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Forword

This report contains the English abstract of the Ph.D. thesis, 7On the Connection Be-
tween the Microscopic and Macroscopic Modeling of the Thermodynamic Processes”, that
the author defended at ” Simion Stoilow Institute of Mathematics of the Romanian Academy”
in December 1998. Passing through general definitions and results from the mathematics
of stochastic processes and dynamical systems as tools in nonequilibrium statistical me-
chanics (Section 2), this work presents a mathematical frame of ”stochastic theories” of
diffusion in hydrogeological environments and proposes new approaches for both continuous-
mathematical and numerical modeling.

The general frame allowing to obtain the connection between Lagrangian and Eulerian
descriptions, to introduce Corsin’s conjecture and to discuss about asymptotic diffusive be-
havior is presented in Section 3. One underlines the difference between the genuine diffusion
coeflicients (3.4) and the effective ones (3.5), the requirement that more than one statistical
ensemble should be defined to describe movements in random fields (two in (3.10) and three
in (3.13), when both random field and local diffusion are considered) and the non-additivity
between the "molecular diffusion” and effective diffusion in absence of molecular diffusion
(3.14-15).

The continuous modeling based on space-time coarse grained averages from Section 4
outlines the derivation of Darcy-Buckingham law (4.15) and porosity dependent advection-
diffusion equation (4.16). This continuous modeling is also useful in designing random walk-
ers numerical models for diffusion.

The numerical models presented in Section 5 were tested for 1-dimensional diffusion at
very small concentrations and model-problem of non-diffusive behavior in stratified aquifers
of Matheron and de Marsily. These preliminary results are the basis of a numerical model
for diffusion which is being developed in our research group.

This short excursion through the field of irreversibility, continuous modeling and diffusion
in random environments is based on the results from the author’s work during several stays in
the research team ”Verhalten von Schadstoffen in geologischen systemen” at Forschungszen-
trum Julich. The references list of the report contains their previous results and relevant
works for a thorough study of these problems.

Julich, September 5, 2000 Dr. H. Vereecken
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1 Introduction

The goal of statistical mechanics is to derive macroscopic behavior of physical systems
from the behavior of their microscopic components [Balescu, 1975, pp.3, 34]. The specific
paradigm is to study not a single physical system but large collections of identical systems,
continuously distributed into the 'phases space’, called statistical ensemble. This is done
by means of a density defined on the space of all possible states. It has the meaning of
the probability density for the state of the system to correspond to a given point in the
state space. The basic postulate of statistical mechanics [Balescu, 1975, p.724] says that the
probability density provides a complete description of the system and statistical averages
give macroscopic observable values of all physical quantities.

In passing from a microscopic description, by dynamical systems, to a statistical macro-
scopic one, the ergodicity problem occurs: time and statistical averages must be equal in
order to have the same observable value of the physical quantity in both descriptions. More-
over, if the statistical description uses the framework of state space then it is isomorphic to
the deterministic description [Onicescu, 1977, p.363, Prigogine, 1998]. In this case the irre-
versible behavior, as described by increasing entropy, cannot be derived [Lasota and Mackey,
1994]. This is referred to as the Statistical mechanics paradoz.

These difficulties can be removed if the microscopic description uses the framework of
stochastic processes, defined by probability measures on the space of trajectories of the
microscopic constituents [Doob, 1953, chap.2]. The nondegenerate case is that one when
through a given point passes a whole set of trajectories, and not only one trajectory as it
is the case of dynamical systems. Stochastic processes also could be mathematical models
for statistical ensemble of Gibbs and Boltzmann, "a concept consisting of many physical
systems with different initial conditions” [Boltzmann, 1981, p.204]. The probabilities on the
state space are obtained by projections of probabilities defined on the space of trajectories.
There exists a nontrivial class of Markov processes (including diffusion processes) which are
ergodic and allow the derivation of the entropy law. In this general approach micoscopic
dynamics does not explicitly occur. As a consequence, no ’correspondence principle’ can be
used (for instance, one cannot find the Newtonian mechanics as a limiting case).

The attempt of the 'Bruxelles school’ [Misra et al., 1979, Prigogine, 1980, 1999] to obtain
7a probabilistic reformulation of microscopic dynamics” yields representations of irreversible
Markov processes by dynamical systems into measure spaces. But this abstract dynamics is
not explicit, no equations of motion of physical particles are proposed, and correspondence
principle is not yet established. This could be a reason for the dominant pragmatic attitude
based on the remark that for many particle systems or for systems with sensible dependence
on initial conditions deterministic predictions are inoperative. ”A paradigmatic jump” or
"a change of philosophy by supply of new concepts and probabilistic predictions” is claimed
[Lebowitz, 1999, Parisi, 1999, Ruelle, 1999].

Despite of its foundation difficulties, statistical mechanics successfully solved many prac-
tical problems by using supplementary hypotheses. Among them, the thermodynamics of
systems close to equilibrium gives good predictions for transport coefficients by Green-Kubo
formulas and fluctuation-dissipation theorems [Balescu, 1975]. In order to achieve these, the
microscopic description is proposed by Langevin type equations (generalizing Newton law
up to a perturbed dynamical system). The corresponding continuous description is obtained
as Fokker-Planck equations for probability densities. A frequently used complementary ap-
proach is the numerical procedure called the 'molecular dynamics’. According to this, the



behavior of physical systems is obtained through the simulation of the movement of a large
number of particles followed by space-time averages yielding a continuous description [Koplik

and Banavar, 1995].

The Ph.D. thesis discusses a few questions on theoretical foundation of statistical me-
chanics, argues for a new method in continuous modeling of corpuscular physical systems
and proposes a molecular dynamics type numerical approach for diffusion processes.

¢ Section 2 contains a general presentation of both stochastic processes and measure dy-
namical systems as random functions in the Doob sense. Deterministic processes are shown
to be degenerated Markov processes. It is found that the ’strongly ergodic’ Markov pro-
cesses, as defined by Gardiner [1983], describe irreversible thermodynamic behavior. Their
representation as measure dynamical systems in spaces of trajectories could reformulate the
Misra-Prigogine-Courbage theory of irreversibility.

¢ In the Section 3 diffusion processes are defined and equivalence between Fokker-Planck
and Langevin equations is presented. Starting with the Langevin-like equation for the
molecules motion, the Gibbs thermodynamic relation between free energy, entropy and tem-
perature is derived. The transport coefficients are obtained as Green-Kubo formulas. Some
definitions and results from the theory of diffusion in random fields are formulated and used
to model turbulent diffusion and transport processes in porous media.

{ Section 4 proposes a new macroscopic continuous model for discrete systems, based
on [Vamos et al., 1996a,b]. If physical quantities associated with particles can be described
by piece-wise analytical functions then, coarse grained space-time averages give a.e. con-
tinuous fields verifying identities similar to balance equations from mechanics of continua.
Throughout continuous fields and macroscopic balance equations are obtained by averaging
over the statistical ensemble. The correspondence with classical results of Kirkwood [1967]
is obtained for small space-time scales. In addition, it is shown that from the requirement
that the concentration balance be a diffusion-like equation, a microscopic criterion for irre-
versibility is obtained. This could be useful in numerical simulations and experimental data
analysis. As an illustration, a continuous model of transport processes in porous media, the
derivation of Darcy law and porosity dependent transport equations are presented.

¢ On the basis of the results from the Section 4, the Section 5 develops a molecular
dynamics type numerical model for diffusion. Continuous fields are derived by coarse grained
averages over the trajectories of a system of random walkers evolving in a grid. The space-
time scale and the number of particles needed for a given precision is obtained, numerical
and analytical solutions are compared and the microscopic irreversibility criterion is tested.
Moreover, a two-dimension simulation of diffusion in a random field is performed to test the
method by comparing its results with the features of the model of Matheron and de Marsily
[1980].



2 Dynamical Systems and Stochastic Processes

Statistical mechanics description for a physical system consisting of N particles is given

by systems of ordinary differential equations (Newton law or Hamiltonian system)
dy — V(y). 1 6N 1

o= (y), ye Y, Y CR®Y, VeC'(Y), (2.1)
If there is a unique solution of the Cauchy problem (2.1), y(0) = yo, for V¢ € R, then
Si(yo) = y(t,yo) defines a differentiable dynamical system, {S;}ier, generated by the vectors
field V. Moreover, the dynamical system preserves the Lebesgue measure, p, defined on
the Borel o-algebra B, i.e. u(B) = u(S_:B), ¥V B € B. It follows that {S;}icr is a group
of automorphisms in the measure space (Y, B, u) (state space). Then, with the microscopic
description (2.1) one associates the continuous macroscopic description given by the
Frobenius-Perron unitary group [Cornfeld et al., 1982, pp.26,48],

{Uthier, Ur: L'(Y) — L'(Y), (Uif)(y) = f(S(y)). (2.2)

Let py be the density of the measure P, absolutely continuous with respect to y, P(B) =
J5po(y)dy,¥ B € B. The evolution of p(y, t) = Uypy(y) is described by the Liouville equation,

Jdp N
— + —(pVz) = 0. 2.3

The projection of p on R? is a concentration and from (2.3) one derives the continuity
equation.

Densities described by (2.2-3) conserve the Gibbs entropy S(t) = — [p(y, ¢) In p(y, t)dy
= const. Thus, differentiable dynamical systems preserving a measure in the state space
cannot be used as models for thermodynamic irreversibility [Gardiner, 1983, pp.61-62, Lasota
and Mackey, 1994, chap.9].

Let A C R be a set of parameters, (£, A4, P) be a measure space with probability measure
and let (Y, B) be a measurable space A. stochastic process is defined as a random variable

n:Qr— Y pw) =y, y* Y Ywec. (2.4)

The function y* : A — Y, is a trajectory and its values, y“(A) = y», are points in the state
space Y. If BA is a o-algebra in Y2, then Py (C) = P({n € C}), VC € BA, define the
distribution of the process (2.4) and the space of trajectories becomes a probability space,
(YA, BA, Pp), called phase space. Uniquely up to an isomorphism, phase space defines the
stochastic process in the sense of Doob. [Doob, 1953, lTosifescu and Tautu, 1973].

When the microscopic description is performed by means of stationary Markov processes
(i.e. the state after a time interval 7 does not depend on the previous states), the continuous
description can be obtained using semigroups of kernel type Markov operators, {K;}:>o,

defined by

K;f(y) = /p(yﬁ | yo)f(yo)dyo, ¥V f € L'(Y), (2.5)

Y

where p(. | .) is the density of transition probability.
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The existence of the limit
p(yr,tr —ta | y2) — ps(vn), for ty —ty — oo, (2.6)

ensure the strong ergodicity [Gardiner, 1983, Sect.3.7.3]. With a strongly ergodic process one
associates a non-stationary process through the 'preparation of an initial state’ [Gardiner,

1983, p.60, van Kampen, 1981, p.92]

p(y,t) = ply,t —to | yo) and p(y,t | y',t") = ply,t =" | y'), V 1,t' > 1, (2.7)

for fixed ty. These processes are also referred to as homogeneous processes. Their important
property is the existence of the limit p(y,t) — ps(y) as t — oo (or {y — —o0), which, when
used in (2.5), implies

| Kip — ps|| ;1 — 0, for t — occ. (2.8)

The semigroups endowed with the property (2.8) are just the ’strong Markov’ [Misra et al.,
1979] or 'irreversible’ [Antoniou and Gustafson, 1993] semigoups. For these semigroups the
Gibbs entropy (and any convex functional of p) monotonically increases up to a maximum
value corresponding to the equilibrium state, i.e. they satisfy the second law of thermody-
namics.

From (2.2) and (2.5) it follows that the Frobenius-Perron operators are Markov operators
with a singular transition probability (between states lying on the same trajectory): p(y,? |
Yo) = 0(y — Si(yo)). This is the reason the dynamical systems are presented as degenerated
Markov processes [Misra et al., 1979]. The following proposition was proved.

Proposition 2.3: [f the dynamical system {S;}iecr preserves a measure P in the states
space, P(B) = P(S5_;B),Y B € B, then it generales a stochastic process in the sense of Doob,
n, and the corresponding stale and phase spaces are isomorphic: (Y,B,P) ~ (Y® BE, Pp).
O

A stationary Markov process can be represented as a dynamical system in the space of
its trajectories. By the Kolmogorov theorem [losifescu and Tautu, 1973], the measure Py
is completely defined by the measure of the cylindrical sets from BE, defined as C,yy =
{y“(to) € Bo, - ,y“(t,) € B, | By, -+, B, € B}, ly < --- < t,,. For Markov processes this
reads

Pp(Crsr) = /p(yo,to)dyo/z)(yl,tl | yo,to)dyl“'/z)(ymtn | Yn—1, Ln=1)dyn,
BO Bl Bl

and the because the process is stationary,

Pp(Cosn) = Pr(E(Cos)) = Py(S—r(Cos)).

The invertible map ¥, : Y® — Y® ¥ _(y) = ypr , (translation along the trajectories
of the Markov process) preserves the measure Pp. Thus, {X;};cr is a group of Markov
automorphisms [Cornfeld et al. 1982, p.188] defined in probability space (Y® BE, Pn).

The ”Misra-Prigogine-Courbage Theory”attempts to get thermodynamic irreversibil-
ity, by strong Markov semigroup, starting with deterministic descriptions given by dynamical
systems [Misra et al., 1979]. A intertwining relation K;® = ®U;, between the strong Markov
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semigroup, {K;}i>0, and the restriction for ¢ > 0 of a unitary group, {U;}icr, is derived
in order to performe a change from deterministic to probabilistic description. When the
mapping ® between the corresponding L? spaces is invertible a 'nounitary equivalence’ is
established and if @ is only surjective one gets a 'coarse-graining projection’.

The physical relevance of the formalism was formulated by Antoniou and Gustafson
[1993] as a possibility that "experimentally observed Markov semigroups, such as chemical
reactions and diffusion, can be lifted to a unitary superdynamics”. The result was presented
in terms of the unitary dilations.

Following the definition given by Sz.-Nagy and Foiag [1970, pp.10, 31], the group {U, } rcr,
defined in the Hilbert space L*(Y™®), is the unitary dilation of the semigroup {K;};>o,
defined in Hilbert space L*(Y), if the relation K, =PrU, holds for 7 > 0, where Pr is
the orthogonal projection of L*(Y®) on L*(Y). It was proved that the continuous groups
of contractions can be dilated up to a minimal continuous group, uniquely defined up to
an isomorphism [Sz.-Nagy and Foiag, 1970, Theorem 8.1 p.31, p.146]. The result includes
the class of Markov operators (they are isometric, thus contractions). In order to preserve
the meaning of probability, it is also necessary that dilations preserve positivity. By using
the theorem of Rokhlin on the natural extension of exact dynamical systems, Antoniou
and Gustafson [1993] proved that the Markov semigroup induced by an ’exact’ dynamical
system can be dilated up to a unitary group associated with a 'K system’. In [Antoniou and
Gustafson, 1997, Antoniou et al., 1998] the extension of probabilities measures was used to
obtain the dilation for constant preserving Markov semigroups (K;1 = 1).

Proposition 2.5:

1) The adjoint Markov semigroups { K*};>o corresponding to a stationary Markov process
possess positive dilations to unitary groups;

2) For strongly ergodic and constant preserving Markov semigroups, both {K}}.>o and
{K:}r>0 possess positive dilations to a unitary group, {U:}:>o, induced by K-systems. In
addition, there is an inverlible mapping ® : L*(Y®) — L2(Y), (®f)(y) = Jof (y*)d(y —
n(t,w))P(dw) for which the intertwining relation K;® = ®U; holds for t > 0. O

Proposition 2.5 states that the 'change of representation’ from [Misra et al., 1979] can
formally be obtained by representing genuine irreversible processes as dynamical systems
into the space of trajectories.

3 Continuous Modeling by Diffusion Processes

Diffusion processes. A Markov process with trajectories in the measurable space(Y, B),
Y C R?is a diffusion process in the sense of Kolmogorov [Gardiner, 1983, Sect.3.3, 3.4], if
for any ¢ > 0 the transition probabilities satisfy, uniformly in = and ¢ as At — 0, the
conditions

. . 1 ) —
1) lim 5 |y_{|>s py,t + At | z,1)dy =0,

ly—z|<e
iii) Alim ~ [ (i—a)(y; —2)py.t + At |z, t)dy = 2B;j(x,t) + O (e).
150 80 .



If there exist partial derivatives of A;, B;; and transition probabilities p, then, in the
limit ¢ —» 0, from ¢) — vit) the Fokker-Planck, equation

Op(x,t |z, t,) = =V[Ap(z,t ]| z,,1,)] +V2[B (z,t)p(z,t ]| z,,t,)], (3.1)

is derived, where A is the drift vector and B, the diffusion tensor. For positively defined A
and B, the equation (3.1) can be solved if initial condition p(z,t | z,,t) = 6(x — z,) and
suitable boundary conditions are assumed [Gardiner, 1983, Sect.3.42].

The typical diffusion process is the 1-dimensional Brownian motion (Y C R), defined by
its average z, and variance o® = 2D(t — t,), D > 0, as a Gauss distribution

plz,t|z,,t,)=[4rD(l — to)]_% exp[(z — ,)°/4D(t —1,)]. (3.2)

The corresponding Fokker-Planck equation becomes the diffusion equation d;p = Dd*p. More
generally, if the average is z, + u(t —t,), the advection-diffusion equation Oyp+ u0.p = DI2p
is obtained.

Theorem 3.1 [Gardiner, 1983, Sect.3.7]: If the I-dimensional stationary density is
ps(x) # 0 a.e., the state space Y is simply connected and the diffusion tensor B is a.e.
positively defined, then the solutions of Fokker-Planck equation (3.1) are altracted by the
stationary solution py: ||p(z,t) — ps(x)HLl(m — 0, as t - 00. O

Theorem 3.1 give the sufficient conditions for the existence of the strong ergodicity
property (2.8). A corollary is the asymplotic stability property [Lasota and Mackey, 1985,
p.176] of the Markov semigroup (2.5): K;p — p,, for t — o0, ¥V ps, Kips = ps, for all
solutions p of (3.1).

The Wiener process is the Gaussian with the transition probabilities given by (3.2),
D = 0.5, starting from z, = 0 at {, = 0. The representation as a two variables function,
w(t,w), w: [0,00] X & — Y, allows the introduction of Ito stochastic differential equation

da(t) = a(z(t), t)dt + b(x (1), t)dw(1). (3.3)
If for every fixed w there exists a unique solution of (3.4), z(t) = X(w(t,w),z,,t,) =
X(t,w,z,,1,), which satisfies the initial condition z, = z(t,), then the time function z(¢) is

the trajectory of a stochastic process x : Q x Y — Y[O >l defined in the Cartesian product
space Q x Y. If the coefficients of (3.3) are related to those of (3.1) by A(z,t) =a(z,t), and
];’(m,t):%%T (z,t), then the probability density of the process x obeys the Fokker-Planck
equation [Gardiner, 1983, chap.4].

The description realized by the Fokker-Planck equation (probability densities as space-
time functions) performs the Fulerian statistics and the description which uses the trajec-
tories of fictitious particles, by It6 equation, gives Lagrangian statistics [Avellaneda et al.,
1991]. In Lagrangian statistics the definition éii) of the diffusion coefficients becomes

1d _
Bij(z, 1) = §E(JZ)¢j(t + s;2,1) |s=o0, (3.4)

where (6%);;(t + s;x,1) are the variance coefficients computed at ¢ + s, over the trajectories
starting from (z,¢) (conditional averages).

When the solutions of (3.3) cannot be associated with a Fokker-Planck equation then it
is still possible to look for the existence of the effective diffusion coefficients

* - 2y
Dy = Jim 5 4 (62)5(0) (3.5)



If the limit (3.5) is finite one says that the process behaves asymptotically diffusive.

Equilibrium thermodynamics. Let the physical system consisting of a single particle,
the mass of which is m and its movement is governed by Newton law perturbed with a white
noise force,

Z—j =, Z—: = —yv+ \/ﬁ(, (3.6)
where (z,y) € R% D > 0 and dw (¢) = ( (t) dt. The model (3.6) is frequently used to describe
a system of particles in contact with a ’booster’ (a thermometer and a thermostat) [Bianucci
et al., 1995]). The second equation (3.6) is the Langevin equation and its solutions are
the trajectories of an Ornstein-Uhlenbeck process. The transition probability density is a
Gausssian endowed with strong ergodicity property (2.6)

-1 )
mw—m%n;zmwzﬁﬁ]emk%f (3.7
—ty o0 ~ 2D
[Gardiner, 1983, Sect.3.8.4].
The Boltzmann-Gibbs entropy is S(t) = —kaRp(v,t) Inp(v,t)dv, where kg is the Boltz-
mann constant. A process starting from a nonequilibrium state (2.7) reaches the equilibrium
(3.7) with the maximum entropy

ks

Se = kB InZ + ?[M(UQ)]E, (38)
where
2D 2D D
=", Z = [ exp(—v* = yand [M(v)]" = [ v?ps(v)dv = —.
-2 ! p(=0*/8) = /= and [M () ! plo)do =

Thus the second law of thermodynamics holds. The internal energy is defined by U =
Im[M(v?)]°, the temperature is T = (2;—’75)_1 and F' = —kgT'In Z defines the free energy.
Then (3.8) becomes the Gibbs relation, from the equilibrium thermodynamics, F' = U —T'S°.
Also one obtains Im[M(v?)]* = LkgT, which is a form of the energy equipartition theorem.
Since the internal energy is constant, U = mD/2y, p, gives the maximum entropy of an

insulated system, i.e. p, is the density of the canonical ensemble [Mackey, 1989].

Fluctuation-dissipation Theorem. For each velocity realization, the first equation
(3.6) provides a trajectory of the particle z(t) = f: o(t")dt'. The average over the velocity
0

ensemble yields the displacements variance

7 at) = [ [ M{Lo = MO = M)

to

The effective diffusion coefficient (3.5) has the finite value D* = D /4?%. Using the correlation
computed at the equilibrium state, { M[v(t)o(t")]}¢, D* becomes

D* = lim / (M[o(t)o(1)]}edt. (3.9)



Thus, a Green-Kubo relation [Balescu, 1975, Sect.21.2, Evans and Morriss, 1990, chap.4]
takes place for the transport coefficient. The process derived from (3.6) illustrates the
approach of fluctuation-dissipation theorems. The perturbations in (3.6) can be described
more realistically by the finite correlation noise, characterized by the correlation time 7.,

[ MR
EEEY R e

to

In the white noise case, the correlation time becomes 7. = 1/7. Generally, a finite correlation
time is a necessary condition for an asymptotic diffusive behavior.

Movements in random fields. Let 9 : Q — Y} iy CR? A C R?, be a random field,
with a space range of parameters. If for every fixed w € Q the sample V&), V) : A l—> Yv,
is a nonsingular vector field, then it generates the differentiable dynamical system {S }tERa

whose trajectories in Y, C R?, (‘“)(t Ty, ty) = St(fzo (z,) = X(t,w,z,,1,), are solutions of the
differentiable system

dz®)

_ @) (@), _
—— = V() (3.10)

The relation (3.10) may represent the description of a fluid particle’, as in continuum me-
chanics, or even of a real particle. The random field V' describes the action of the neighboring
particles (the ’booster’). The infinite set of dynamical systems corresponding to the realiza-
tions of the random field forms a statistical ensemble. The 1-dimensional density has the
meaning of concentration field for noninteracting systems of particles, p = c.

The model of the previous statistical ensemble is the stochastic process x : QxY, — Y ¥,
where, for fixed w € Q and z, € Y, x(w,z,) = 2(%0) is a trajectory of the dynamical system
{St(w)}teR. Using Lagrangian statistics and averaging over the random velocities realizations,
the coefficients from (3.1) are obtained in the form B(:z: t,) = 0and A(z,1) = V(z,t), where

0770

V(z,t) = Mal[V(t,w,z,,t,)] is the average over velocities realizations. Thus, the Fokker-
Planck equation takes the form de(z,t) + V. (V(x,t)e(x,t)) = 0,which is just the average
over velocities of the Liouville equation associated with ’sample-system’ (3.10). Since the
movement of the particele is described by the dynamical system generated by the mean field
V, a mean field property [see Avellaneda and Majda, 1991] was proved. Since the coefficients
B defined by local time derivative (3,4) vanish, there is no local diffusion.

In order to check the asymptotic diffusive behavior, one uses the Lagrangian correlation
of the velocity field

Rp(s,s'sz,,t,) = Ma[V(s,w,z,,t,)V(s,w,z,,t,)]

0’ %0 0° %0

— MgV (s,w,z,,t,)|Ma[V(s',w,z,,1,)]

0770 0?70

The displacements variance reads

&t x,,t,) = /ds/RL Ty, )ds’.



According to (3.5), the asymptotic diffusive behavior takes place if there exist finite effective
coefficients
t

. 1d . .
D _th—géﬁ_td (t;2,,1,) _tliglo/RL(s s'ixy,t,)ds'. (3.11)

ty

If (3.11) holds, one asserts that the concentration can be approximated by a diffusion equa-
tion, dyc(z,t) = D*V%(.r,t). This is the framework of all theories of 'Lagrangian passive
transport in turbulent fields’ and Green-Kubo type approaches from statistical mechanics
[Taylor, 1921, Monin and Yaglom, 1965, chap.9, Avellaneda and Majda, 1991]. One remarks
that while the existence of derivatives (3.4) determines the Fokker-Planck equation, the exis-
tence of the limit (3.11) does not ensure the existence of the diffusion equation as asymptotic
approximation.

Since the velocity measurements are performed at fixed space points, the Fulerian corre-
lation fNiE(:v, z') = Mg[vv' — V(2)V(2')] should be used. In the hypothesis that the average
over ), used in the definition of Ry, factorizes (the Corsin conjecture, [Saffman, 1969]), one
obtains a relation between the two correlations,

Ri(s,8;2,,1,) = //d:vdx'p(:v,s;x',s' | 2y, t,) RE(x, 2"), (3.12)

where p(z,s;2',s" | z,,1,) is the probability density of the process x starting from (z,,,).

Turbulent diffusion and transport processes in porous media. Sometimes at
local scales the transport processes in natural porous media are well described by an Ito
stochastic equation but at larger, global scales, the experimental derived coefficients present
an apparent increase as compared to the local ones. This is the so-called ’scale effect’
[Saffman, 1969, Fried, 1975]. The explanation could be the heterogeneity of the aquifer
properties and implicitly of the flow velocity. As stochastic model for two-scale problem one
uses a Brownian motion in a random field.

Let the velocity field be described by the random function 9@ : Qy — Y}, Yy C R?,
A C R3, and let the Wiener process be w : Q,, — YQEO’OO], Y, C R3. For every fixed w, € Qy
one considers the It6 equation

Az (1) = V(@) (1), w0, )dt + (2D)zdw(1). (3.13)

If there is a unique solution of (3.13), for every trajectory of w and sample of @, z{“v«) (1) =
X(t,wy,w,,x,,1,), in the initial condition z, = m(‘“v“’“’)(to), then using X (¢, wy,w,,z,,1,)
one deﬁnes a stochastic process x, in the direct product probability space, x : QV x €, X
V — V0l 'y C R3.If Ry, decreases to zero fast enough as { — oo, then the process x

behaves asymptotically diffusive and, from (3.5) it follows

D*=Di+ hm——/ds/ds Ri(s,s"52,,1,). (3.14)

t—)oo

The effective coefflicients (3.14) are not the sum of molecular diffusion coefficient D and
those of movement in random field (3.11). Moreover the Brownian motion enhances diffusive

behavior [Suciu et al., 1996].



The model of Matheron and de Marsily. The stratified aquifer model of Matheron
and de Marsily [1980] describes the movement of a particle by a 2-dimensional Brownian mo-
tion, of coefficients Dy, and Dy, on which one superposes a horizontal random field function
only on transversal coordinate, V(z,w,, ),

dz(*v) (t) = V(2(1),w, )dt + Drdw (1),
dz (t) = Dypdw (1),

Since the averages over 0y and 1, factorize, the connection between Lagrangian and Eu-
lerian correlations (3.12) holds without using a ’Corsin conjecture’, and the variance of the
longitudinal displacements becomes

t t
o2(z,,1,) = QDL(t—tO)+/d.s/d.s’//dzdz’p(z,s;z’,s’ | 20, t0; Dr)RE(z,2").  (3.15)
i R R

The main feature of the model is that for Gaussian correlated fields, Rg ~ ™%, the variance
behaves as 02 ~ 13/2 at all times. This property is often used to check the validity of the
numerical models of diffusion in random fields [Avellaneda and Majda, 1991].

4 Continuous Macroscopic Modeling Through Space-
Time and Stochastic Averages

Continuous description through coarse grained averages. If a microscopic de-
scription in terms of piece-wise analytic functions, assigned to the particles of the system,
is available, there exists a macroscopic description given by a.e. continuous fields [Vamos et
al., 1996a,b].

For instance, let N be the number of molecules of a mechanical system and let the
microscopic kinematical description be performed by the analytic time functions ¢; : [ ——
R,7I=1[0,T] CR (1 <:<N). Special ¢; functions are the positions x,; and velocities &,;,
a = 1,2,3. The space-time coarse grained average of a physical quantity ¢ is the function

() R (1,T — 7) — R,

D) = 55 3 [ ol HY @ = (0t~ 0P e (4.1

where 7 < T/2 and a are real positive arbitrary parameters, ¥ = 4ma®/3 is the volume
of the sphere S(r,a) and H* the left continuous Heaviside function. The average (4.1)
characterizes the distribution of the quantity ¢ in a neighborhood of the point (r,t). The
properies of coarse grained averages are given by the following propositions.

Proposition 4.1: The Coarse grained average (@)(r,t) possesses conlinuous partial deriva-
tives a.e. in R3x (1,7 — 7). O

Proposition 4.2: The Coarse grained average (p) satisfies the identity

o) + 0u(6.) = (). O (1.2)
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The identity (4.2) describes the balance of microscopic quantities ¢, into a sphere and
time interval describing an imaginary measurement. Therefore (4.2) is a kind of microscopic
balance equation.

Everywhere continuous fields and balance equations. One considers the mi-
croscopic model of the N particles system given by a stochastic process, defined in the

probability space (2, A, P),

n:Q+— Y where Y =RV, ] CR,and
T](t7w) = (rl(taw)a "'arN(t7w)7€1(t7w)a e 7€N(taw))7

where Y is the state space of positions and velocities and Y7 is the function space of trajec-

(4.3)

tories. A dynamical description is performed by using the set of functions fi(ri,...,&x,1),

1 <1 < N, defined on the state space. Statistical mechanics defines the value of the contin-
uous field at (r,t),

F(r,t) = MQ[% filri(t,w), v (t,w), e e (Lw), - En(tw), 1)d(r — 1(t, w))],

- (4.4)

as the stochastic average over the contributions f; of all particles [Kirkwood, 1967]. For
fi =1, (4.4) defines the concentration field ¢(r, ).

For a fixed sample w, the kinematical description ¢;(¢), 1 < i < N, can be obtained by
using the trajectories of the stochastic process n

pill) = @it (t,w), o en(l @) & (L w), - € (L w), ). (4.5)

If the (4.5) are at least piece-wise analytical functions, then the average (4.1) has the prop-
erties given by Propositions 4.1 and 4.2.

Proposition 4.3: The average over the realizations of the process n of the coarse grained
average (4.1) is equal to the space-time average of the conlinuous field, F,, defined by (4.4),

t+r
memmw»QW df/ (1.6

and satisfies the identity

d

OMal()] + 0 Mal(wa)] = Mal(

p)]- O (4.7)

The continuous fields (4.4) of classical statistical mechanics are the limit as ¢ and 7 — 0
of the averages (4.6): Ma[(p)](r,t;a,7) — F(r,1).

For o, =1,1 <i <N, (4. 6) gives the concentration ¢(r,t) = Mg[(1)](r,t). A "hydrody-
namic’ average of quantities ¢ is the continuous field @(r, 1) = Mg[{p)](r, )/c(r,t). Defining
the a component of the Eulerian velocity field, u,(r,t) = &,(r,t), the identity (4.7) takes
the usual form of balance equations [Miller, 1985],

Or(c @) + Ou(c @uy) + Ou(cp(ba — uy)) = ¢ —. (4.8)

11



Thus, if the stochastic model (4.3) of the physical system allow the construction of suitable
kinematic descriptions (4.5), the Proposition 4.3 ensures the existence of smooth continuous
fields (4.6) and balance equations (4.8).

The balance of the concentration is described by the continuity equation, obtained from

(4.8) for ¢; = 1:
Ohe + Dalcuy) = 0. (4.9)
Using u, = dr,/dt and (4.7), for ¢ = z,, (4.9) becomes
O + Oa(cva) = 0205(c Daup), (4.10)
where
Va1, 1) = T (r, 1) + ugdsTa(r, 1), (4.11)

is the a component of the Lagrangian velocily field v, and

Das(r,1) = Fa(r, up(r, 1) — 2.5(r, 1), (4.12)

is the diffusion tensor.

Proposition 4.4: [f the diffusion tensor (4.12) is posilively defined, then the concentra-
tion balance is described by the diffusion equation (4.10). O

The positivity of coefficients (4.12) is a microscopic criterion of irreversibility useful to
test the diffusive behavior of systems for which the requirements of Proposition 4.3 are

fulfilled.

Continuous modeling of transport processes in porous media. Consider a con-
solidated porous media as a mixing of solid matrix molecules and those of fluid components
filling it. To each molecular species one associates the volumes V™, respectively ve', e,
and molecular masses M™, respectively M, M- ... The corresponding coarse grained
averages (4.1) define a.e. continuous fields. Let 7 be a time scale much more large than
molecular vibrations scale and a space scale a, (Vm) < a < dy, where d, is the pores
dimension. For these, (4.6) gives Mq[(M™)] ~ Fam. For the sohd matrix Faym = p™,
where p™ is the mean density of the solid material. Thus 1™ (r) ~ Fam /p™ is a first asymp-
totic approximation of the characteristic function of the solid matrix domain. The function
1" (r) is continuous except at the points of the surface of the solid matrix, which have a
zero Lebesgue measure in R”, thus it is Riemann integrable. At much more large scales,
a >> dp, one deﬁnes the local porosity as volume ratio of pores space and sphere S(r,t),

r,t) = ¢ fps(l r'))H*(a? — (r' — r)?)dr’. The continuous and positive function ©
corresponds to the local porosity introduced by Hilfer [1991]. The volume ratios of the com-
ponents satisfy the equality @™ + 0% + 0% 4... =1 (’the hypothesis that the mixture does
not contain void space’ [Bowen, 1984, p.67]).

In this approach, the volume fraction of the ¢ component can be defined by using (4.6)
as 0° = V°Mg[(1)] = V¢

¢;, where ¢ is an apparent concentration, and (4.7) becomes a

continuity equation

0,0° + 9 (u6°) = 0. (4.13)
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From Proposition 4.4 it follows that (4.13) is equivalent to the advection-diffusion equation
00° + 0a(vo0°) = 0,05(Kap 6°), (4.14)

if the tensor K,p(r,t) = zSug — x5,€j is positively defined. Form (4.13-14), the flux density
of volume fraction 6 is

Jo = 0°(uf, — ) = —05( Ko 6°). (4.15)

If 6° represents the 'water content of an aquifer’ then uy = (u® — v°)6° defines the filtration
velocily and (4.15) becomes the Darcy-Buckingham law, for volumetric density of water
flux through porous media [Sposito, 1986]. For instance, in a saturated aquifer, under the
free surface level f, §° = © and (4.15) take the usual form of Darcy law [Bowen, 1984],
J=—-KV/.

The actual concentration of the substance represented by the component ¢, corresponding
to that derived from a water sample, is ¢(r,t) = ¢;(r,t)/O(r). Divided by the constant V°,
the equation (4.16) becomes the porosity dependent advection-diffusion equation

O0;c + 0,(v5cO) = 0,05(Kop cO). (4.16)

If the tensor (4.12) is positively defined, then Darcy’s law and advection-diffusion equa-
tions are adequate models to the space-time scale (a,7) and no ’scale effect’ occur [Suciu et
al., 1998a,b]. This outline of continuous modeling can be extended to unconsolidated porous
media, if the motion of solid matrix molecules is considered.

5 Numerical Modeling of Diffusion by Systems of Ran-
dom Walkers

Cellular automata numerical algorithm. Cellular automata simulate the behavior
of complex systems by simple rules applied to transform a finite set of states assigned to
each node or cell of a space grid [Gaylord and Nishidate, 1996]. "Random walkers’ cellular
automata can be used in molecular dynamics simulation and, due to the independence of
'walkers’, are suitable for parallel computing and Monte-Carlo algorithms [Nishidate et al.,
1996]. Diffusion processes can also be described by ’infinite dimensional cellular automata’,
if the states are the (infinity countable) numbers of particles at nodes (cells) and the rules
are given by 'unbiased random walk’, sometimes with superposed complex random advection
fields [Vamos et al. 1998, 2000].

Let N be a system of unbiased random walkers in the 1-dimensional grid {z; = kdz |
—m < k < m}: the i-th particle starting at ¢ from k, at ¢ + 6t lies either in K — 1 or k& + 1
with the probability 1/2. If there are no ’staying states’, the total number n,, of particles in
k at t 4 dt is the sum of particles coming from & + 1, n}_,, and those from & —1, n}_,,

1
n(t + dt) = n§C+1 +ny_, = §(nk_1 + Ngg1) — Ongyr + dng_y, (5.1)

where dny = tnj, —nj, = nf — iny are negligeable terms for large enough ny (when, by "large

2
numbers law’, n} /n, = n/n, — 1/2). If the concentration ¢ is a smooth function of z € R
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and ¢ € Ry, then ny =~ ¢(z,t)0x and, with ¢(z,t + §t) = [e(z — dz, 1) + c(z + dz,1)]/2, (5.1)
becomes the explicit finite differences scheme for diffusion equation
oz, t+0t) —c(z,t)  6x* (x4 dx,t) — 2¢(x,t) + c(x — dx,1)
5t Y 2 ’

with a diffusion coefficient D = §z*/24¢. This corresponds to the maximum value of the von
Neumann condition of stability, Ddt/dz? = 1/2 [Crank, 1975]. Also, for Dirac initial condi-
tion and infinite domain, the convergence is of order dz: the numerical solution approaches
the Gaussian one as §z —» 0 [Gardiner, 1983].

Comparing (5.1) with the solution p, (3.2), of diffusion for D = 0.5, one estimates the
precision of the simulation through the 'index’

I(t) = Z ‘n_j\;; — p(ag, t)dx
k=—m
TABLE 1

Maximum and minimum [ values for different grid dimensions
N=10° N=10* N=10> N =10°
0,062 0,031 0,022 0,024

m=10"9102 0,112 0,106 0,104
0,027 0,024 0,010 0,013

m = 20
0,133 0,052 0,013 0,017
_gp 0:053 0,019 0,009 0,003
m= 0,129 0,038 0,015 0,007
0,062 0,028 0,008 0,003

m = 40

0,137 0,039 0,015 0,005

Coarse grained space-time average. Similarly to 'molecular dynamics’ [Koplik and
Banavar, 1995], the space time averages improve the smoothness of simulated fields. More-
over, numerical modeling benefits of special properties of averages (4.1) [Vamos and Suciu,
1996].

If the i -th particle is introduced into the grid at ¢} and it gets out at ¢7 , then the velocity
& = a; ¢ [t 17] — {—02/8t,02/5t} (a jump function) and the position z; : [tF,{7] —
[T—m, Tm] C R (discontinuous when particle’s velocity change the sign), are both piece-wise
analytical. From Proposition 4.3 an a.e. continuous description exists, given by

Iy <1> ($7t> + 0 <§> (xvt) = g(.r,t),

where the function g(z,t) describes the variation of particles number [Vamos et al. 1997a].

For 2a = 6z and 7 < 401/2T, the concentration estimation is given by (1) (zy,t;) =
¢(zg, 1) and the estimation for particles’ flux, by (&) (zy + d2/2, t; + 6t/2) = J(xk,1;). By
using the coarse grained averages the needed number of particles reduces without loose in
accuracy, and, consequently, a smaller computation time is needed.

Numerical model for diffusion at small concentrations. The average (4.1) is the
sum of individual contributions (1); of all the N particles: (1) = Zji1<1>z The definition
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(4.6) provides the smooth concentration field ¢ as an average over trajectories of all particles
starting at the origin and reaching the grid’s extremities: ¢ ~ M[(1)] = N - M[(1);]. The
standard deviation is ¢ = v/No; and the relative error is o/M[(1)]. For fixed error and
confiance level, relations can be derived between the number of particles NV, time scale 27
and space scale a. For example, Table 3 presents the results for a stationary diffusion (a
constant number of particles is introduced into the origin of the grid at each time step and
particles reaching the extremities are removed). For N ~ 107, a = 0.125z and relative
error 0.01 at confience level 0.995, the Table 3 presents the time scale 27, in 10°§¢ units, for
different number N of samples, used to compute M[(1);] and o;, and grid positions .

TABLE 3
N =100 N =200 AN =400 N =800 AN =1600 N =3200
z=0,0 4,31 4,98 4,74 4,96 4,83 4,71
z=0,1 4,84 5,39 5,17 5,36 5,11 5,02
x=0,2 5,47 6,11 5,90 6,09 5,76 5,65
z=0,3 5,98 6,99 6,75 6,90 6,47 6,43
x=0,4 6,85 8,13 7,87 7,95 7,50 7,53
x=0,5 8,22 9,37 9,12 9,28 9,05 9,11
+=0,6 10,9 11,2 11,1 11,4 11,4 11,5
+=0,7 15,3 15,0 14,9 15,3 15,2 15,2
x=0,8 22,0 22,3 22,5 22,9 99,9 99,1
z=0,9 46,0 44,3 44,3 45,1 43,6 44,0

Table 4 presents the time scale in 105§t units, for different z and «a, and fixed N = 200.

TABLE 4.
a=46x/8 a=dx/4 a=0x/2 a=0d0x a=20x a=40x a=8x
+=0,000 4,98 4,98 4,98 498 259 1,45 0,95
£=0,025 10,1 10,1 6,24 4,16 2,40 1,41 0,95
¢ =005 10,1 10,1 10,1 3,91 23 1,40 0,95
£=0,075 10,1 10,1 6,64 4,29 2,46 1,43 0,95
z =0,100 2,39 2,39 2,39 9,39 2,74 1,49 0,96

The simulations performed at very small concentrations verified the Fick law with ar-
bitrary small deviations if the space-tine scale is large enough [Vamos et al., 1997b]. Also,
using a variable step grid, so that diffusion coefficients where D({k < 0}) = 0.05 and
D({k > 0}) = 5.0, one obtains good numerical estimates for the diffusion coefficient (4.12)
[Vamog et al. 1998a,b].

Diffusion in random field. The model of Matheron and de Marsily. Simi-
larly with the 1-dimensional case, a random walkers cellular automaton was considered in
2-dimensional grid {zy = kdz, yi = ldy ; —m < k,[ < m} [Vamos et al. 2000]. A horizontal
random advection, constant in each layer, and Gaussian correlated on the transverse direc-
tion, Ry ~ e~ was superposed over the unbiased random walk. Numerical computation
reveals a good agreement with the 3/2 law of Matheron and de Marsily [1980]:

oX(t) =0.30 t"°.
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Effective diffusion coefficients were estimated through D, = oZ(t)/2t and D, = o2(t)/2L.
The curves presented in the picture below also agree with the model: D, ~ const. and

1
D, ~ const. - 1z.

—— Dy —= Dx — Dx/sqrt(t)
8.0

7.0 m——
6.0
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4.0
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2.0 ;r-

1.0

0.0 T T T T
o 20 40 60 80 100

TIME

This is a validity test for the algorithm. If the values of the advection velocities and
diffusion coefficients are associated with an advection-diffusion equation, i.e. the advection
velocity equals the drift coefficient from the Fokker-Planck equation (3.1) and the local
time derivatives of o2 and o} give finite diffusion coefficients (3.4), then the coarse-grained
averaged concentration, defined by (4.1) as ¢ ~ (1), gives the numerical solution of the
partial derivatives equation. Such models can be further used to study more complex cases
of diffusion in random environment, where no analogies between a Langevin (3.3) and Fokker-
Planck (3.1) equations are possible. In these cases, the mathematical model for diffusion
process 1s no longer a differential equation, for which one looks for numerical solutions, but
it is just the random walkers numerical model, as a computer code.
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