CALCULUL APROXIMATIV AL EXTREMELOREL\nUNEI FUNCTII\n
de
P. RADCI\n
(Cluj)

Comunica re prezentata la Colloquiu de analiza numerica din 5-13 decembrie 1960, Cluj

1. Metoda de calcul aproximativ al extremelor unei functii de o variabilă reală, dată în această notă, este aplicabilă în cazurile cind nu există derivata sau este greoi de a o scrie efectiv.

Presupunem, pentru a fixa ideile, că funcția \(f(x) \) are un minim de absciză \(x_0 \) în intervalul \(I_0 = [a, b] \), este descrescătoare în \([a, x_0] \) și crescătoare în \([x_0, b] \).

Fie \(c, d \in I_0, c < d \). Dacă \(f(c) < f(d) \), avem \(x_0 \in [a, d] \), iar dacă \(f(c) \geq f(d) \), avem \(x_0 \in [c, b] \). Notăm cu \(I_1 \) intervalul \([a, d]\) în primul caz, respectiv intervalul \([c, b]\) în al doilea caz. Intervalul \(I_1 \) conține în interiorul său unul din punctele \(c, d \) și alegem înălț un punct \(x_1 \in I_1 \); astfel intervalul \(I_1 \) este împărțit în trei intervale parțiale. Prin aceeași procedeul pe care l-am aplicat mai sus intervalului \(I_1 \), se găsește că \(x_0 \) se află într-un interval \(I_2 \), format prin reumarea a două intervale parțiale vecine. Continuând în acest fel obținem un șir de intervale

\[
I_0 \supset I_1 \supset I_2 \supset \ldots \supset I_n \supset \ldots, \tag{1}
\]

care toate conțin punctul \(x_0 \).

Se vede ușor că punctele \(x_n \in I_n, n = 1, 2, \ldots, \) pot fi алесе în așa fel ca \(I_n \to 0 \). De exemplu, dacă se ia pentru \(x_n \) mijlocul celui mai mare dintre cele două intervale în care \(I_n \) se găsește împărțit, atunci \(I_n \to 0 \). Extremele punctele intervalei \(I_n \) furnizează valori aproximative pentru \(x_0 \) prin lipsă și exces.

2. Ne propunem să determinăm punctele \(c, d \) astfel că șirul de intervale (1) să tindă cit mai rapid posibil către zero. Sunt necesare două precizări:

\[9 \hbox{ Această lucrare se publică și în limba franceză în revista „Mathematica” 3(36), 1961.} \]
\[10 \hbox{ – Studii și cercetări de matematică nr. 5/1964.} \]
a) Punctele c, d și ε_0 nu determină șirul (1) : funcția $f(x)$ ne arată care două din cele trei intervale parțiale ale lui I_{n-1} formează intervalul I_n. Ne situăm în ipoteza cea mai defavorabilă pentru rapiditatea convergenței: preșupunem că la fiecare pas se lasă la o parte aceea dintre cele două intervale parțiale de la margine, care este mai scurtă (în caz de egalitate, oricare dintre ele). În această ipoteză, problema noastră devine independentă de funcția $f(x)$.

b) Vom zice că o alegere a punctelor c, d, ε_0 precum și șirul (l_n) al lungimii intervalelor care rezultă din această alegere și ipoteza a) este optimă, dacă condiția însemnată este satisfață; pentru orice altă alegere a punctelor c, d, ε_0 și pentru șirul (l_n) al lungimilor intervalelor corpură continuu există un număr natural N_n, astfel că $l_n \leq \varepsilon_n$, pentru $n \geq N_n$.

Teorema 1. Există un singur șir optim, care se obține luind pentru c și d punctele care împart intervalul I_n în medie și extremă rație $(b-a)^{b-a} = \frac{b}{a}$ și pentru ε_n simetric în raport cu mijlocul lui I_n, al punctului de divizare situat în I_n.

Considerăm pentru demonstrație intervalul $I_n = [a, b]$ și punctele c_0, d_0, care împart acest interval în medie și extremă rație (fig. 1)

![Fig. 1](image)

$c_0 = \frac{b - \sqrt{b}}{2}, \quad d_0 = \frac{b + \sqrt{b}}{2}.$

În acest I_n se determină $c_1 = d_0 = c$ și $d_1 = d_0 = d$; așadar, în continuare intervalul $I_{n-1} = [0, c_1]$ în care se mai împarte $c_2 = c_1 = c_0$, $\varepsilon_2 = d_0 = d_0 = d_0$, $l_2 = \varepsilon_0, l_2 = c_1, \ldots$ l_2 = \varepsilon_0, l_2 = l_{n-1}.$

Să considerăm pe de altă parte punctele oarecare c, d, ε_0, $(c < d)$ care determină intervalele I_0, I_1, I_2, \ldots de lungimi $\lambda_n = b, \lambda_1, \lambda_2, \ldots$ Distingem două cazuri:

a) Dacă $c \notin (c_0, d_0)$ sau $d \notin (c_0, d_0)$ atunci avem $\lambda_1 = l_1$.

b) Fie acesta $c \in (c_0, d_0)$, $d \in (c_0, d_0)$. Ajungem să considerăm cazul $c_1 = c + d_2$, $d_2 = d + d_2$.

$\lambda_1 = \frac{b}{\sqrt{b}} + 1.$

Avem:

$\lambda_1 \lambda_2 > l_1 l_2$ sau

$\lambda_1 = \frac{d_0}{\sqrt{b} - 1} \geq \frac{\sqrt{b} + 1}{4}$.

Așadar avem în toate cazurile:

$\lambda_1 = \frac{\sqrt{b} + 1}{4} l_1$,

(2)

Notăm:

$\alpha_n = \frac{2n}{l_0}, \quad n = 0, 1, \ldots$

Aplicând raționamentul prin care am ajuns la relațiile (2) și (3) intervalului I_{n-1} de lungime λ_n în loc de I_n, obținem că aceste relații rămân valabile dacă înlocuim pe λ_1 cu λ_m, λ_2 ce λ_{n+1}, l_n cu λ_{n+1}, l_n cu λ_{n+1}.

$\lambda_3 > \frac{\sqrt{b} + 1}{4} \lambda_{n-1}$

$\lambda_3 > \frac{\sqrt{b} + 1}{4} \lambda_{n+1} > \frac{\sqrt{b} + 1}{4} \lambda_{n+1}$

Deci avem $\alpha_n = 1$,

$\alpha_n > \frac{\sqrt{b} + 1}{4} \alpha_{n-1}$,

(4)

și

$\alpha_n > \alpha_{n-1} > \alpha_{n+1} > \alpha_{n+2}.$

(5)

Din (5) se deduce că dacă $\alpha_n > \alpha_{n-1}$, atunci $\alpha_{n+1} > \alpha_{n+2}$. Rezultă că diametrii dintre termeni consecutivi ai șirului (α_n), care înțelegă mai multe egali cu oricare termen anterior și

$\alpha_{n+1} > \alpha_{n+1} > \alpha_{n+1} > \alpha_{n+1}, \quad i = 1, 2, \ldots$ (6)
Aceast procedeu modificat prezintă o analogie cu metoda părților proportionale pentru aflarea rădăcilor unei ecuații \(F(x) = 0 \). Dacă \(F(x) \) este o funcție convexă sau concavă în intervalul considerat, atunci se știe că rădăcina ecuației este mai mică, respectiv mai mare deci valoarea ei aproximativă aflată prin metoda părților proportionale. Există proprietățile anumite și în cazul procedeuului nostru modificat.

Funcția \(f(x) \) este convexă de ordinul 2 în intervalul \([a, b]\), dacă diferența divizată

\[
|f(x) - f(y)| < K|x - y|^2
\]

pentru nodurile distincte \(x_1, x_2, x_3 \in [a, b] \). Dacă (11) este echivalentă cu următoarea proprietate geometrică: pentru \(a < x_1 < x_2 < x_3 < b \)

\[
L(x_1, x_2, x_3; f) < f(x), \quad \text{dacă} \quad x_1 < x < x_3 \leq b.
\]

(11)

(12)

Deoarece \(\theta_0 \to \infty \), cind \(k \to \infty \), relația (6) poate fi verificată numai pentru \(k \) mai mic decât un număr natural \(k_0 \) și astfel sârul (7) conține un număr finit de termeni. Dacă \(n > k_0 \), avem \(a_n > 1 \) și \(\lambda_n > l_k \), am demonstrat că sârul \(\{a_n\} \) este optim.

Din (4) și (6) sârul \(\{a_n\} \) este optim și cele două sâruri \(\{a_n\} \) și \(\{l_k\} \) sunt coincid. Există un număr natural \(N \), astfel că \(n > N \),

\[
a_n > l_k > l_k
\]

dar pentru o infinitate de indici \(n \) avem \(l_k > l_k \). Contradicția la care am ajuns arată unicitatea sârului optim.

3. Procedeu de aproximare de la nr. 1 poate fi aplicat sub următoarea formă modificată:

Presupunem iarăși că funcția \(f(x) \) admite minimul \(f(x_0) \) în \(I_0 = [a, b] \) și că \(f(x) \) este creșăți în \([a, x_0] \), \(x_0 \in [a, b] \). Alegem punctul \(c \in (a, b) \) și, iar punctul \(d \) ca abscisa minimului polinomului de interpolare al funcției \(f(x) \) pe nodurile \(a, b, c \).

\[
d = \frac{1}{2} \left((b - c) f(a) + (a - c) f(b) + (a - b) f(c) \right)
\]

Determinăm \(d \) din intervalul \(I_1 \). Considerează polinomul de interpolare al funcției \(f(x) \) cu nodurile în capetele lui \(I_1 \) și în acela dintre punctele \(c \) și \(d \) care se află în interiorul lui \(I_1 \); notăm abscisa minimului acestui polinom de interpolare cu \(\xi, \xi, a, m, d \).
Să presupunem că punctele \(a, b, c, d \) sînt așezate în următoarea ordine: \(a < d < c < b \) (fig. 3). Dacă \(x_0 \geq c \), teorema 2 are loc, deci putem presupune că \(x_0 < c \). Notăm

\[
P_1(x) = L(a, c, b; f(x))
\]

\[
P_2(x) = L(a, x_0, x_0; f(x)).
\]

În intervalul \((x_0, b)\) avem \(P_2(x) < f(x) \), deci \(P_2(x) < f(x) \). Dar \(f(c) = P_1(c) \), așa că \(P_2(x) < P_1(x) < f(c) \). Pe de altă parte în \((a, c)\), \(P_3(x) < f(x) \).

\[
\frac{\partial}{\partial x} \left(P_1(x) - P_2(x) \right) = 0.
\]

Rezultă că există un punct \(x \in (a, c) \) astfel că \(P_1(x) = \frac{P_1(x_0) + P_2(x_0)}{2} \). Din proprietatea relativă în cele două părâbele rezultă că \(d < x_0 \).

Să presupunem acum ordinea \(a < c < d < b \) (fig. 4). \(P_1(x) = L(a, c, b; f(x)) > f(x) \) în \((c, b)\), deci \(P_1(d) > f(d) \). Dar \(P_1(d) = \min_{x \in (c, b)} P_1(x) \), deci \(f(d) < P_1(c) = f(c) \). \(f(d) < f(b) \), de unde rezultă că \(c < x_0 < d \). Notăm

\[
P_3(x) = L(a, x_0, x_0; f(x)).
\]

Avem \(P_3(c) = f(c) < P_1(c) \) și \(P_3(x_0) = f(x_0) = P_2(x_0) \). Deci există \(\eta \) astfel că \(c < \eta < x_0 < b \) și \(P_3(\eta) = P_1(\eta) = f(\eta) < f(b) \). Rezultă \(d < x_0 \).

În sfîrșit, dacă \(c = d \), \(\min \)are zăcii în \((a, c)\) avem \(f(x) > L(a, c; b; f(x)) \), rezultă că în acest caz \(x_s \) nu poate fi situat între \(a \) și \(d \) și cu aceasta teorema 2 este complet demonstrată.

Observații. 1°. Avem o teoremă analogă pentru funcții concave în \([a, b]\), definiți prin \([x_a, x_b, x_3, x_4; f] \) \(0 \). Facând pentru o funcție concavă schimbarea de variabilă independentă \(x' = \frac{x + b}{2} \), funcția \(f \) devine convexă și putem aplica teorema 2. Așadar teorema 2 rămîne valabilă dacă schimbăm în ipoteza „funcția convexă” cu „concavă” și în concluzie relația \(x_0 > d \) în \(x_0 < d \).

2°. Teorema 2 este utilă în calculul numeric deoarece cu ajutorul ei putem stabili de multe ori, în care din cele trei intervale părțiale ale lui \([a, b]\) se găsește \(x_s \) și nu mai este nevoie să continuăm cu rezolvarea a două intervale părțiale. Această situație se prezintă în următoarele cazuri: 1) ordinea este \(a < c < d < b \); atunci \(d < x_0 < b \); 2) ordinea punctelor este \(a < d < c < b \) și \(f(d) < f(c) \); atunci \(d < x_0 < c \).

ПРИБЛИЖЕННОЕ ИСЧИСЛЕНИЕ ЭКСТРЕМУМОВ ФУНКЦИИ

КРАТКОЕ СОДЕРЖАНИЕ

Дан метод приближенного исчисления экстремумов функции одной вещественной переменной, для случая когда производная не существует или трудно написать ее эффективно.

Для определенности предполагается, что функция имеет минимум с абсциссой \(x_0 \) в интервале \(I = [a, b] \), является убывающей в \([a, x_0]\) и возрастает в \([x_0, b]\). Пусть \(e \in I_1 \), \(e < c \). Если \(f(c) > f(d) \), имеем \(x_s \in [a, d] \), а если \(f(c) > f(d) \), имеем \(x_s \in [c, b] \); обозначим через \(I_4 \) интервал \([a, d] \) в первом случае, соответственно интервал \([c, b] \), во втором случае. Интервал \(I_4 \) содержит одну из точек \(c, d \) и выбираем еще точку \(x_0 \in I_2 \). Таким образом \(I_2 \) разделен на три частичных интервала. Подобным образом находим, что \(x_0 \) находит в интервале \(I_2 \) образованном двумя соседними частичными интервалами. Продолжая так, получаем ряд интервалов

\[
I_6 \supset I_7 \supset I_8 \supset \ldots \supset I_n \ldots,
\]

которые все содержат точку \(x_0 \).

Можно легко видеть что точки \(x_s \in I_2 \) могут быть выбраны таким образом, что \(I_2 \to 0 \). Ставится вопрос выбора точек \(c, d, x_s \) таким образом, что ряд (1) стремится быть как можно ближе к нулю в следующем смысле: ряд \(I_n, I_{n+1}, \ldots \) длины интервалов называется оптимальным, когда для любого другого ряда \(\lambda_n = I_n, x_s \ldots \lambda_m \) полученного другим выбором точек \(c, d, x_s \), можно найти \(N \) так, чтобы \(l_n \leq \lambda_n \) для \(n < N \). В настоящее время эта задача решена в предыдущих, что у каждого шага перехода от интервала к другому, из двух краевых частичных интервалов отбирается в сторону более короткой. Решение дано выше теоремой:

Теорема 1. Существует только один оптимальный ряд, который получается выбором для \(c \) и \(d \) точки, равномерно интервал \(I_2 \) в среднем и краем относительно \((a - d)^2 = (b - a)(b - d) \), \(c - a = b - d \) и для \(x_s \) симметрично на середине интервала \(I_4 \), предшествующей точке \(x_0 \).

Описанный способ приближения может быть изменим следующим образом: выбираем \(e \in (a, b) \) произвольно, а для \(d \) берем абсциссу минимума интерполяционного полинома функции \(f(x) \) в узлах \(a, b, e, \) данных формулой (10) и поступается аналитично в случае последовательных интервалов \(I_n \).
Le calcul approximatif des extrêmes d'une fonction

RÉSUMÉ

On donne une méthode de calcul approximatif des extrêmes d'une fonction d'une variable réelle pour les cas où la dérivée n'existe pas ou bien lorsqu'il est difficile d'écrire effectivement.

On suppose, afin de fixer les idées, que la fonction \(f(x) \) a un minimum d'abscisse \(x_0 \) dans l'intervalle \(I_0 = [a, b] \) qu'elle est décroissante dans \([a, x_0] \) et croissante dans \([x_0, b] \). Soit \(c, d \in I_0 \), \(c < d \). Si \(f(c) < f(d) \), on a \(x_0 \in [c, d] \) et si \(f(c) > f(d) \), on a \(x_0 \in [c, b] \). Notons par \(I_1 \) l'intervalle \([a, d] \) dans le premier cas, respectivement l'intervalle \([c, b] \) dans le second cas. L'intervalle \(I_1 \) contient dans son intérieur l'un des points \(c, d \), et on choisit encore un point \(x_1 \in I_1 \); de cette manière \(I_1 \) est divisé en trois intervalles. On trouve que \(x_1 \) est situé dans un intervalle \(I_2 \) formé de la réunion de deux intervalles partiels voisins. En continuant ce procédé, on obtient une suite d'intervalles

\[I_0 \supset I_1 \supset I_2 \supset \ldots \supset I_n \supset \ldots, \]

qui contiennent tous le point \(x_0 \).

On remarque néanmoins que les points \(\xi \in I_n \) peuvent être choisis de telle manière que \(I_n \to 0 \). Le problème se pose de choisir les points \(c, d \), \(\xi \) tels que la suite (1) tende le plus rapidement possible vers zéro dans le sens suivant : la suite \(l_0, l_1, \ldots, l_n, \ldots \) de la longueur des intervalles est dit optimum si pour toute autre suite \(\lambda = l_0, \lambda_1, \ldots, \lambda_n, \ldots \), que l'on obtient par un autre choix des points \(c, d, \xi \), on peut trouver \(N \) tel que \(l_n \leq \lambda_n \) pour \(n > N \). Dans le travail ce problème a été résolu dans l'hypothèse qu'à chaque pas de pasage d'un intervalle à l'intervalle suivant on écarte le plus court des deux intervalles partiels marginaux. La solution du problème est donnée par le:

Théorème 1. Il existe une seule suite optimale, que l'on obtient en prenant pour \(c \) et \(d \) les points qui divisent l'intervalle \(I_n \) en moyenne et extrême raison \((d-a)^2 = (b-c)(b-d) \), \(c-a = b-d \) et pour \(\xi \) la symétrique par rapport au milieu de \(I_n \) du point de division extérieur situé dans \(I_n \).

BIBLIOGRAPHIE