ASUPRA UNOR INVARIAȚI ATASAȚI UNEI DIRECȚII
ÎN SPAȚII BI-ȘI TRIDIMENSIONALE,
CU CONEXIUNE AFINĂ

DE
ADOLF HALMOVICI

Comunicarea prezentată la Sessiona științifică din 16–21 decembrie 1984 a
Societății Cule a Academiei R.P.R.

§ 1. Urmiind ceea ce afirmă pe care le-am publicat de curând [6–9],
ca și știrea lui V. M ur g e n c u [10], se propunează de data aceasta
să găsim invarianții ce se pot atașa la transportul paralel al unei direcții
într-un spațiu cu conexiune afină.

Plecă întâi un spațiu cu conexiune afină, x' $(i = 1, 2, \ldots, n)$ coordonatele
unui punct din acest spațiu și X' o direcție prin acest punct. Fie Γ^k_{ij} coef-
cieții conexiunii spațiului nostru, funcții de x', derivabile de atit de ori
cit va fi necesar în cursul demonstrațiilor. Condiția ca direcția X' să se
deplaseze paralel din punctul x' în punctul $x' + dx'$, este

$$dX' + \Gamma^k_{ij} X^i dx^j = 0, \quad (i, a, b = 1, 2, \ldots, n).$$

(1)

Fie $f(x', X')$ invariantea cântat. Condiția de invarianță se scrie evident

$$\frac{\partial f}{\partial x^a} dx^a + \frac{\partial f}{\partial X^a} dX^a = 0, \quad (a = 1, \ldots, n).$$

(2)

În tinind seama de (1), aceasta care scrie

$$\frac{\partial f}{\partial x^b} - \Gamma^b_{ij} \frac{\partial f}{\partial X^j} X^i = 0, \quad (i, a, b = 1, \ldots, n).$$

(3)

Condiția ca f să depindă numai de direcția vectorului X' se exprimă prin

$$X^b \frac{\partial f}{\partial X^a} = 0.$$

1) Pentru tot ceea ce privește teoria spațiilor cu conexiune afină, vezi [11–13]; pentru
 teoria ecuațiilor de ordinul 1, vezi [14–15].
Condițiile de completitate pentru sistemul (2), (3) sint:

\[
\begin{align*}
R^0_{a_1} X^a \frac{\partial f}{\partial X^b} &= 0, \\
R^0_{a_1} X^a \frac{\partial f}{\partial X^b} &= 0, \\
\ldots & \\
(R^k_{p_1} R_{q_1} R_{r_1} R_{s_1}) X^a \frac{\partial f}{\partial X^b} &= 0, \\
(R^k_{p_2} R_{q_2} R_{r_2} R_{s_2}) X^a \frac{\partial f}{\partial X^b} &= 0, \\
\ldots & \\
(a, b, k, p, q, r, s, t = 1, 2, \ldots, n).
\end{align*}
\]

\(R^1_{p_1}, R^1_{p_2}, \ldots\) fiind tensorul lui Riemann-Christoffel și derivata lui covariantă.

Sistemul complet format din ecuațiile (2), (3), (4) trebuie să conțină cel mult \(2n-1\) ecuații liniar independente, avind în vedere că funcția \(f\) depinde de \(2n\) variabile. Cum ecuațiile (2) sint independente între ele și independente de ecuațiile (3) și (4), urmează că sistemul format din acestea din urmă ecuații care conțin numai derivatele în raport cu \(X^a\) trebuie să conțină cel mult \(n-1\) ecuații liniar independente.

Dacă notăm cu \(U_i\) n variabile noi, aceasta înseamnă că spațiul nostru va admite un singur invariant, dacă între formele

\[
X^i U_i, \qquad K^i_{p_1} K^j_{p_2} U_i, \ldots
\]

liniare în \(U_i\), există \(n-1\) liniar independente de \(U_i\). Dacă există \(n-2\) astfel de formele, vor exista doi invarianți sau.m.d.

§ 2. In cazul spațiilor cu conexiune afiină cu 2 dimensiuni, ecuațiile sistemului (4) trebuie să se reducă la ecuația (3). Sistemul nostru se reduce la:

\[
\begin{align*}
X^i \frac{\partial f}{\partial X^i} + X^i \frac{\partial f}{\partial X^i} &= 0, \\
\frac{\partial f}{\partial x^i} - \Gamma^i_{jk} X^j \frac{\partial f}{\partial x^i} &= 0,
\end{align*}
\]

cu condițiile:

\[R^k_{p_1} = R^k_{p_2} = R^k_{p_1} - R^k_{p_2} = 0.\]

Aceste egalități se pot ușor interpreta geometric, dacă ne referim la formulae

\[\Delta X^i + R^k_{pq} X^i \frac{\partial f}{\partial x^p} = 0,\]

\[\Delta X^i + R^k_{pq} X^i \frac{\partial f}{\partial x^p} = 0.\]

In acest caz, pentru \(\alpha_1 = \alpha_2\), \(\alpha_3\) sint două deplasări oarecare în spațiu, iar \(\Delta X^i\) componentele rotației vectorului \(X^i\), după parcurgerea ciclului \([dx^i, dx^2]\).

În această situație, din (6) și (7) se deduce pentru cazul nostru

\[X^1 = -R^1_{12} X^1 [dx^1, dx^2], \]

\[X^2 = -R^2_{12} X^2 [dx^1, dx^2],\]

care ne arată că, după parcurgerea ciclului \([dx^1, dx^2]\), direcția vectorului \(X^i\) rămâne neschimbată. Spațiul admete un paralelism absolută. În acest caz, dacă se alege drept linii coordonate două familii de linii autoparalele, și așa face încît tangentele la una din familii să fie paralele de-a lungul curburilor celelalte familii, se capăță

\[\Gamma^i_{11} = \Gamma^i_{22} = \Gamma^i_{12} = \Gamma^i_{21} = 0;\]

iar dacă punem

\[\frac{X^1}{X^2} = Y,\]

sistemul se reduce la:

\[\frac{\partial f}{\partial x^i} - (\Gamma^i_{11} - \Gamma^i_{22}) Y \frac{\partial f}{\partial Y} = 0,\]

a cărui integrală generală este

\[Y e^{(\Gamma^i_{11} - \Gamma^i_{22}) x^i} = C.\]

Rezultă deci că invariantul nostru în sistemul de coordonate ales este

\[I = \frac{X^1}{X^2} \int \frac{\Gamma^i_{11} - \Gamma^i_{22} x^i}{X^1} = \frac{X^2}{X^1} \int \frac{\Gamma^i_{22} - \Gamma^i_{11} x^i}{X^2},\]

(1)

Dacă spațiul este fără torsiune, rezultă încă

\[\Gamma^i_{11} = \Gamma^i_{22}.\]

§ 3. Să studiem acum problema într-un spațiu cu 3 dimensiuni. În acest caz, pentru ca să existe un singur invariant, este necesar și suficient ca sistemul (4) să conțină o singură ecuație distinctă de ecuația (3).

Evident, această ecuație este de forma

\[\alpha_1^i X^i \frac{\partial f}{\partial x^i} = 0.\]

Dacă asupra variabilelor \(X^i\) facem o transformare liniară

\[Y^i = \alpha^i_1 X^i\]

această ecuație se transformă în

\[\frac{\partial f}{\partial x^i} \frac{\partial f}{\partial x^i} = 0,\]

(8)
De aici se deduce:
\[
\begin{align*}
|b^i_1| = 0 & \text{ pentru } i \neq j, \\
\left|\begin{array}{cc}
|b^i_1 - b^j_1 - \sigma (b^i_1 - b^j_1)| = 0.
\end{array}\right.
\end{align*}
\] \hspace{1cm} (14)

Pe de altă parte, unica paranteză între ecuațiile (10) și (13) este
\[
\left\{ \sigma \bar{T}^2 \bar{Y}^2 + \bar{T}_1 \bar{Y}^1 - \bar{T}_2 \bar{Y}^2 \right\} \frac{\partial f}{\partial \bar{Y}^1} + \left\{ \sigma \bar{T}^2 \bar{Y}^2 + \bar{T}_1 \bar{Y}^1 - \sigma \bar{T}^2 \bar{Y}^2 \right\} \frac{\partial f}{\partial \bar{Y}^2} + \frac{\partial\bar{g}_1}{\partial \bar{Y}^2} - \frac{\partial\bar{g}_1}{\partial \bar{Y}^2} = 0.
\]
Aceasta trebuie evident să satisfacă condiții de forma (14), din care se deduce:
\[
\bar{T}_2 - \bar{T}_1 = 0 \text{ dacă } k \neq i, \quad \frac{\partial\bar{g}_1}{\partial \bar{Y}^2} = 0,
\]
adică \(\sigma = \text{const.}\)

Integra fa ce sistemului nostru este \(f(I)\), în care
\[
I = (\bar{g}_1 \bar{Y}^1) - (\bar{g}_1 \bar{Y}^1) \left(\frac{\partial\bar{g}_1}{\partial \bar{Y}^2} \right) \left(\frac{\partial\bar{g}_1}{\partial \bar{Y}^2} \right) \sigma \bar{d}x^i
\]
unde
\[
\Lambda_i = \bar{T}_2 - \bar{T}_1 - \sigma \left[\bar{T}^2 + \bar{T}^2 \right].
\]

Spații de care satisfac condițiile acestei paragrafe au o proprietate importantă. Să observăm că relația (7) exprimă faptul că între un vector oarecare și cel obținut din acesta, după transportul lui paralel de-a lungul unui ciclu, există o corespondență omografică. Cum cele trei rădăcini caracteristice ale matricei \(R_t\) sînt distincte, urmează că omografia obținută după parcurserea unui ciclu situat pe varietatea \(ds^2 = 0\) are trei direcții duble distincte. Relațiile (14) este arată că aceleași lucruri se petrec daca înlocuim ciclul din planul \(ds^2 = 0\) prin un ciclu din planul \(ds^2 = 0\) sau \(ds^2 = 0\). Deci spațiul admite trei câmpuri de direcții parallele. Se constată că constanta \(\sigma\) este aceeași pentru toate omografiile.

Având în vedere felul cum a fost obținută a doua ecuație (13), reultă încă că două omografi, caracterizate prin cinci direcții diferite, conțin în fasciculul lor identitatea. De aici se poate trage concluzia că în fiecare punct există două direcții plane așa fel incit omografia asociată lor este identică.

§ 5. Carellul II este caracterizat prin ecuațiile:
\[
\begin{align*}
\bar{Y}^1 \frac{\partial f}{\partial \bar{Y}^1} + \bar{Y}^2 \frac{\partial f}{\partial \bar{Y}^2} + \bar{Y}^3 \frac{\partial f}{\partial \bar{Y}^3} = 0, \\
\bar{Y}^2 \frac{\partial f}{\partial \bar{Y}^1} + \bar{Y}^3 \frac{\partial f}{\partial \bar{Y}^2} = 0, \\
\bar{Y}^3 \frac{\partial f}{\partial \bar{Y}^1} = 0.
\end{align*}
\] \hspace{1cm} (15)
Se poate alege factorul arbitrar care intră în \(\tau \) așa că \(\tau = 1 \), ceea ce vom presupune realizat. Condițiile (14) se înlocuiesc prin
\[
\begin{align*}
\begin{cases}
\frac{b_1^2}{a_1} = \frac{b_2^2}{a_2} = \frac{b_3^2}{a_3} = \frac{b_4^2}{a_4} = 0,
\end{cases}
\end{align*}
\]
(16)
cu alte cuvinte celelalte ecuații (4) sint combinații liniare ale ecuațiilor (15).

Paranțele dintre ecuațiile (16) și (15) este identică cu a doua ecuație (15), după ce impunem condițiile (16) de completitate a sistemului format din aceste ecuații. Se obține
\[
\begin{align*}
\begin{cases}
\Gamma_{11} - \Gamma_{22} = 0,
\end{cases}
\end{align*}
\]
(17)
Integrarea generală a sistemului nostru este în aceste ipoteze : \(I(\Gamma) \), în care
\[
I = \frac{Y^\gamma}{Y^\delta} \int_0^\infty x^\gamma \nu dx
\]
(III)
cu notația:
\[
\chi = \Gamma_{11} - \Gamma_{22} - \Gamma_{12}.
\]
Revenind la primele variabile, găsim forma invariantului fundamental:
\[
I = \frac{\partial^2}{\partial \chi^2} \int_0^\infty x^\gamma \nu dx
\]
(IV)
Acestea spatiile se pot caracteriza geometric cu și cele precedente, cu singura deosebire că omografia asa a unui ciclu admite numai doua direcții duble și un plan dublu. Spațiul admite două clădiri de direcții paralele, de asemenea un clădire de direcții plane care se conservă prin paralelism.

§ 6. Casul IIII. Ecuațiile sistemului sint
\[
\frac{\partial f}{\partial Y^2} = 0, \quad Y^1 \frac{\partial f}{\partial Y^2} + Y^2 \frac{\partial f}{\partial Y^2} = 0.
\]
Ecuaii anologe cu (14) sint:
\[
\begin{align*}
\begin{cases}
b_1^2 = b_1^2 = b_2^2 = b_3^2 = b_4^2 - b_5^2 = 0.
\end{cases}
\end{align*}
\]
(18)
Construind paranțele, obținem ecuația unică
\[
\Gamma_{11} \frac{\partial f}{\partial Y^2} = 0.
\]
Condiția de completitate impune:
\[
\Gamma_{11} = \Gamma_{22} = 0
\]
(19)
După cum se vede, problema se reduce la cea bîndimensională, pentru vectorii cu \(Y^2 = 0 \), adică pentru vectorii din planul
\[
\Gamma_{11} \frac{\partial f}{\partial Y^2} = 0
\]
cu singura deosebire că un vector cu \(Y^2 = 0 \) nu rămîne cu ultima componentă nulă după transportul paralel.

Dacă punem
\[
Z = \frac{Y^1}{Y^2}
\]
ecuaii (10) se reduc la:
\[
\frac{\partial f}{\partial x^1} + \left(a_1 Z^2 + b_1 Z + \gamma_1 \right) \frac{\partial f}{\partial Z} = 0,
\]
in care
\[
a_1 = \Gamma_{11}^2, \quad b_1 = \Gamma_{22}^2 - \Gamma_{12}^2, \quad \gamma_1 = -\Gamma_{14}^2.
\]
Integrarea ecuației de mai sus se reduce la integrarea ecuaiilor Riceați
\[
\frac{dx}{x^2} = \frac{a_1}{x^2} + b_1 \nu + \gamma_1.
\]
Soluția acestor două ecuații este invariantul cântat.

Dacă \(\phi(x') \) este o integrală particulară a sistemului acesta. atunci invariantul nostru va fi:
\[
I = \frac{Y^\gamma}{Y^\delta} \int_0^\infty \left(\int_0^\infty x^\gamma \nu dx \right) + \int_0^\infty a_1 \nu e^{\phi(x')} dx'.
\]
(IV)
Spațiul care satisface condiției (18) și (19), se bucură de proprietatea că vectorii cu componente date de
\[
Y^2 = \Gamma_{11} \frac{\partial f}{\partial Y^2}
\]
se transformă după transportul lor paralel de-a lungul unui ciclu oarecare, în el felin. Spațiul admite deci un clădare de vectori paralel.

§ 7. Casul IV. Ecuațiile sistemului se reduc în acest caz la:
\[
\begin{align*}
\begin{cases}
Y^2 \frac{\partial f}{\partial Y^2} + Y^2 \frac{\partial f}{\partial Y^2} = 0,
\end{cases}
\end{align*}
\]
(18)
Condiții (14) se transformă în condițiile
\[
\begin{align*}
\begin{cases}
\Gamma_{11} \frac{\partial f}{\partial Y^2} = \Gamma_{22} \frac{\partial f}{\partial Y^2} = \Gamma_{12} \frac{\partial f}{\partial Y^2} + Y^2 \frac{\partial f}{\partial Y^2} = 0.
\end{cases}
\end{align*}
\]
(20)
Condițiile (14) se transformă în condițiile
\[
\begin{align*}
\begin{cases}
b_1^2 = b_2^2 = b_3^2, \quad a_1^2 = a_2^2 = a_3^2 = a_4^2 - b_5^2 = 0.
\end{cases}
\end{align*}
\]
(21)
Paranteza între (10) și (20) ne dă
\[
\begin{align*}
\begin{cases}
\Gamma_{11} = \Gamma_{22} = \Gamma_{12} = \Gamma_{14} = 0,
\end{cases}
\end{align*}
\]
Integrala sistemului nostru este \(f(U) \), în care
\[
I = \frac{Y^1}{Y^8} \left(\frac{1}{2} \frac{\partial Y^3}{\partial x^1} + \sqrt{\sum g_{ii} \, dx^i} \right)^2 + \int g_{ij} \, dx^i \, dx^j.
\]
sau:
\[
I = \frac{2}{\sqrt{g}} \left(g^{11} \frac{\partial x^1}{\partial x^j} \right) X^1 \, X^j + \sqrt{g} \, dx^j.
\]
Spațiul admite în acest caz un singur chup de vectori paraleli.
§ 8. Să presupunem acum că printre ecuațiile (3) și (4) există o singură independență. Vom avea atunci
\[
R_{\alpha \beta}^\gamma = R_{\alpha \beta} - R_{\alpha \gamma} = 0.
\]
Spațiul admite deci paralelism absolută. În acest caz vor exista doi invariantii de forma
\[
f(x^j, U^1, U^2).
\]
unde:
\[
U^1 = \frac{X^1}{X^3}, \quad U^2 = \frac{X^2}{X^3}.
\]
Acești invariantii sînt două integrale ale sistemului
\[
\frac{\partial f}{\partial x^j} - \left(\Gamma_{\beta \gamma}^\nu U^\nu + \Gamma_{\beta \nu}^\gamma U^\nu + \Gamma_{\gamma \nu}^\beta U^\nu \right) \frac{\partial f}{\partial U^\beta} + \left(\Gamma_{\nu \beta}^\gamma U^\nu + \Gamma_{\nu \gamma}^\beta U^\nu + \Gamma_{\beta \gamma}^\nu U^\nu \right) \left(\frac{U^1}{U^2} \frac{\partial f}{\partial U^1} + U^2 \frac{\partial f}{\partial U^2} \right) = 0.
\]
Dacă spațiul este fără torsioni, se știe că se poate alege un sistem de coordonate astfel ca toți coeficienții conexiunii să fie nuli. În acest caz, cei doi invariantii sînt
\[
I_1 = \frac{X^1}{X^3}, \quad I_2 = \frac{X^2}{X^3}.
\]

BIBLIOGRAFIE

7. Spații cu metricea ușoară (II), Studii și cercetări științifice, Acad. R.P.R., t. II, p. 66.

SUR QUELQUES INVARIANTS ATTACHÉS À UNE DIRECTION D’UN ESPACE BI- ET TRIDIMENSIONNEL À CONNEXION AFFINE

(Latină)

L'auteur évalue les espaces à connexion affine qui admettent pour chaque direction un invariant au transport parallèle de cette direction. Les équations du problème sont (2), (3), (4). Le condition pour qu'il y ait un seul invariant du type cherché, est que parmi les équations (4) y existent n-2 linéairement indépendantes.

Les espaces à deux dimensions qui admettent tels invariants sont ceux qui sont parallélisme absolu. Dans un système particulier de coordonnées, cet invariant est donné par (1).

Les espaces à trois dimensions qui admettent tels invariants admettent un, deux ou trois champs de directions parallèles. Les invariants sont alors (II), (III), (IV) ou (V).

Si l'espace à trois dimensions admet deux invariants du type considéré, il doit être parallélisme absolu.