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Let (y,) (— o < v < o0, v rational integer) be a doubly-infinite sequ-
ence of real or complex numbers. By a cardinal interpolation problem we
mean the problem of constructing a function F(x) (¥& R) satisfying the
relations

(1) F(v) =, for all integer v,

while [ is to meet appropriate additional conditions specified beforehand.
There are many cardinal interpolation problems depending on the addi-
tional conditions which are imposed. We refer to (1) as a cardinal inter-
polation problem because (1) is solved formally by the so-called cardinal
series

@ By Yo BEEE (See [8; Chap. 11]).

n(r —v)

The paper is divided into three parts. Our main results are described
in Part 3 and concern certain cardinal interpolation problems. These
results are based on those of a recent joint paper with m. corous [4].
This paper not being yet in print, it seemed indispensable to describe in
Part 2 its main contents.

For motivation and background I discuss in Part 1 the formal solu-
tions (by spline functions) of the problem (1) which were given in my
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old paper [5]. These were found useful during the war for numerical pur-
poses. In Part 3 these formal solutions are characterized by certain extre-
mum properties and their connection with the theory of entire functions
of exponential type is uncovered. This connection may also be interpreted
as a new summation method for the series (2) which is more powerful
than existing methods. Being based on spline functions, we propose to
call it the spline summation of the cardinal series. Part 3 is expository
in the sense that no proofs are given; these will appear elsewhere. The
paper concludes with a number of open problems and conjectures.

1. The spline solutions of the cardinal interpolation problem

In the present first part we discuss the interpolation problem (1) from
the formal computational point of view of the paper [5]. The solutions
there given will now be described, postponing to Part 3 a discussion
of their analytic characterizations.

Let us assume for the moment that y, =0 if |v| > N, where
N is very large. It follows that the series (2) is a finite sum which
represents an entire function F(x) satisfying (1). However, the series
(2) is not convenient for numerical purposes because of the slow decay

of the function

(1.1) B ""':o(i] as %] — oo.
X | %]

This implies that the sum (2) will contain very many terms which can
not be neglected. Moreover, an error in the value of y, will affect F(x)
even if the distance |¥ — v| is large,

The interpolation method used in [5] proceeds as follows. We select
a natural number m and denote by S, (x) (v € R) a function satisfying
the following conditions :

(1.2) Sp(%) € my,,_1 in each interval (v, v + 1),
(1.3) Sm(%) € C*"%(R),
(1.4) Salv) = u, for all v.

Here and below w, denotes the class of polynomials of degrees not excee-
ding %. In words: We interpolate the points (v, ¥,) by a spline function
Sp(#%) of degree 2m — 1 having knots at all integer points of the real
axis.
‘ Tl}us, if m =1, S; (x) is the piecewise linear function obtained by
linear interpolation between consecutive points. Notice that S,(x) is uni-
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quely defined. Matters are different if m > 1. Indeed, let us choose P(x) ¢
€ Ty,_1 such that P(0) =y, and P(l) =y, but otherwise arbitrary.
P(x) still depends on 2m — 2 free parameters. We now define

Su(%) = P(x) in the interval (0, 1),

and extend its definition to all real x by setting

N\ 2m—1

Sm(x) = P(x) + i ﬂf(x-— ‘L.)%:'i[ +— §] b_;(j' - ;\')+ )

=1
where we use the function

| =ifs=0,
0 if x < 0.

I claim that the coefficients a; and b6; are uniquely defined by the inter-
polation requirements (1.4). For a, is uniquely defined by asking that
S,.(2) = »,, then a, by S,(3) = v, etc. Likewise b, is given by S,,(—1) =
=4_3, b_; by S,(— 2) = y_, etc. This makes it abundently clear that
the spline function S, (%) satisfying the conditions (1.2), (1.3) and (1.4)
still depends on 2m — 2 linear parameters.

Nevertheless, a useful spline interpolant S, (x) was constructed in
[5; § 4.2] as follows: We start from the rectangular frequency function

[ p 1 1

' I #f——=xtaw= S

M, (%) = % =
|0 elsewhere

and let

2m

—

(1.5) M(x) = M, * M, +. .. +M(x)

be the frequency function obtained by convoluting 2m factors all of
which are identical with M,(x). The Fourier transform of M,(x) being

S M (%)e~"* dx = o
u[2
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we conclude that

(1.6) SM(x)e—"’”‘d.« = Y(u),

where

1. b(zg) = ?il%f“_f@)?"‘.

(1.7) b = (=2

Inverting (1.6) we obtain

(1.8) M(x) = zl— S $(u)e™ du, (— oo < x < o).

It is easily shown in various ways that M (x) satisfies the conditions
(1.2) and (1.3). Moreover, M(x) > 0in the interval (— m, m), and M(x) =
= 0 in its complement. It was also shown in [5; Theorem 5 on page 72]
that any S,(x) satisfying (1.2). and (1.3) may be represented uniquely

in the form
(1.9) Sp(%) =2 e, M(x —v)

for appropriate values of the ¢,. Conversely, it is clear that the series (1.9)
represents a function satisfying (1.2) and (1.3) whatever the values of the
coefficients ¢, may be.

- Let us now consider the , unit data”

J"V: \J:

{ 1 if v=0,

0 if v=£0,

and let us find a spline solution L,(x) of the "unit” interpolation problem
(1.10) L,(v) =8, for all v,

Such a spline function was given in [5; formula (9) on page 79, for &k =

= 2m and ¢ = 0]. It is defined by the Fourier integral

(1.11) Lo(a) =1 S % 6™ du, (—oo < x < o),
U
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where {(u) is defined by (1.7) and

@

(1.12) Olu) = 35 Yu + 2n)).

J==1m

By (1.12) and (1.7) @(u) is evidently a periodic function of period 2x which
is positive for all real u.

We can readily see that L,(x) satisfies (1.2) and (1.3) as follows:
We consider the Fourier expansion of the reciprocal of ®(u)

1 —ivi
E Cy €
v

D(2t) -

and introduce it into (1.11). Interchanging the integration and summation
symbols we obtain by (1.8)

w

1 s
Lafa)= 2 Cy o S Y)e™ ¥ dy = vzc\,ﬂff(x — )

—

which is a spline function of our class in view of the representation (1.9).
That also (1.10) are satisfied is seen as follows: For integer x = v (1.11)
gives ;

i 7+ 2m
1 g 1 | .
Lm( V) —_ — S 1’(“) gwrt du — — S L,J(l{) ewu 7
n < e 2m g D(u)
- 27j
L o
1 Ll Qi . 1 e )
=2 S Y ) ik gy — 1 S W)
2r g D(u) 27 ) ©(u
2 0

1 i
:ES e du = .

0

Finally, L,(x) being a solution of the ,,unit” interpolation problem (1.10).
it is clear that the series

(]13) Sm(x) e i.y\'l’m(x ﬁ V)J
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if convergent, will represent a function satisfying the conditions (1.2), (1.3)
and (1.4) ’

_ One advantage of the interpolation formula (1.13) over the cardinal
series (2) is due to the exponential decay of L, (%) as || - oo (compare
with (1.1)!). Another advantage of (1.13) is this: If

P(x) € mom—1 and y, = P(v) for all v,

then the series (1.13) converges and

Su(x) = P(x) for all real x.

For these reasons (1.13) was found useful for numerical applications.

_ Nevertheless, various pertinent questions are as yet unanswered. Here
1s one: We have seen above that the conditions (1.2), (1.3) and (1.4)
do not determine the interpolating spline function S,.(x) uniquely. What
additional properties characterize the particular interpolating spline function
S,(%), defined by (1.13), among all other inlerpolating spline functions of
degree 2m — 1?2

This, and other questions will be answered in Part 3.

2. The extension of functions and spline interpolation

Let 4 be a closed set of reals and let f be a function, or mapping,
from A into the complex field C. A function F from R into C is said
to be an extension of f, provided that

(2.1) F(x) = f{x) if v e 4.
Worthwhile problems arise if we ask for conditions for the existence of

extensions I belonging to some specified space of functions. In [4] the
authors discuss the extension problem which requires that

(2.2) F e ™,
where
(2.3) A" = {F; F™ ¢ L,(R)}, (m prescribed, m =1).

Alternat_ively, we may describe " as the class of functions F obtained as
m-fold integrals of functions in L,(R).

The extension problem described by (2.1), (2.2), will be denoted by
the symbol

(2.4) Ext. Prob. (4, f, m).
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Concerning it, Golomb and Schoenberg proposed the following three prob-
lems.
PROBLEMS. L. To describe conditions which insure that (2.4) admits
solutions.
11. If (2.4) admits solutions, to inquire into the existence and uniqueness
of solutions S, of (2.4), such that
w

[ (separ= (5o (e

—m

for all solutions F of (2.4). Such functions S are called optimal extensions

of f, or optimal solutions of (2.4).
IIT1. To give an intrinsic, or structural, characterization of the optimal

solutions.
The case when the set A s finite. We assume that

(2.5) A =4% F v n ey Zabe B << A <L...8<T58, B>,

and wish to point out that all three Problems I, II, IIT are for this case
completely solved by known results concerning spline interpolation. We
write as usual

(2.6) Jbe) =, =1, ..oy 1)
It is known that the optimal solution S of the extension (or interpolation)
problem (2.4) is unique and uniquely characterized by the following pro-
perties (See e.g. [3; Theorems 1 and 2 on p. 158])

l 1. Semw,_; in the intervals (—co, ;) and (x,, o),

(2.7) 2. Sé€my,_; in the intervals (x5,%,), (%5,%3).- « - » (Xn_1.%),
|5, secrm),

and

(2.8) S#)=m»m (=1,..., 15

A function S enjoying the properties (2.7) 1’, 2, 3'is called a natural
spline fumction of degree 2m — 1 with knots x;, We denote their class

by the symbol
(2.9) NS, (4).
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A moment’s reflexion will show that the conditions (2.7) 1’, 2/, 3’ are
equivalent with the conditions Y

[ 1 S E %m
(2.10) | 2. S € my,_,ineach of the intervals (— oo, x,), (%1,%5), ..., (%,, ),
[ 3 SeC™(R).

This is so because t_he two simultaneous conditions § ¢ Tam—y and SO ¢ L,
(— o0, %) are equivalent with the condition S ¢er, , and similarly
for the interval (x,, oo).
For the case of a finite set A we therefore conclude the following :

I. The problem (2.4) has always solutions.

II. The optimal solution S always exists and is unique.

III. The optimal solution S is characterized, besides the interpolatory
conditions (2.8), by the structural properties (2.10) 1, 2, and 3.

For the interpolating natural spline function S (i.e. the optimal
extension) the integral

(2.11) § (St (x))2dx

— @

can be evaluated ; it is represented by a Hermitian form in #—m variables
whose coefficients depend on the set (2.5) and the number . while the
variables are the n—m (consecutive) divided differences of order m of
the » ordinates y; (See (7, §2]). Thus, for m = 1, we find

S (Sr(x))gdx - Z ff(ﬂ;;) :.i:(*y,',l)lg )
i i—1

an e:’{pression which already appears in some early work of F. Riesz.

The case of a finite set 4 being disposed of, we shall now describe
th}f, solutions of Problems I, II, and III, as given in (4], for the case
when :

(2.12) 4 is an infinite closed set of reals.

THEOREM I (GoIomb-Sghoenberg). Assuming (2.12), the problem (2.4)
has solutions if and only if the following condition is satisfied : Let

A={x, %, ..., x,}C A, (x; distinct, n >m
b | — E
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and let Sa(x) denote the natural spline function of degree 2m — 1 which
interpolates f at the n points of A. Then there should exist a constant

K = K;, independent of A, such that

w

(2.13) { sPwpa=<ke

—

THEOREM II. (Golomb-Schoenberg). If the condition (2.13) is satis-
fied then the problem (2.4) admits a unique optimal extension S.

The solution of Problem IIT requires two preliminary definitions.
The first definition describes, for a fixed set 4 and all possible (or
admissible) f, the class of optimal extensions which is to be charac-

terized.
Definition 1. Let A be fixed and such that (2.12) holds. For

an arbitrary F € 26" we define its restriction to A
f(x) = () = F(x) of x€ 4.

Evidently this [ admils extensions in #", e.g. F. By Theorem 11 it has a
unique optimal extension S = Sy, and we consider the class of all these exten-

stons which we denote by the symbol

(2.14) S (4d) = {Sg; for all FeH"}.

Problem III asks for a characlerization of this class.

Definition 2. Let A be fixed and such that (2.12) holds. A
function S(x) (¥ € R) is called a natural spline function of degree 2m — 1
knotted on the set A, provided that it satisfies the following conditions:

1. Se@”,
(2.15) 2. Sem,, ;in every open interval I such that 4 N I =@,

3. S e C¥2(])in every open interval J such that A'N =0,

where A" is the derived set of A.
We denote by the symbol NS, (A) the entive class of functions satisfying
the conditions (2.15), 1, 2, and 3.

A solution of Problem IIT is given by the following
THEOREM IIT (Golomb-Schoenberg).

(2.16) Su(d) = NS, (4).
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In words: A solution S of the problem (2.4) is an optimal extension if
and only if it is a natural spline function of degree 2m — 1 Enotted on the
set A.

In Definitions 1 and 2 and Theorem III we have assumed that the
set A is infinite. However, if 4 is a finite set of points, # = m, then
the results remain valid, because Delinition 2 is then easily seen to de-
fine the class of ordinary natural spline functions of degree 2m — 1 having
as knots the n points of 4. This follows from the fact that A’ — @,

3. The case when A is the set of all rational integers

For the remainder of this paper we discuss the problem (2.4) for
the special case when

(3.1) A =2 ={v; v rational integer}.

As in (2.6), we change notation by writing J(v) = ¥, so that our "data” is
a sequence of numbers

(32) (yu)! (_- o< v OO)
The problem (2.4) now becomes
(3.3) Ext. Prob. (Z, (w), m).

This is precisely the interpolation problem (1) of our Introduction, with
the added restriction that the interpolating functions, or extensions, should
belong to 70", We may therefore apply all results of the general theory of
Part 2 to this special case.

In the present case the general existence Theorem I simplifies comnsi-
derably. From the explicit expression of the integral (2.11) as a Hermitian
form it is now easy to derive

THEOREM 1. The problem (3.8) has solutions in " if and only if

(3.4) > A"yt < o,

V=—00

Let us assume that the series (3.4) converges. By Theorem II we
are assured of the existence of a unique optimal extension S. Morcover,
Definition 2 and Theorem III allow to characterize S by structural
properties. The characteristic properties (2.15) are fully used in our case
(3.1) if in Condition (2.15) 2 we select

I = (v, v+ 1) for all integers v.
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Likewise, observing that 4’ = Z' = @, we may select in Condition (2.15)
3 the single open interval J — R. This establishes

THHOREM 2. Let (3.4) hold. Among all spline functions of degree 2m—1,
with knots at all integers, and which interpolate the sequence (v,), there is
exactly one, which we call S,, which is in Z5", i.e.

S € L (R).

This particular interpolating spline function S, is the optimal solution
of the problem (3.3).
Theorems 1 and 2 were announced in [6; Theorem 7, page 27].
Let us now return to the function L,(x) defined by (1.11). We have
already shown in the Introdution that L,(x)is a spline function of degree
2m — 1 with knots at the integers. On the other hand (i) = O(u~>"),
by (1.7). Now (1.11) implies that

2 D (1)

Li(x) = . S ¥ () (1u)"” e du € L, (R),

as being the Fourier transform of a function in L,(R). By (1.10) and Theo-
rem 2 we conclude that L, (x) is the optimal extension of the sequence (3,).
From this it is easy to derive the following general result.

THEOREM 3, We assume (3.4) to hold. The optimal extension S, of
Theorem 2 s given by the series

(35) S,"(:‘J) :g v Lm(:": - V),

which converges locally uniformly on the real axis.

These results answer the question raised at the end of Part 1. Assuming
(3.4), they also show that the interpolation formula (8.5) furnishes the
optimal solution in 7" for the cardinal interpolation problem (1).

Further problems arise from the following remark. Let (3.4) hold
and let p be a positive integer, By Cauchy’s inequality we obtain

P P
=2, 08 218" pyl
=0 j

2

b
|Am+‘ova2 — ; (— 1)d (f) Anayvﬂ-

whence
2p 2
b
82 g0t < () 32187 g 1
=

11 — Mathematica vol. 10{33) — Fascicola 1/1968
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Summing these inequalities for all integers v we obtain
(2:6) 25 1A g < (p + 1) (F) 20 |Am g2

This inequality shows that if (3.4) holds for a value m = & (= 0),
then (3.4) also holds for all m == k.

By Theorems 1 and 2 we obtain the

Corollary 1. If (3.4) holds for a value m = k=0, then the
spline function

(3.7) Su(x) € "
such that
(3.8) S,.(v) = 9y, for all integers v,

extsts for all m == max (k, 1).
This raises the following new question:
PROBLEM 1. What happens to S,,(x) as we let m — oo ?

The remainder of this paper will describe the answer to this ques-

tion. ‘
We need two definitions.

Definition 3. 1. For an integer k=0 we consider the class of
sequence

39 B={00: Siamp <al-

2. For an integer k =0 we consider the class of entive functions of a
complex variable
(8.10) P W= {F(x); F(x) entire of exponential type = mw and such that

Sfor real x, F®(x) € Ly(R)}.
The symbol P 7 refers to Paley and Wiener, since they discovered
the characteristic representation of the elements of the class P (see

e.g. [1; 103]). Evidently, the inequality (3.6) implies the inclusions

Tl L ot o ! s
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Likewise the Paley-Wiener theorem easily shows that
P CPHOTC - CPWFC -+ .

The relation between the classes P75 and /; is described by the follo-
wing theorem.

THEOREM 4. If
(8.11) F(x) e P

and if we wrile

(3.12) F(v) =y, (veZ),
then
(3.13) (3,) € &

Conwversely, if (y,) ©s a sequence such that (3.13) holds, then there exists
a unique function I'(x) satisfying (3.11) and (3.12).

We may summarize this theorem by saying that there is a one-to-one
correspondence between the two classes

DOWF and I}

which is defined by the relations (3.12).
The connection 6f Theorem 4 with spline functions is as follows. Let

(v,) €Z:. It follows that (y,) €, for all values of m such that
(3.14) m == max (k, 1).
By Corollary 1 we conclude the existence of the spline functions

Sﬂl(x) G 26,”

0

interpolating the sequence (y,) for all values of m satisfying (3.14). This
sequence of spline functions enjoys the following property.

THEOREM 5. Let F(x) be the unique element of (PTE satisfying (3.12).
Then

(3.15) lim S, (%) = F(x),

H—>w
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locally uniformly for all veal x. If k=1 also the relations

lim SP(x) = F¥(2) (v=0,1, ..., k—1)

hold locally uniformly for real x, while

lim S (x) = F®(x)

m—r @

holds uniformly for all real x.

This:, then is the answer to Problem 1. Originally, I establish Theo-
rem 5 first and afterwards derived from it Theorem 4. Very recently
Richard A. Askey found an elegant direct proof of Theorem 4. Thereby
Theorem 4 can be used in establishing Theorem 5 thereby greatly simplifying
its proof. )

‘z.‘ln example. The sequence (3y,) = (8,) satisfies the condition of the
definition (3.9) with 2 = 0, ie. (3,) €. The corresponding interpolating
tunction F(x) (Theorem 4) is evidently

F(x) = 2 ¢ py5,

nx
On the other hand we know by Theorem 3 that
Sm(x) e Lm(x)' (”’L :=> 1)

is the spline interpolant of the sequence (3,). By Theorem 5 we now comn-
clude that the relation

sin wx

(3.16) lim L, (x) =

=y Y

holds uniformly for all real x.
The relation (3.16) implies that formally (or termwise)

fim 33, L (5 — v) = Dy, s,

m—rm v v w(x — v)

where the series on the right hand side is usually divergent. However,
Theorem 4 and particularly the relation (3.15) of Theorem 5, suggest the
following summation method :
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Tet
(3.17) (v,) €li, for some k=0.

We define the (S) sum of the cardinal series by

(3.18) (B 5 ) Bt — W mf,

v m (% — )
where I(x) is the unique element of P7); (Theorem 4) such that
(3.19) F(v) =y, for all integer wv.
Constructively, we can define F(x), for real x, from Theorem 5 by

(3.20) lim S,(x) = F(%),

M—r 0

where S, (x) is the spline function of degree 2m — 1 which interpolates the

sequence (v,).
If we substitute (3.19) into (3.18) we obtain the identity

sin w(x — v)
_——

(3.21) F(x) = (S) vZF(V)

w(x — v)

which is valid for any F(x) belonging to the class
P, = P,

in particular for any polynomial.

This summation method may be called the spline summation of the
cardinal series. The relationship with previous methods of summing
the cardinal series (See [8, §11]) should be discussed, but we shall not
do it here.

Open problems and conjectures. All these refer to the subjects of Part 3.
Further questions might occur to the reader.

1. In what sense does the relation (8.15) of Theorem 5 hold also for
complex values of x? I/(x) is an entire function while S, (x) is only defined
on the real axis where it is piecewise polynomial. On the basis of his
experience (unpublished) with a somewhat similar situation concerning
the approximation by spline function of solutions of analytic differential
equations, the author conjectures the following: Let P,.(x) denote the
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polynomial of degree 2m — 1 which represents S, (%) in the interval (v, v+ 1),
then

(3.22) lim P, ,(x) = F(x),

locally uniformly in the complex plane.
2. We may also consider a cardinal interpolation problem when a

certain fixed number of derivatives are also preassigned. The simplest
such cardinal Hermate interpolation problem is

(3.23) F(v) = y,, F'(v) =y, for all integer v,
which depends on the pair of sequences
(3.24) Ya={(3), (9)}

Connections with the theory of functions are again likely because of an
analogue of the cardinal series which is easily found to be

(3.25) F(x) :_Zyvca(x — ¥+ ;y;Cl(x— v)

where

(3.26) Col) = [F222F, €y() =SR2,
Y b 4

Again we may ask the question : Let m = 2; wunder what conditions
does the problem (3.23) admit solutions F € Jo"?

These conditions are expected to be as follows : We regard all integer
nodes to be double nodes. If we write them consecutively in a row we
obtain the infinite array

(3.27) oy =L — L0, V0L v L

We select from this sequence all sets of m 4 1 consecutive elements and
we form the divided difference of order m (with single and double nodes)
for each of these sets and computed by means of the data (3.24). Let I,
denote the sum of the squares of the moduli of all these divided differem.
ces. Thus for m = 2 we obtain

(3.28) Z, = f__? (1190 Yo Yur 111 4 [V Yo Yosa 1B,

117

k.
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I expect that (3.23) has a solution F € #"(m = 2) if and only if
(3.29) Z, < oo.

Also that the optimal solutions, i.e. those which minimize

S |F™ 2 dx,

—@

will be spline functions S,(x) of degree 2m — 1 having double knots at all
integers. This means that we are now lowering our continuity require-
ments by asking that

Sm(x) € CQ»J—B(R) )

Let us look for a moment at the case of the lowest possible value
of m, namely m = 2. Now S,(«x) is the cubic spline of class C}(R) which
satisfies (3.23). Tor this case of the lowest value of m, the problem of
constructing S,(x) breaks up into a sequence of elementary interpolation
problems : Sy(x) is identical in the interval (v, v 4~ 1) with the cubic defined
by the four data

SZ(\") = Y 52(\’ - 1) = My41

Sa(v) = .,
When is this spline function S,(x) € 20*? We apply the conjectured condi-

tion (3.29) : Evaluating the divided differences appearing in (3.28) we obtain
the condition

Siv+1) = ylpn

o

(3.30) Yo=Y (I3 — A0 P+ |35, — Ay, [?) < oo,

— @

It is fairly easy to verify directly that the cubic spline S,(x) is in 7? if and
only if (3.30) holds. )

Also the relation between the interpolating spline functions and the
cardinal seties, as m — o, will very likely generalize. As in the case of
simple nodes, we observe that if (3.29) holds for a value of m (even the
value m = 1 is acceptable), then it will hold for all larger values of m. ‘

Let /3 denote the class of pairs of sequences (3.24) such that the condi-
tion

3y < (= 1),
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holds. Furthermore, let @PW;" be the class of entire functions F(x) of
exponential type = 27 such that

Fi(x) e LR), (k=1)

'Il‘hen we expect that there is a one-to-one correspondence between the
classes

DWW and J}

-Wh-iChlziS deéiugd( b)y the relations (3.23). Furthermore, that if the pair (3.24)
1s 11 4 and S,(x) is the interpolating spline function of " —
2 1’;1 i T e 28 ton of degree 2m — 1

lim S, (%) = F(x), (x€R),

m=r

Wherg F is the corresponding element in P,
inally, that the conjectures just stated for (3.23) should i
to the cardinal Hermite problem ( V sibould genieedling

B(v] =% Fi(v) =3 » oo 000] == 980 for alll 4,

The critical exponential type for this case should be 7.

3. An entirely different cardinal interpolation problem (1) was dis-
cussed some ten years ago by B. EPSTEIN, D. 5. GREENSTEIN and J, MINKER
i [2]. Let ¢ >0 and let H denote the Hilbert space of functions I7(z)
analytic in the strip D, : |1, 2| << o, and such that

(3.27) 55 |E(x + iy) Pdw dy < oo,

a

They show that the interpolation problem (1) has solutions in H if and only if

(=]
232 < o,
—

and determm.e the unique solution which minimizes the norm aelined
by the left side of (3.27).

19 ON SPLINE INTERPOLATION AT ALL INTEGER POINTS OF THE REAL AXIS 169

Our discussion in Part 3 suggests that it might be worthwhile to
study the interpolation problem (1) within the class H” of functions F (2)

such that
F(m)(z) E H’

and in particular, to seek solutions of (1), within H™, which minimize
the integral

SS |F®(2) 2 dx dy.

a

The solutions of this problem might even converge to our spline interpolant
S,(x) of Theorem 2 as we let the width ¢ — 0 .
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In [A], pages 192196, Runge discusses the interpolation of periodic functions by
periodic spline functions with equidistant knots for the purpose of obtaining improved
values for the Fourier coefficients of the given function whose values are knot;vn only at
‘the knots. In [B] the authors greatly elaborate Runge’s idea and for the same purpose
as Runge. In the process they derive and anticipate many results concerning spline
interpolation of periodic functions by periodic spline functions with equidistant knots,
including an analysis of the order of approximation so obtained. Finally, in [C], pages
96—105, Popoviciu uses spline functions directly for the putpose for which they are so
cmminently suited: the approximation of functions. He introduces spline functions of
degree # with arbitrary knots, which he calls elementary function of order n. In parti-
cular he shows that a continuous nomn-concave function of order » in a finite interval
[a,b] is the uniform limit of elementary functions of order # that are also non-concave
of order » in [a, b] [C, Théoréme 6, 96].
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AN ITERATIVE METHOD OF SOLVING LINEAR
EQUATIONS WITH UNBOUNDED INVERTIBLE
OPERATORS IN A SEPARABLE
HILBERT SPACE

by
RABINDRANATH SEN

Calcutta

The author seeks to investigate in this note an approximate solution
of the linear equation A# = f, where 4 is an unbounded linear operator
whose domain is dense in a separable Hilbert space and which possesses
an inverse. This method is essentially an extension of the method of
orthogonal projection, studied by the author (sEn, 1965) for the case
of a bounded linear operator having inverse, in a separable Hilbert space.

Compared to the well-known methods of solution in Hilbert space
lilkke Ritz method, method of least squares (MrrHETIN, 1950), method of Galerkin
(MrxHLIN, 1950), method of steepest descent (kanTOROVITCH, 1948), this
method has somewhat wider applicability because it does not presuppose the
positive-definite or k.p.d.-property (pErTrRVSHYN, 1962) of the class of
operators in question. This method is iterative in mature and can solve
infinite-dimensional matrix equations in I,.

Let us consider a separable Hilbert space H. Let, Au = f be an
equation in it, such that,

i) the domain D, of 4 is dense in H ;

ii) f is a given element of H ;

iii) A is linear (additive and homogeneous) ;
and iv) A has an inverse,

Let us suppose that there exists a bounded self-adjoint linear ope-
rator, B such that,

i) the domain of @ D the domain of 4 ;



