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The time evolution of a physical quantity associated with a thermodynamic system whose equilibrium
fluctuations are modulated in amplitude by a slowly varying phenomenon can be modeled as the product of a
Gaussian white noise �Zt� and a stochastic process with strictly positive values �Vt� referred to as volatility. The
probability density function �pdf� of the process Xt=VtZt is a scale mixture of Gaussian white noises expressed
as a time average of Gaussian distributions weighted by the pdf of the volatility. The separation of the two
components of �Xt� can be achieved by imposing the condition that the absolute values of the estimated white
noise be uncorrelated. We apply this method to the time series of the returns of the daily S&P500 index, which
has also been analyzed by means of the superstatistics method that imposes the condition that the estimated
white noise be Gaussian. The advantage of our method is that this financial time series is processed without
partitioning or removal of the extreme events and the estimated white noise becomes almost Gaussian only as
result of the uncorrelation condition.
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There are nonequilibrium thermodynamic systems that for
short time periods are in equilibrium states, but their param-
eters vary over longer time scales. An elementary example of
such a system is a Brownian particle moving through a
slowly fluctuating environment. If the Brownian particle is
always in local equilibrium, then its velocity has a Gaussian
distribution with slowly varying parameters. The average
global velocity distribution is a superposition of Gaussians
weighted by the probability density of the slowly fluctuating
parameters. Depending on the type of the statistical distribu-
tion of the slow fluctuations of the environment, the particle
velocity may have different types of statistical distributions
named superstatistics�1�.

A time series obtained by measuring a thermodynamic
system with superstatistics can be modeled as the product of
two stochastic processes,

Xt = VtZt, �1�

where t=0, �1, �2, . . . and Vt and Zt are independent. The
Gaussian white noise �Zt� models the equilibrium thermody-
namic fluctuations, while the stochastic process �Vt� with
strictly positive values describes the slow fluctuations of the
environment. If �Zt� is not only uncorrelated, but independent
and identically distributed �i.i.d.�, then �Xt� is called het-
eroskedastic. We emphasize that the independence of Vt and
Zt does not preclude the dependence of Vt on the preceding
terms Zt−s and Vt−s �s�0� as for example, in the autore-
gressive conditional heteroskedastic �ARCH� and general-
ized ARCH �GARCH� models �2,3�.

Although the financial markets are not usual thermody-
namic systems, many of the methods in statistical physics
can be applied to such complex social phenomena �4�. For a
financial time series the white noise �Zt� in the heteroskedas-
tic process �1� models the efficiency of the financial markets,
i.e., the uncorrelation of successive price variations. The sig-
nificant long-range correlations of the absolute values of the
price fluctuations are due to the slowly varying stochastic
process �Vt�, which modulates the amplitude of the white
noise fluctuations. As in finance, we name it volatility.

A numerical method to estimate the two factors in Eq. �1�
is the partitioning of the time series into slices for which the
thermodynamic local equilibrium holds �5�. The partitioning
is achieved by imposing the condition that the mean kurtoses
of �Xt� over the slices equal the Gaussian kurtosis. The su-
perstatistics method has been applied to a variety of complex
systems with time scale separation in turbulence, share price
fluctuations, cosmic rays, traffic delays, metastasis, cancer
survival, etc. �6�. Because the normality is tested by means
of the fourth moment, the superstatistics method is sensitive
to the presence of outliers. For example, it was necessary to
eliminate the extreme events from some financial time series
in order to analyze them �5�. A similar approach for intraday
returns is presented in �7�. The main difference is that the
slice length is predetermined to 1 day and the volatility is
considered constant over intraday time scales.

The equilibrium thermodynamic fluctuations are not only
Gaussian, but also independent and, consequently, uncorre-
lated. Hence, the separation of the components of the sto-
chastic process �1� can be obtained by imposing instead of
the normality condition, the condition that the absolute val-
ues of the estimated noise be uncorrelated. The question is
about the relation between these two conditions, i.e., if we
impose one condition, then to what degree is the other con-
dition also satisfied. In this paper we show that by imposing
the uncorrelation condition, the estimated white noise be-
comes almost Gaussian, proving that it entails the normality
condition.

Our results indicate that the uncorrelation condition is nu-
merically more efficient than the normality one. We apply
this method to the time series of the daily S&P500 index
analyzed in �5�, without its partitioning and without eliminat-
ing any extreme value. It is possible that this greater effi-
ciency is due to a more complete exploitation of the temporal
variation of all the observed values, not only the variation
from one slice to the other.

Although the physical systems modeled by Eq. �1� are
normal in the conventional thermodynamic sense, they seem
anomalous by featuring non-Gaussian statistics. If the vola-
tility �Vt� is stationary, then �Xt� is also stationary and its
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probability density function �pdf� is a scale mixture of nor-
mal distributions given by the integral

fX�x� = �
0

� 1

�2��1/2v
exp�−

x2

2v2	 fV�v�dv , �2�

where fV is the pdf of Vt �8�. According to this formula, fX�x�
is the result of the superposition of Gaussians whose stan-
dard deviations v are realizations of the volatility Vt; that is
why we say that fX�x� is the mixture of Gaussians with scales
distributed according to fV. A large class of systems with
polydisperse features has the pdf with power-law tails as a
result of the superposition of Gaussians with the variances
obeying a gamma distribution �9�.

A direct generalization of the scale mixture of normal
distributions is obtained if the volatility is nonstationary.
Since fV in Eq. �2� explicitly depends on time, then fX also
varies in time. The global average pdf is the time average of
fX�x , t�,

f̄X�x� = lim
T→�

1

T 

t=−T

T

fX�x,t� ,

and we refer to it as a scale mixture of Gaussian white
noises. This distinct denomination emphasizes the impor-
tance of the time dependence of the volatility which allows
for a greater range of shapes for the pdf’s than Eq. �2�. In this
case the volatility can describe a deterministic variation im-
posed by the environment on the measured system or a su-
perposition of stationary random fluctuations on such a
deterministic evolution.

We determine the white noise �Zt� by first estimating the
volatility �Vt� by one of the two main methods in quantitative
finance �10�. The first method expresses the volatility by the
explicit relations that define stochastic models of the finan-
cial time series. The second method is based on the averag-
ing of historical values of the absolute or square returns at a
high enough sampling frequency. Such estimators are called
“realized volatility” and it is shown that for continuous sto-
chastic processes they are unbiased estimators �11�. In prac-
tice various types of averaging are used. The best known is
the exponential weighted moving average of the RiskMetrics
model �12�. The daily volatility is also often estimated by
averaging the intraday data �13�. In this paper we estimate
the volatility by means of a modified form of the moving
average presented in �14�, and we find the optimum moving
average using the uncorrelation condition.

We consider a time series �xt , t=1,2 , . . . ,T� as a finite
realization of the stochastic process �Xt�. We follow the prac-
tice of denoting by small letters the realizations of the sto-
chastic processes denoted by the corresponding capital let-
ters. In this way we keep clear the distinction between the
different natures of a stochastic process �family of measur-
able functions defined on a probability space� and one of its
realizations which is a series of real numbers equal with the
values taken by the measurable functions at particular events.
In fact the stochastic process does not model the time series,
but the random phenomenon which is assumed to generate
the observed time series.

If K is the semilength of the averaging window, then for
K� t�T−K we define the moving average

�t�K� =
1

2K + 1 

k=−K

K

�xt+k� . �3�

If t�K �t�T−K�, then the average is taken over the first t
+K �last T− t+K+1� values of �xt�. This asymmetric average
forces the values near the time series boundaries to follow
the variations of the interior values. If we consider �t�K� as
a volatility estimator, then from Eq. �1� it follows that the
estimator of the white noise is

�t�K� = xt/�t�K� . �4�

We have to find the optimum value K0 satisfying the condi-
tion that the series ���t�K��� be uncorrelated. This condition
cannot be imposed to the signed series ��t�K�� since, like the
initial time series �xt�, it is uncorrelated. This property results
from the randomness of the sign variations of the white noise
�Zt� in Eq. �1�, which is preserved by multiplication with the
strictly positive values of the slowly varying volatility �Vt�.

The sample autocorrelation function �ACF� of an uncor-
related infinite time series is identically zero. Bartlett’s for-
mula states that for a finite i.i.d. Gaussian process, the pdf of
the sample ACF is Gaussian with mean 0 and variance 1 /T,
where T is the length of the time series �15�. The proof
presented in �15� can be reproduced with minimal changes
for the absolute values of an i.i.d. Gaussian process and it
follows that Bartlett’s formula holds in this case, too.

We measure the deviation from normality of the sample
ACF of the time series ���t�K���, denoted as 	̂���, by the sta-
tistic used in the Kolmogorov-Smirnov test,


 = max
1�h�H

��F̂�h� − G�h��� , �5�

where F̂ is the sample cumulative distribution function �cdf�
of 	̂��� and G is the theoretical cdf of the normal distribution
with Bartlett’s parameters. The quantity 
 is an index mea-
suring the non-normality of 	̂���, i.e., the serial correlation of
���t�K���. If K0 is the value for which 
 is minimum, then the
volatility estimator is v̂t=�t�K0� and from Eq. �4� it follows
that the estimator of the white noise is ẑt=xt / v̂t.

We test this algorithm on the daily S&P500 index studied
in �5� on which several scaling analyses have been per-
formed �14,16,17�. It has also been proved by a statistical
analysis that this time series can be modeled as the product
of the volatility and an i.i.d. stochastic process �18�. This
conclusion is in accordance with the heteroskedastic decom-
position in Eq. �1� on which all the volatility stochastic mod-
els are built �10�. Its validity is sustained also by the results
analogous to those for the S&P500 index obtained with the
uncorrelation condition for several stock market indices
�Dow Jones, Nikkei, FTSE, etc.� and several large cap stocks
�INTC, MSFT, IBM, MRK, etc.�.

We examine the S&P500 index in the interval bet-
ween January 1, 1950 and December 31, 2009 containing
T=15 097 trading days. If we denote by �pt , t=1,2 , . . . ,T�
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the daily closing values of the S&P500 index, then the loga-
rithmic return over the temporal interval �t , t+�t� is defined
as

rt��t� = ln pt+�t − ln pt.

For �t�1 the logarithmic returns are computed only for t
=n�t; otherwise, the temporal intervals would overlap each
other and spurious correlations would occur between the
logarithmic returns. Also, the mean is extracted from the
final time series �rt��t��.

We suppose that, for a given �t, the time series
�rt��t� , t=1,2 , . . . ,T� is a finite sample of an infinite dis-
crete stochastic process �Rt��t� , t=0, �1, �2, . . .� of the
form of Eq. �1�. The average �3� is performed only on the
daily logarithmic returns ��t=1�, so that the information at
the highest available frequency is used even if we estimate
the volatility for �t�1. This choice is in agreement with the
theoretical result that the realized volatility is closer to the
real one if the data frequency is increased �11�.

The index 
 defined by Eq. �5� depends on two param-
eters �K and H�. The choice of the number H of sample ACF
values is a difficult problem with no simple solution �19�. As
a general rule H should be smaller than a quarter of the time
series length �20�. However, the sample ACF 	̂��� is different
from that of a white noise especially for the small values of
h. Moreover, if the serial correlation for small h is reduced,
then the entire ACF becomes negligible. As a consequence,
we limit the value of H in Eq. �5� only to several tens.

In Fig. 1�a� we present the variation of the index 
 for
�t=1 with respect to the semilength of the averaging win-
dow for several values of H. Each curve has two minima.
The first minimum corresponds to an averaging with K=1,
which does not significantly damp the fluctuations of the
logarithmic returns, so that the average �t�K� preserves these
fluctuations. We are interested in the second minimum occur-
ring when K�1 for which the average �t�K� is slowly vary-
ing. For other values of �t the first minimum is greater than
the second one or even does not exist, and then the minimum

supplying the estimated volatility coincides with the global
minimum.

The minimum values of the index 
 for which the white
noise is estimated are compared in Fig. 1�b� with 
0, which is
the index 
 computed for the initial logarithmic return time
series. The minimum of 
 is obtained by exhaustive search
for K�150 and H� �10,20,30,40,50�. One notices that for
all time scales �t, 
0 is close to 1, indicating that all the H
values of the sample ACF implied in the computation of 
0
lay outside the variation range of the ACF of a white noise.
The values of 
min are significantly smaller than the corre-
sponding 
0 showing that the estimated white noise is much
closer to an uncorrelated time series than the initial logarith-
mic returns.

In order to verify that the uncorrelation condition entails
the normality of the estimated white noise, we compute the
Kolmogorov-Smirnov statistic D of �ẑt�. In comparison with

Eq. �5� the difference is that F̂ is the cdf of the normalized
estimated white noise, not of its sample ACF, and G is the
cdf of a normalized Gaussian. Figure 2 shows the values of
D for �t�10 compared with those for the normalized initial
logarithmic returns D0. It also contains the mean and the
standard deviation of D for statistical ensembles of 1000
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FIG. 3. The logarithmic returns, the estimated volatility, and the
estimated white noise for the daily S&P500 index after the year
2000 for �t=2.
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FIG. 1. �a� The variation of the index 
 with respect to the
semilength of the averaging window for the daily logarithmic re-
turns ��t=1�. �b� The minimum of 
 ��� compared with the index

0 of the initial logarithmic return series � ��.
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FIG. 2. The Kolmogorov-Smirnov statistic D of the estimated
white noises �ẑ�t�t�� ��� and of the logarithmic returns �r�t�t�� � ��
for different time scales �t. The error bars represent the mean and
the standard deviation of D for ensembles of 1000 numerically
generated i.i.d. time series with Gaussian distribution.
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numerically generated i.i.d. Gaussian time series having the
same length as rt��t� of S&P500. The results show that the
estimated white noise �ẑt��t�� has a probability distribution
much closer to a Gaussian than that of the initial logarithmic
returns. One notices that for �t=2 it cannot be differentiated
from an i.i.d. Gaussian time series.

Figure 3 shows the logarithmic returns, the estimated
volatility, and the estimated white noise after the year 2000
for �t=2. The increased variability of the logarithmic return
amplitude �volatility clustering� is no longer present in the
estimated white noise. Even the most volatile period of the
financial crisis which started in 2008 is correctly described
by the estimated volatility. We have obtained this result with-
out removing any extreme value from the logarithmic returns
as it is necessary in the superstatistics method �5�.

In order to test the separation algorithm in its simplest
form, we have processed the entire logarithmic return time
series, without any partitioning. However, for such a long
time series �T=15 097� it is possible that the search for
the minimum of the index 
 is more efficient over shorter
fragments. Then the white noise obtained by joining the
white noises estimated over shorter segments could be more
similar to an uncorrelated time series. The partitioning of a

nonstationary time series might be obtained by existing al-
gorithms �21�.

The method presented in this paper numerically separates
the two components of a scale mixture of Gaussian white
noises and it can be applied to many phenomena character-
ized by the modulation in amplitude of the thermodynamic
equilibrium fluctuations by a slowly varying process. Such
phenomena are those already studied by means of the super-
statistics method: turbulence, share price fluctuations, cosmic
rays, traffic delays, metastasis, cancer survival, etc. �6�.
Some biophysical processes, for example, the human heart
rate fluctuations, also present these features �22�.

If the white noise �Zt� does not have a Gaussian distribu-
tion, Bartlett’s formula has to be modified for each type of
pdf. For instance, at time scales of minutes the logarithmic
returns have a two-tailed exponential distribution �23�. In
such cases the separation of the components using the uncor-
relation condition gives different results depending on the
assumed type of the probability distribution of the white
noise. The choice of the correct pdf might be possible by
means of the resemblance degree between the pdf of the
estimated noise and the one that was initially assumed.
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