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Abstract. The Gaussian white noise modulated in amplitude is defined as the product of a Gaussian white
noise and a slowly varying signal with strictly positive values, called volatility. It is a special case of the
superstatistical systems with the amplitude as the single parameter associated to the environment varia-
tions. If the volatility is deterministic, then the demodulation, i.e., the separation of the two components
from a measured time series, can be achieved by a moving average with the averaging window length
optimized by the condition that the absolute values of the estimated white noise are uncorrelated. Using
Monte Carlo experiments we show that the large scale deterministic volatility can be accurately numer-
ically determined. The artificial deterministic volatilities have a variety of shapes comparable with those
occurring in real financial time series. Applied to the daily returns of the S&P500 index, the demodulation
algorithm indicates that the most part of the financial volatility is deterministic.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 05.10.Ln Monte
Carlo methods – 05.45.Tp Time series analysis

1 Introduction

Many mathematical models of the financial returns time
series {rn, n = 1, 2, ..., N} are based on the heteroskedastic
decomposition

rn = vnzn, (1)

where {zn, n = 1, 2, ..., N} is a white noise with zero mean
and unit variance, {vn, n = 1, 2, ..., N} is a positive volatil-
ity time series, and the two factors are mutually indepen-
dent [1–3]. But the nature of the volatility is still under
debate. The dominant approach in quantitative finance is
to consider the volatility as a stationary time series and to
impose various explicit causal dependencies to the volatil-
ity stochastic process. The ARCH and GARCH family of
models assumes parametric relations between the returns
conditional variance and the history of the returns and
their variances [4]. The stochastic volatility models con-
sider that the volatility depends on an additional white
noise, besides that related to returns [1]. These paramet-
ric models have the tendency to become more and more
complex in order to account all the features of the actual
returns known as stylized facts [5].

In the last decade an alternative approach has been re-
vived which considers that the volatility is not a stochas-
tic process, but a slowly deterministic function of time.
A review of the volatility estimation methods based on
the local stationarity of the returns is provided in [6].
There are two approaches: one is based on the definition
of the locally stationary processes given by [7], the other
assumes that the volatility is piece-wise constant [8,9]. A

more complex hypothesis is made by the spline-GARCH
model for which the volatility is a superposition of a de-
terministic function and a stationary stochastic process
[10].

When the volatility is deterministic, the heteroskedas-
tic time series (1) is similar to a harmonic carrier modu-
lated in amplitude and we call it modulated white noise.
Because the deterministic volatility has a significantly slower
variation than the noise fluctuations, simple numerical
methods can be used to estimate the volatility, i.e., to
demodulate the time series {rn}. In this paper we analyze
a demodulation algorithm based on the moving average
of the absolute values of the returns [11], a variant of the
so-called realized volatility [12]. Our algorithm uses no
information regarding the dynamical origins of the deter-
ministic volatility.

By Monte Carlo experiments on numerically generated
time series we show that the slowly varying deterministic
volatility can be accurately numerically determined. We
generate the artificial volatility by a linear transformation
of the trends generated by the numerical algorithm pre-
sented in [13,14]. In this way we obtain volatilities with a
variety of shapes comparable with those occurring in real
financial time series. The demodulation is achieved by an
automatic form of the numerical algorithm presented in
[11]. The Monte Carlo experiments show that the demod-
ulation algorithm can successfully estimate the determin-
istic volatility. Its accuracy improves when both the length
of the time series and the amplitude of the volatility vari-
ations increase.
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Using a minimal set of assumptions on the correlations
between the two factors in Eq. (1), an elegant nonpara-
metric test for the nature of the noise factor {zn} has been
designed [15,16]. The results indicate that it is Gaussian
for financial indices and is a superposition of a Gausian
white noise (GWN) and a Laplacian white noise for indi-
vidual stocks. Because our demodulation algorithm does
not depend on the features of the noise factor, we use a
GWN to generate the artificial returns time series. In this
way we can evaluate the demodulation accuracy by ver-
ifying the normality of the estimated white noise. This
assumption is also in agreement with the well-known fact
that the daily residuals determined from high-frequency
data have a normal distribution [17].

We have applied the demodulation algorithm to the
daily returns of the S&P500 index because for this time
series there is evidence that it is the product of a deter-
ministic piece-wise constant volatility and a GWN [18].
The noise estimated by our algorithm is much closer to
normality than the initial returns, however, unlike the es-
timated noise for the artificial time series, in this case a
detectable departure from normality remains. Hence, the
large scale deterministic volatility is only a first approxi-
mation of the volatility of the financial time series, a part
of the real volatility having fluctuations of smaller time
scales and probably of a stochastic nature.

The modulated GWN is a special case of the time se-
ries describing superstatistical systems characterized by a
superposition of several statistics on different time scales
[19,20]. In general the superposition is controlled by one
or more parameters describing the large scale variations
of the environment. In case of the time series defined by
Eq. (1) the volatility is the single parameter related to
the environment. Many complex systems in various areas
of science can be effectively approximated by a supersta-
tistical distribution: turbulence, astrophysics, quantitative
finance, climatology, random networks, medicine etc. [21].
It has also been proved that the superstatistical model al-
lows a structural foundation for non-Boltzmann statistical
mechanics, including the Tsallis formulation [22].

In the next two sections we present the algorithm to
generate the artificial time series and then the demodula-
tion algorithm. In Sec. 4 we test the algorithm on numer-
ically generated time series, while in Sec. 5 we apply it on
the daily returns of the S&P500 index and we show that
the estimated white noise has a probability distribution
function (pdf) much closer to a Gaussian than that of the
initial returns. In the end we present some conclusions.

2 Artificial deterministic volatility

Any algorithm for volatility estimation has to be evalu-
ated on artificial time-series for which the real volatility is
known. Usually, the artificial deterministic volatility has
a very simple shape, for instance, a rectangular function
with two change points of the volatility [9,23,24]. We test
our demodulation algorithm on volatilities with a variety
of shapes comparable to those encountered in practice.

They are derived from trends generated by the numerical
algorithm presented in [13,14].

Unlike trends, volatility is always positive. Hence any
trend {fn} can be changed into a volatility time series
{vn} by a linear transformation. If vmin and vmax are the
chosen volatility extrema, then

vn = (vmax − vmin)
fn − fmin

fmax − fmin
+ vmin,

where fmin and fmax are the extrema of the trend. Obvi-
ously, the adimensional parameter describing the volatility
variability is the modulation ratio

R = (vmax − vmin)/vmin.

Hence we characterize an artificial volatility only by the
value of R and we fix the volatility minimum vmin = 1.

The trend {fn} is constructed by joining together P
monotonic semiperiods of sinusoid with random amplitude
[13,14]. The length of each sinusoidal segment is also ran-
dom and larger than a fixed value ∆Nmin. The orientation
of the sinusoidal segments is random, but they are joined
together such that the final trend should be continuous.
Each segment may be increasing or decreasing with the
same probability. For this reason the number of mono-
tonic parts of the generated trend is generally less than P .
Finally the mean of the trend is removed from it. Hence
the artificial volatility is characterized by four parameters:
the length of the time series N , the number of sinusoidal
segments P , the minimum number of volatility values in
a segment ∆Nmin, and the modulation ratio R.

We choose the values of these parameters such that
the artificial volatility models the large scale variations of
the volatility of the daily financial returns. If {pn} are the
daily prices of a financial asset, then the daily returns are
defined as rn = log(pn+1/pn) and they have the structure
given by Eq. (1). Even if the volatility has a stochastic
component, its large scale variations in a particular time
series can be described by a deterministic function. For
instance, the characteristic time longer than one year of
the economic cycles is identified as the monotonic parts of
trends in financial time series [25].

The length of our artificial time series varies between
Nmin = 500 and Nmax = 4000 around an average value
of 2000 that corresponds to a period of 8 years, i.e., a
period of time large enough to contain at least a global
economic cycle. The number of sinusoidal segments of the
artificial volatility is P = 15 and it corresponds in aver-
age to 8 monotonic parts. Then, depending on the length
of the time series, the average length of monotonic parts
varies from several months to several years. We choose
∆Nmin = 20, limiting in this way the minimum length of
a monotonic part to a month. The modulation ratio varies
with one order of magnitude from R = 1 to R = 10. With
these values for the parameters N , P , and ∆Nmin we ob-
tain a large enough variability of the volatility shapes.

We multiply the artificial volatility with a GWN ob-
taining an artificial time series of daily returns. The mu-
tual independence of the two factors in Eq. (1) indicates
that they are generated by two distinct phenomena. While
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Fig. 1. (a) A numerically generated deterministic volatility
(continuous line) and the estimated one (dashed line). (b) The
modulated GWN. (c) The estimated white noise.

the white noise might describe a featureless background,
the slowly varying amplitude is related to a greater scale
phenomenon influencing the amplitude of the background
fluctuations.

Figures 1(a) and (b) show an artificial volatility with
N = 3000, P = 15, ∆Nmin = 20, and R = 4 and the corre-
sponding modulated GWN. Such artificial time series are
of the same type as the time-modulated GWN defined by
[26] for which vn in Eq. (1) is a deterministic time-varying
function. It is a simple form of the locally stationary pro-
cesses [7] which have many applications in financial time
series analysis [6].

3 Demodulation algorithm

Because the volatility in Eq. (1) is slowly varying, the
usual demodulation methods of modulated GWN are based
on stationarity tests which allow one to determine the
segments of the modulated time series {xn} that can be
approximated by a GWN with constant amplitude [6–8,
18]. The demodulation of observed superstatistical time
series is also obtained by segmentation in stationary parts
[27,28]. We proposed a demodulation method based on a
moving average with the length of its averaging window
optimized such that the absolute values of the estimated
white noise are uncorrelated [11]. It is a modified form of
the moving average used in [29] and it is based on aver-
aging historical values of the absolute or squared returns
[12].

If K is the semilength of the averaging window, then
for K < n 6 N −K we define the moving average

ϑn(K) =
1

2K + 1

K∑
k=−K

|xn+k|. (2)

If n 6 K (n > N − K), then the average is taken over
the first n + K (the last N − n + K + 1) values of |xn|.
This asymmetric average forces the values near the time
series boundaries to follow the variations of the interior
values [14]. If we consider ϑn(K) as a volatility estimator,
then from Eq. (1) it follows that the estimator of the white
noise is

ζn(K) = xn/ϑn(K). (3)

We have to find the optimum value K0 for which the best
approximation of the volatility is obtained.

We use the uncorrelation property of the white noise
in Eq. (1). The white noise has zero mean z = ⟨zn⟩ = 0
and is uncorrelated ⟨znzn−h⟩ = 0. Its absolute values have

a nonvanishing mean |z| but they are also uncorrelated

⟨(|zn| − |z|)(|zn−h| − |z|)⟩ = 0

because ⟨|zn||zn−h|⟩ = |z|
2
. Hence the optimum averaging

window is obtained when the time series {|ζn(K)|} has
a minimum serial correlation. We quantify the serial cor-
relation by means of the sample autocorrelation function
(ACF). For an infinite time series the ACF is identical
zero, but we have to analyze finite time series.

For independent and identically distributed (i.i.d.) time
series Bartlett’s theorem states that the values of the sam-
ple autocorrelation function asymptotically form a normal
i.i.d. time series with mean zero and variance N−1 [30] (p.
221). Bartlett’s theorem holds for the absolute values of a
GWN too [14]. We compare the distribution of the sample
ACF with the theoretical normal distribution. In this way
we avoid the possibility that in numerical processing the
sample ACF could become too small as it is possible with
the usual uncorrelation tests, like the Box–Pierce test [31].

We measure the deviation from normality of the sam-
ple ACF ρ̂|ζ| of the time series {|ζn(K)|} by the statistic
used in the Kolmogorov-Smirnov test

ε(K,H) = max
16h6H

∣∣∣F̂ρ[ρ̂|ζ|(h)]−GB[ρ̂|ζ|(h)]
∣∣∣ , (4)

where F̂ρ is the sample cumulative distribution function
(cdf) of ρ̂|ζ| and GB is the theoretical cdf of the normal
distribution with Bartlett’s parameters. The quantity ε is
an index measuring the nonnormality of ρ̂|ζ|, i.e., the serial
correlation of {|ζn(K)|}.

Because the index ε depends on two variables, in order
to determine the optimal valueK0 we have to establish the
values of H for which we analyze the variation of ε. There
is no general rule to choose the most significant part of the
ACF [32]. Therefore we start from the observation that
the largest values of ACF are usually obtained for small
values of the lag h. In addition, if after demodulation the
first values of ρ̂|ζ| are distributed according to Bartlett’s
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Fig. 2. The variation of the uncorrelation index ε with re-
spect to the semilength of the averanging window for H =
10, 20, ..., 60 (thin lines) and the average ⟨ε⟩ overH (thick line).

distribution, then all the values of ρ̂|ζ| do the same. Our
tests indicate that in Eq. (4) we can choose H 6 60.

For the time series in Fig. 1(b), the variation of ε with
respect to K is represented in Fig. 2 for several values of
H. When K has small values, the average ϑn(K) follows
closely the time series fluctuations. These fluctuations in-
duce fluctuations of ε and a local minimum at small K
occurs. But the minimum associated to the demodulation
condition is attained for larger values of K which assure
the removing of the small scale fluctuations from the ini-
tial time series {rn}.

The index ε significantly depends on H (Fig. 2), there-
fore we eliminate this variability by averaging it with re-
spect to H. In this way we obtain a function ⟨ε⟩(K) de-
pending only on K (thick line in Fig. 2) and K0 is the
value for which the minimum of ⟨ε⟩(K) occurs. For the
time series in Fig. 1(b) we obtain K0 = 84. The estimated
volatility vestn = ϑn(K0) is represented in Fig. 1(a) by a
dashed line and the estimated white noise zestn = xn/v

est
n

in Fig. 1(c).
The estimated volatility is smaller than the real one in

the regions of the local maxima and larger near the local
minima because by averaging the extrema of the volatil-
ity are attenuated. We can measure how close to the real
volatility the estimated volatility is by computing the rel-
ative error

η =
∥vestn − vn∥
∥vn − v∥

, (5)

where ∥·∥ is the usual quadratic norm and v is the mean
volatility [13,14]. For the estimated volatility in Fig. 1(a)
we have η = 0.21. This measure of demodulation accuracy
can be computed only if we know the actual volatility. An
indirect method to estimate the quality of demodulation is
to check the normality of the estimated white noise {zestn }.

A qualitative inspection of the normality of an em-
pirical distribution is supplied by a graph similar to the
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Fig. 3. The deviation from normality of the initial time series
{rn} and of the estimated white noise
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.

QQ plot [33]. The quantile function Q(p), p ∈ [0, 1], is
the inverse function of the cdf F (x). If we want to verify
if an observed time series {xn, 1 ≤ n ≤ N} is generated
by an i.i.d. stochastic process with cdf equal to F (x) we
graphically compare Q(p) with the sample quantile func-

tion Q̂(p), i.e., the left-continuous inverse of the sample
cdf

F̂ (x) =
1

N

N∑
n=1

1[xn<x],

where 1A is the indicator function of the set A. Our mod-
ified QQ plot in Fig. 3 is composed by the points with the
coordinates(

Q

(
n

N + 1

)
, Q̂

(
n

N + 1

)
−Q

(
n

N + 1

))
.

If the graph is close to the x-axis, then the sample distri-
bution is the same with the theoretical distribution. The
negative (positive) values of Q̂n −Qn at small (large) Qn

indicate that the numerically generated time series have
indeed heavy tails. Demodulation reduces these tails so
that the estimated white noise {zestn } has an almost Gaus-
sian distribution.

For a quantitative estimation of normality of a time se-
ries we use the Kolmogorov-Smirnov statistic D. For the
estimated white noise of the time series in Fig. 1 we ob-
tain Dest = 0.015 which is half the value of the standard-
ized initial time series D = 0.032, indicating the reduction
of nonnormality. The kurtosis is also an indicator of the
normality of a probability distribution. For the estimated
white noise we have κest = −0.012, much closer to zero
(the theoretical value for a normal distribution) than the
value obtained for the initial time series κ = 1.16. This re-
duction of the kurtosis indicates that the heavy tails have
been effectively removed by demodulation.
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Fig. 4. The average relative error of the estimated volatility
with respect to the modulation ratio R for several values of the
time series length N .

4 Estimation of the artificial volatility

The Monte Carlo method demands an automatic form of
the demodulation algorithm. The main problem is to au-
tomatically choose the optimal value K0 of the averaging
semilength corresponding to the demodulation condition.
It happens quite frequently that the minimum of the aver-
age index ⟨ε⟩ situated at small values of K is smaller than
that associated to K0 (see Fig. 2). Therefore it is neces-
sary to introduce a lower limit Kinf such that we search
K0 only for K0 > Kinf . If Kinf is too small, then we do
not eliminate all the values of ⟨ε⟩ influenced by the small
scale fluctuations of the returns. If Kinf is too large, then
the correct value of K0 is eliminated. Our tests indicate
that an optimum value is Kinf = 20.

We evaluate the demodulation algorithm on statistical
ensembles of 100 artificial time series and, as expected,
the average relative error ⟨η⟩ decreases when both N and
R increase (Fig. 4). Hence, the longer the time series and
the larger the modulation ratio, the closer the estimated
volatility to the real volatility is. When η = 0.21 the es-
timated volatility has a good resemblance with the real
one [see Fig. 1(a)]. Large differences between them appear
when η > 0.5. For time series with N > 3000 the demod-
ulation algorithm estimates well the volatility, especially
when R > 4. Even for a weak modulation (R = 1), the es-
timated volatility contains enough information about the
real volatility. The increase of the length of the time series
from N = 3000 to N = 4000 does not significantly im-
prove the accuracy of the estimated volatility. Taking into
account that by increasing the time series length, the pro-
cessing time also increases, we can consider that N = 3000
is the optimum length for applying the demodulation al-
gorithm for this type of time series. When N 6 1000, the
difference between the estimated volatility and the real
one becomes larger, especially for small R.
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Fig. 6. The average optimum semilength of the moving aver-
age window with respect to the modulation ratio R for several
values of N .

In order to check if the estimated white noise is a
GWNwe compute the average over statistical ensembles of
the Kolmogorov-Smirnov statistic Dest, the kurtosis κest,
and the uncorrelation index εest of the estimated white
noise. We analyze only the time series having the opti-
mum length N = 3000. Figure 5(a) shows the average
Kolmogorov-Smirnov statistic of the initial time series ⟨D⟩
and of the estimated white noise ⟨Dest⟩. We plot with er-
ror bars the average and the standard deviation of D for
GWNs with the same length N = 3000. For a weak mod-
ulation (R = 1) the pdf of the initial time series can be
confounded with a Gaussian, but for larger values of R the
difference significantly increases. The pdf of the estimated
white noise cannot be distinguished from a Gaussian for
all values of R, hence the distribution of the white noise
obtained by demodulation is almost Gaussian.

The same conclusion results from the average kurto-
sis [Fig. 5(b)] and from the average uncorrelation index
[Fig. 5(c)]. We remark that for the initial time series with
R > 3, ⟨ε⟩ ≃ 1 because all the first Hmax = 60 values of

ρ̂|ζ| are much larger than 1/
√
N and then in Eq. (4) all the

values of GB are close to the unit while F̂ρ is zero. These
results prove that in average the demodulation algorithm
succeeds to separate a GWN from the modulated artificial
time series.

Figure 6 shows the variation of the average optimum
semilength of the moving average window with respect to
R and N . It increases when N increases and the modula-
tion ratio R decreases. As a consequence of these results
we have limited the maximum value of K0 to 350.

5 Financial volatility

We apply the modified automatic form of the demodula-
tion algorithm to the daily returns of the S&P500 index
from 3 January 1950 to 28 June 2012 plotted in Fig. 7(a)
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Fig. 5. The averages of the Kolmogorov-Smirnov statistic (a), the kurtosis (b), and the uncorrelation index (c) for the initial
time series {xn} (dashed lines) and for the estimated white noise
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(continuous lines) for N = 3000 as a function of the

modulation ratio R. The same averages on statistical ensembles with 1000 GWNs with the same length are plotted with error
bars.
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Fig. 8. The uncorrelation index ε for H = 10, 20, ..., 60 (thin
lines) and their average (thick line) for the S&P500 daily re-
turns.

with N = 15724 values. To avoid squeezing the shape of
the returns time series we do not plot the maximum ab-
solute value of the returns reached on October 16, 1987.

The index ε is represented with thin lines in Fig. 8 for
several values of H and their average with a thick line.
We remark that ⟨ε⟩ has almost the same shape as that
for the artificial time series in Fig. 2, but in this case
the first minimum is smaller than the second one. Using
the threshold value Kinf = 20, the optimum semilength
of the averaging window is the second minimum equal
to K0 = 36. The global estimated volatility is plotted in
Fig. 7(b) and the estimated white noise is represented in
Fig. 7(c).
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Fig. 9. The deviation from normality of the S&P500 returns
and of the estimated white noise. The maximum absolute value
of the returns reached on October 16, 1987 is not plotted.

Because we do not know the real volatility, we cannot
compute the index η defined by Eq. (5) and the demodu-
lation accuracy can be estimated only indirectly. The dis-
tribution of the estimated white noise is closer to that of a
normal distribution than the returns distribution (Fig. 9).
However, unlike the estimated white noise for the artificial
time series in Fig. 3, now the heavy tails are only partially
reduced, especially for negative values. We also notice that
the deviation from normality for the S&P500 returns and
the estimated white noise is an order of magnitude larger
than for the artificial time series.

For the estimated white noise of the S&P500 returns
we obtain Dest = 0.025 which is three times smaller than



C. Vamoş and M. Crăciun: Numerical demodulation 7

−0.1

0

0.1

x n

(a)

0

0.02

0.04

v n

(b)

1950 1960 1970 1980 1990 2000 2010
−10

−5

0

5

zes
t

n

(c)

year

Fig. 7. The S&P500 daily returns (a), the estimated volatility (b) and the estimated white noise (c). The maximum absolute
value of the returns reached on October 16, 1987 is not plotted.

the value of the standardized initial time series D = 0.075,
indicating the reduction of nonnormality. The kurtosis of
the estimated white noise is κest = 1.92, much smaller
than the value obtained for the initial time series κ =
27.73. This reduction of the kurtosis indicates that the
heavy tails have been significantly reduced by demodula-
tion. We also notice that the skewness of the estimated
white noise sest = −0.20 is smaller than that of standard-
ized S&P500 returns which was s = −1.03.

The same conclusion results from the large value of
the estimated modulation ratio Rest = 19.05 for S&P500
returns. If we remove the largest 0.5% values of the re-
turns, then the estimated modulation ratio decreases to
Rest = 8.23. If we remove 1% of values, it becomes Rest =
6.50, so the large value of the estimated modulation ratio
for the whole series is due only to a few extreme values.

We can evaluate the variation of the demodulation ac-
curacy in terms of the length of the returns time series if
we split the S&P500 returns into disjoint parts with equal
length. We apply the demodulation algorithm separately
for each part and then we compute over the parts with
the same length the average of the Kolmogorov-Smirnov
statistic D, the kurtosis κ and the skewness s for the re-
turns and for the estimated white noise (Fig. 10). We com-
pare these values with the averages and standard errors
obtained for 1000 generated GWNs with the lengths equal
to those of the parts in each partitioning. One notices that
the averages for the estimated white noise are much closer
to those for the Gaussians than those for the initial time
series. However, unlike the artificial time series (Fig. 5),
they do not become normally distributed.

The heavy tails of the financial returns are the main
cause of nonnormality as made obvious by the average

kurtosis of the financial returns [Fig. 10(b)] which is one
order of magnitude larger than that for the artificial time
series in Fig. 5(b). In comparison with the returns kurto-
sis, the variation range of the Gaussian kurtosis becomes
negligible and the error bars in Fig. 10(b) become almost
unperceivable. Another characteristic of the financial re-
turns is their negative skewness which is significantly re-
duced by demodulation [Fig. 10(c)]. Since the modulated
Gaussian white noise is symmetric, this smaller skewness
is also due to the reduction of the fat tails of the estimated
white noise.

The extreme values of the returns and volatilities are
related to the financial crisis. According to the heteroskedas-
tic model 1, these extreme values are entirely explained by
the volatility, the GRW having no heavy tails. However,
because we estimate only the deterministic large scale
volatility, the small scale variations of the volatility re-
mains undetected and they manifest themselves as heavy
tails of the estimated noise. For instance, the maximum
absolute value of the estimated noise corresponds to the
financial crisis on October 16, 1987, when the maximum
absolute value of the returns also occurred (Fig. 7). But
there are other financial crisis, like that on October 2008,
which are completely described by the estimated volatility.

6 Conclusions

We have tested an automatic demodulation algorithm on
a statistical ensemble of artificial time series with a vari-
ety of volatility shapes comparable to those encountered
in real daily returns. Such Monte Carlo ensembles can be
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Fig. 10. The average over parts of S&P500 returns with given length of the Kolmogorov-Smirnov statistic (a), the kurtosis (b)
and the skewness (c) for the S&P500 returns (dashed line) and of the estimated white noise (continuous line). The corresponding
averages obtained for 1000 GWNs with the same length are represented by error bars.

used to test any algorithm for volatility estimation. Usu-
ally artificial deterministic volatilities with much simpler
shapes are considered. It is also important to remark that
Monte Carlo experiments can be performed only if the
demodulation algorithm has an automatic form.

The Monte Carlo experiments prove that the demod-
ulation algorithm based on an optimized moving average
can determine with accuracy the large scale determinis-
tic volatility that modulates a Gaussian white noise. The
estimated volatility approximates better the volatility for
long time series with large modulation ratios. The differ-
ences between the real and the estimated volatility are of
small temporal scale and originate in the volatility local
extrema smoothed by the moving average. Therefore they
do not affect the Gaussian distribution of the estimated
white noise.

The estimated white noise obtained by demodulating
the S&P500 daily returns is not Gaussian, hence the fi-
nancial time series have a more complex structure than
those used in our Monte Carlo experiments. However, the
pdf of the estimated white noise is much closer to a Gaus-
sian than the pdf of the initial returns, showing that the
large scale deterministic volatility is a first approximation
of the financial time series. Scaling properties of finan-
cial time series suggest that volatility is a superposition of
correlated components of different scales [34,35]. Hence,
there are volatility components of small scales for which
an improved demodulation algorithm is needed.

References

1. S.J.Taylor, Asset Price Dynamics, Volatility, and Predic-
tion (Princeton University Press, Princeton, 2007)

2. J.D. Hamilton, Time Series Analysis (Princeton Univer-
sity Press, Princeton, 1994)

3. J. Voit, The Statistical Mechanics of Financial Markets,
3rd ed. (Springer, Berlin, 2005)

4. ARCH, Selected Readings edited by R.F. Engle (Oxford
University Press, Oxford, 1995)

5. R. Cont, Quant. Financ. 1, 223 (2001)
doi:10.1080/713665670

6. S. Van Bellegem, in Wiley Handbook in Financial En-
gineering and Econometrics: Volatility Models and Their
Applications, edited by L. Bauwens, C. Hafner, S. Laurent
(Wiley, New York, 2011) p. 323

7. R. Dahlhaus, in Time Series Analysis: Methods and Ap-
plications edited by T.S. Rao, S.S. Rao, C.R. Rao (North-
Holland, Oxford, 2012) p. 351
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