insulation problems. In addition we have taken in account in this paper the effect of viscous dissipation, see Barletta[9].
2 Basic Equations

Consider a viscous and incompressible fluid, which steadily flows between two infinite vertical and parallel plane walls. At the entrance of the channel the fluid has an entrance velocity U_0 parallel to the vertical

axis of the channel. The geometry of the problem, the boundary conditions, and the coordinate system are shown in Fig. 1. The variation of density with temperature is given by the Boussinesq approximation and the fluid rises in the duct driven by buoyancy forces and initial velocity. Hence, the flow is due to difference in temperature and in the pressure gradient. The flow being fully developed the following

relations apply here:

\[\nu \frac{d^2 u}{dy^2} - \frac{dp}{dx} + g \beta (T - T_0) = 0 \]

(2)

\[\alpha \frac{d^2 T}{dy^2} + \frac{\nu}{c_p} \left(\frac{du}{dy} \right)^2 = 0 \]

(3)

subject to the boundary condition given by Eq. (1), noslip condition for for velocity at the walls and constant temperature at the left wall:

\[u(0) = 0, u(L) = 0, T(L) = T_w \]

(4)

where α is the thermal diffusion of the viscous fluid, ρ is the fluid density and c_p is the specific heat at constant pressure. In the system (2) and (3) there is an additional unknown, the gradient of pressure, dp/dx. In order to close the above system subject to the boundary conditions (1) and (4) it is necessary to consider the equation of the mass flux conservation:

\[U_0 = \frac{1}{L} \int_0^L u(y) dy \]

(5)

where L is the channel width. Further, we introduce the following dimensionless variables (see Pop and Ingham[10] or Kohr and Pop[11]):
\[U = \frac{u}{U_0}, X = \frac{xRe}{L}, Y = \frac{y}{L}, \theta = \frac{T - T_0}{T_w - T_0}, P = \frac{L^2}{\rho \nu^2} \]

(6)

where \(Re = U_0 L / \nu \) is the Reynolds number and \(T_0 = (T_a + T_w) / 2 \) is a characteristic temperature. Using (6) in the equations (2)-(3), in the boundary conditions (1) and (4) and in the mass flux conservation (5) we obtain:

\[\frac{d^2 U}{dY^2} + \lambda \theta - \gamma = 0 \]

(7)

\[\frac{d^2 \theta}{dY^2} + \text{Br}(\frac{dU}{dY})^2 = 0 \]

(8)

\[U(0) = 0, U(1) = 0, \left(\frac{d\theta}{dY} \right)_{Y=0} = \kappa(1 + \theta)_{Y=0}, \theta(1) = 1 \]

(9)

\[\int_0^1 U(Y)dY = 1; \]

(10)

In Eqs(7)-(10) \(\gamma \) is the pressure gradient in \(X \) direction, \(\text{Br} \) is the Brinkman number, \(\lambda \) is the mixed convection parameter and \(\kappa \) is the convection heat transfer parameter given by

\[\gamma = \frac{dP}{dX}, \text{Br} = \text{PrEc} = \frac{\mu U_0^2}{k(T_w - T_0)}, \lambda = \frac{Gr}{Re} = \frac{g \beta (T_w - T_0) L^2}{U_0 \nu}, \kappa = \frac{h_a L}{k} \]

(11)

and \(\text{Pr}, \text{Ec}, \text{Gr} \) and \(\text{Re} \) are the Prandtl number, Eckert number, Grashoff number and Reynolds number, respectively, defined as:

\[\text{Pr} = \frac{\nu}{\alpha}, \text{Ec} = \frac{U_0^2}{c_p(T_w - T_0)}, \text{Gr} = \frac{g \beta (T_w - T_0) L^3}{\nu^2}, \text{Re} = \frac{U_0 L}{\nu} \]

(12)

The physical quantity of interest in this problem are the skin friction coefficient \(C_f \) and the Nusselt number \(Nu \), which are defined as:

\[C_f = \frac{\mu}{\rho U_0^2} \left(\frac{du}{dy} \right)_{y=0,L}, Nu = \left(\frac{h_f L}{k} \right)_{y=0,L} \]

(13)

In Eq. (13) \(h_f \) is the internal heat transfer coefficient which can be calculated from the heat transfer balance at the wall:

\[\left(k \frac{\partial T}{\partial n} \right)_{\text{wall}} = h_f (T_{\text{wall}} - T_{\text{fluid}}) \]

where \(n \) is the normal to the wall. Using dimensionless variables (6) we obtain:

\[C_f \text{Re} = \left(\frac{dU}{dY} \right)_{Y=0,1}, Nu|_{Y=0} = \kappa \left(\frac{\theta(0) + 1}{\theta(0) - 1} \right), Nu|_{Y=1} = -\left(\frac{d\theta}{dY} \right)_{Y=1} \]

(14)

3 Results and Discussions

Equations (7) to (10) admit an analytical solution in two particular cases:

i) Case \(\text{Br} = 0 \)

In this case the system (7) and (8) becomes:

\[\frac{d^2 U}{dY^2} - \frac{dP}{dX} + \lambda \theta = 0 \]

(15)
subject to the boundary conditions (9). Further, from Eq. (15), (16) and condition (10) we obtain

\[
\theta(Y) = \frac{2\kappa}{1 + \kappa} Y + \frac{1 - \kappa}{1 + \kappa}
\]

\[
U(Y) = -\frac{\kappa \lambda}{1 + \kappa} \frac{Y^3}{3} + (\gamma + \frac{1 - \kappa}{1 + \kappa} \lambda) \frac{Y^2}{2} + (\frac{\kappa \lambda}{3(1 + \kappa)} - \frac{1}{2} (\gamma + \frac{1 - \kappa}{1 + \kappa})) Y
\]

\[
\gamma = -12 + \frac{\lambda}{1 + \kappa}
\]

ii) Case \(\lambda = 0 \)

For \(\lambda = 0 \) the forced convection only is considered. The system (7) and (8) takes the following form:

\[
\frac{d^2 U}{dY^2} - \gamma = 0
\]

\[
\frac{d^2 \theta}{dY^2} + Br (\frac{dU}{dY})^2 = 0
\]

Taking into account that \(\gamma \) is constant, using the boundary conditions (9) and mass flux conservation (10) we have:

\[
U(Y) = -6Y^2 + 6Y
\]

\[
\theta(Y) = -12BrY^4 + 24BrY^3 - 18BrY^2 + \frac{2\kappa}{1 + \kappa} (1 + 3Br) Y + \frac{1 + 6Br - \kappa}{1 + \kappa}
\]

\[
\gamma = -12
\]

Equations (7) and (8) subject to (9) and (10) were solved numerically for different values of the parameters, \(\lambda, \kappa \) and \(Br \) (\(\lambda = 0, 100, 250, 500; \kappa = 0.01, 0.1, 1, 10; Br = 0, 0.001, 0.01, 0.025 \)) using an implicit finite-difference method for velocity and a Gauss-Seidel iteration for temperature. Dimensionless velocity profiles, \(U(Y) \), and temperature profiles, \(\theta(Y) \), are presented in Figs. 2 to 7 for different values of the above parameters. Analytical solutions (\(\lambda = 0, Br = 0 \)) are also presented on figures with a circle marker.

The variation of the velocity \(U(Y) \) and temperature \(\theta(Y) \) with the mixed convection parameter \(\lambda \) is presented in Figs. 2 and 5. We notice

Acknowledgements. The work of the second author was supported from UEFISCU Grant PN-II-ID-ID-PCE-2007-1/525 (Romanian Ministry of Education and Research).
\begin{table}[h]
\begin{tabular}{|c|c|ccc|}
\hline
λ & κ & $Br = 0$ & $Br = 0.001$ & $Br = 0.01$ \\
\hline
0 & 0.1 & 5.940594 & 5.940594 & 5.940594 \\
 & 1 & 5.940594 & 5.940594 & 5.940594 \\
 & 10 & 5.940594 & 5.940594 & 5.940594 \\
100 & 0.1 & 4.470594 & 4.501963 & 4.795676 \\
 & 1 & -2.144405 & -2.134825 & -2.047795 \\
500 & 0.1 & -1.409405 & -1.27279 & -0.125966 \\
 & 1 & -34.484405 & -32.905781 & -25.265381 \\
 & 10 & -67.559405 & -68.912398 & -68.791864 \\
\hline
\end{tabular}
\caption{Friction coefficient $C_f Re|_{Y=0}$}
\end{table}

\begin{table}[h]
\begin{tabular}{|c|c|ccc|}
\hline
λ & κ & $Br = 0$ & $Br = 0.001$ & $Br = 0.01$ \\
\hline
0 & 0.1 & -5.940594 & -5.940594 & -5.940594 \\
 & 1 & -5.940594 & -5.940594 & -5.940594 \\
 & 10 & -5.940594 & -5.940594 & -5.940594 \\
100 & 0.1 & -7.410594 & -7.370828 & -6.999151 \\
 & 10 & -20.640594 & -20.606004 & -20.288425 \\
500 & 0.1 & -13.290594 & -13.053063 & -11.199059 \\
 & 1 & -46.365594 & -43.025955 & -27.986534 \\
 & 10 & -79.440594 & -74.606586 & -42.694129 \\
\hline
\end{tabular}
\caption{Friction coefficient $C_f Re|_{Y=1}$}
\end{table}

\begin{table}[h]
\begin{tabular}{|c|c|ccc|}
\hline
λ & κ & $Br = 0$ & $Br = 0.001$ & $Br = 0.01$ \\
\hline
0 & 0.1 & -0.999999 & -1.032983 & -1.451739 \\
 & 1 & -1.000000 & -1.005839 & -1.059969 \\
 & 10 & -1.000000 & -1.003203 & -1.032116 \\
100 & 0.1 & -0.999999 & -1.027827 & -1.377468 \\
 & 1 & -1.000000 & -1.006256 & -1.063425 \\
 & 10 & -1.000000 & -1.009053 & -1.092552 \\
500 & 0.1 & -0.999999 & -1.031473 & -1.360956 \\
 & 1 & -1.000000 & -1.133834 & -2.040945 \\
 & 10 & -1.000000 & -1.276971 & -3.552673 \\
\hline
\end{tabular}
\caption{Nusselt number on the left wall $Nu|_{Y=0}$}
\end{table}

\begin{table}[h]
\begin{tabular}{|c|c|ccc|}
\hline
λ & κ & $Br = 0$ & $Br = 0.001$ & $Br = 0.01$ \\
\hline
0 & 0.1 & 1.000000 & 0.967016 & 0.548260 \\
 & 1 & 1.000000 & 0.994160 & 0.940030 \\
 & 10 & 1.000000 & 0.996796 & 0.967883 \\
100 & 0.1 & 1.000000 & 0.959813 & 0.498850 \\
 & 1 & 1.000000 & 0.981394 & 0.813917 \\
 & 10 & 0.999999 & 0.978624 & 0.787469 \\
500 & 0.1 & 1.000000 & 0.906917 & 0.033431 \\
 & 1 & 1.000000 & 0.810584 & -0.328300 \\
 & 10 & 0.999999 & 0.683490 & -0.854004 \\
\hline
\end{tabular}
\caption{Nusselt number on the right wall $Nu|_{Y=1}$}
\end{table}
Figure 2: Velocity profiles for different values of λ

Figure 3: Velocity profiles for different values of Br
Figure 4: Velocity profiles for different values of κ

Figure 5: Temperature profiles for different values of λ
Figure 6: Temperature profiles for different values of Br

Figure 7: Temperature profiles for different values of κ
References

