## Abstract

We comparatively use some classical spectral collocation methods as well as highly performing Chebfun algorithms in order to compute the eigenpairs of second order singular Sturm-Liouville problems with separated self-adjoint boundary conditions. For both the limit-circle non oscillatory and oscillatory cases we pay a particular attention. Some ”hard” benchmark problems, for which usual numerical methods (f. d., f. e. m., etc.) fail, are analysed. For the very challenging Bessel eigenproblem we will try to find out the source and the meaning of the singularity in the origin. For a double singular eigenproblem due to Dunford and Schwartz we we try to find out the precise meaning of the notion of continuous spectrum. For some singular problems only a tandem approach of the two classes of methods produces credible results.

## Authors

Călin-Ioan **Gheorghiu**

(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

## Keywords

### References

See the expanding block below.

## Paper coordinates

C.I. Gheorghiu, *Spectral collocation solutions to second order singular **Sturm-Liouville eigenproblems, *arXiv:2012.01341v1

## About this paper

##### Print ISSN

##### Online ISSN

##### Google Scholar Profile

soon

[1] P. B. Bailey, W. N. Everitt and A. Zettl, *Computing Eigenvalues of Singular SturmLiouville Problems,* Results Math.,20 (1991) pp. 391–423.

[2] P. Bailey, B. Garbow, H. Kaper, and A. Zettl, *Algorithm 700: A FORTRAN software package for Sturm-Liouville problems*, ACMT. Math. Software, 17 (1991), pp. 500–501.

[3] C. Bender and S. Orszag, *Advanced Mathematical Methods for Scientists and Engineers*, McGraw-Hill, New York 1978.

[4] J. P. Boyd, *Traps and Snares in Eigenvalue Calculations with Application to Pseudospectral Computations of Ocean Tides in a Basin Bounded by Meridians,* J. Comput. Phys. 126 (1996) pp. 11–20.

[5] H. Castro, and H. Wang, *A singular Sturm-Liouville equation under homogeneous boundary conditions*, J. Func. Anal. 261 (2011) pp. 1542–1590.

[6] T. A. Driscoll, F. Bornemann, and L. N. Trefethen, *The CHEBOP System for Automatic Solution of Differential Equations*, BIT 48 (2008) pp. 701-–723.

[7] T. A. Driscoll, N. Hale, and L. N. Trefethen (eds.), *Chebfun Guide*, Pafnuty Publications, Oxford, 2014

[8] T. A. Driscoll, N. Hale, and L. N. Trefethen, *Chebfun-numerical computing with functions*. Software available at http://www.chebfun.org.

[9] W.N. Everitt, J. Gunson, and A. Zettl, *Some comments on Sturm-Liouville eigenvalue problems with interior singularities*, Journal of Applied Mathematics and Physics (ZAMP) 38 (1987) pp. 813–838.

[10] C. I. Gheorghiu and I. S. Pop, *A Modified Chebyshev-Tau Method for a Hydrodynamic Stability Problem*, Proceedings of the International Conference on Approximation and Optimization (Romania) – ICAOR Cluj-Napoca, July 29 – August 1, 1996. Volume II, pp. 119–126.

[11] C.I. Gheorghiu, M.E. Hochstenbach, B. PLestenjak, and J. Rommes, *Spectral collocation solutions to multiparameter Mathieu’s system*, Appl. Math. Comput. 218 (2012) pp. 11990–12000.

[12] C. I. Gheorghiu,* Spectral Methods for Non-Standard Eigenvalue Problems. Fluid and Structural Mechanics and Beyond*, Springer-Verlag, Cham Heidelberg New-York Dondrecht London, 2014.

[13] C. I. Gheorghiu, *On the numerical treatment of the eigenparameter dependent boundary conditions,* Numer. Algor. 77 (2018) pp. 77—93.

[14] C. I. Gheorghiu,* Spectral Collocation Solutions to Problems on Unbounded Domains*, Casa Cartii de Stiinta Publishing House, Cluj-Napoca, 2018

[15] J. Hoepffner, *Implementation of boundary conditions*. Software available at http://www.lmm.jussieu.fr/∼ hoepffner/boundarycondition.pdf

[16] M. Marletta, and J. D. Pryce, *LCNO Sturm-Liouville problems—Computational difficulties and examples*, Numer. Math. 69 (1995) pp. 303—320.

[17] S. Olver and A. Townsend, *A fast and well-conditioned spectral method*, SIAM Rev., 55 (2013), pp. 462—489.

[18] A. Pleijel, *On the Boundary Conditions for the Legendre Polynomials*, Ann. Acad. Sci. Fenn. A1 2 (1976) pp. 397–408.

[19] B. Plestenjak, C. I. Gheorghiu, and M. E.Hochstenbach, *Spectral collocation for multiparameter eigenvalue problems arising from separable boundary value problems*, J. Comput. Phys. 298 (2015) pp. 585—601.

[20] S. Pruess, and C. T. Fulton, *Mathematical Software for Sturm-Liouville Problems*, ACM T. Math. Software 19 (1993) pp. 360–376.

[21] S. Pruess, C. T. Fulton, and Y. Xie, *An Asymptotic Numerical Method for a Class of Singular Sturm-Liouville Problems,* SIAM J. Numer. Anal. 32 (1995) pp. 1658–1676.

[22] J. Pryce and M. Marletta, *A new multi-purpose software package for Schrodinger and Sturm–Liouville computations*, Comput. Phys. Comm., 62 (1991), pp. 42–54.

[23] J. D. Pryce, *A Test Package for Sturm-Liouville Solvers*, ACM T. Math. Software 25 (1999) pp. 21–57.

[24] B. D. Shizgal, *Pseudospectral Solution of the Fokker-Planck Equation with Equilibrium Bistable States: the Eigenvalue spectrum and the Approach to Equilibrium,* J. Stat. Phys. (2016)

[25] C.A. Stuart, *On the spectral theory of a tapered rod*, Proc. Roy. Soc. Edinburgh Sect. A 132 (2002) pp. 729–764.

[26] M. Teytel, *How Rare Are Multiple Eigenvalues?*, Comm. Pure Appl. Math. 52 (1999) pp. 917–934.

[27] L. N. Trefethen, *Analyticity at eigenvalue near-crossings,* Software available at https://www.chebfun.org/examples/linalg/CrossingsAnalyticity.html.

[28] L. N. Trefethen, A. Birkisson, and T. A. Driscoll, *Exploring ODEs*, SIAM, Philadelphia, 2018.

[29] L. N. Trefethen, *Approximation Theory and Approximation Practice*, Extended Edition, SIAM, Philadelphia, 2019

[30] H. W. Volkmer, *Eigenvalue problems for Bessel’s equation and zero-pairs of Bessel functions,* Stud. Sci. Math. Hung. 35 (1999) pp.261–280.

[31] J. A. C. Weideman, and S. C. Reddy, *A MATLAB Differentiation Matrix Suite*, ACM T. Math. Software, 26, (2000) pp. 465–519.

[32] G. von Winckel, *Fast Chebyshev Transform (1D),* Software available at https://www.mathworks.com/matlabcentral/fileexchange/4591-fast-chebyshevtransform-1d.