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Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Romania

Key Words: random walk, probabilistic particle methods, diffusion processes

MSC2010 Subject Classification: 65C20, 82C31, 60J60, 60J65

∗E-mail address: suciu@am.uni-erlangen.de
†E-mail address: cvamos@ictp.acad.ro



2 Nicolae Suciu and Călin Vamoş

Abstract

The Global Random Walk algorithm (GRW) performs the simultaneous tracking
on a fixed grid of large collections of particles, while the computational costs remain
comparable to those of a single-trajectory simulation by the traditional Particle Track-
ing (PT) approach. Unlike the sequential PT procedure, GRW simulates diffusion
processes by globally distributing all the particles lying at a lattice site. The global
scattering is achieved by allowing the particles to execute unbiased spatial jumps with
diffusive scaling, proportional to the square root of the simulation time step. When dif-
fusion takes place in a velocity field, the diffusion step is preceded by a drift step which
moves all the particles according to the velocity field at the lattice site. If the GRW
procedure is applied to a single particle, it is equivalent to a PT procedure projected
on a regular lattice. Thus, GRW can be thought as a superposition of PT procedures.
Moreover, it has been shown that the GRW algorithm can also be implemented as a
weak Euler scheme for the Ito equation governing the continuous diffusion process,
which accurately reproduces the true probability distribution. The essential difference
is that while the concentration field is estimated by post-processing the trajectories
simulated sequentially in the PT approach, a single GRW simulation is required for
concentration estimates. In fact, the output of the GRW simulation is not an ensem-
ble of trajectories solving the Ito equation, rather it is a solution to the associated
Fokker-Planck equation. The GRW algorithm saves memory and computing time and
no restrictions are imposed to the total number of particles which ensures reliable con-
centration estimates.

For vanishing or constant drift coefficients, GRW is also equivalent with the stable
finite-difference (FD) scheme and has the same convergence order for large enough
numbers of particles. However, for space-variable drift this equivalence fails and
GRW suffers from overshooting errors caused by particles jumping over lattice points
with different velocities. Overshooting errors can be completely removed by allowing
jumps only to first-neighbor lattice sites. This can be achieved with a biased-GRW,
where the drift displacement is modeled as a bias in the jump probability. The new
algorithm is no longer a weak Euler scheme for the Ito equation, instead it is equiva-
lent to a stable FD scheme without numerical diffusion. Removing the overshooting
with biased-GRW has the drawback of high computational costs, due to the fine grids
required by the first-neighbor jumps constraint. Therefore, the biased algorithm is
mainly useful as reference to assess the accuracy of the coarser, but faster, unbiased
GRW algorithms which are more efficient in solving large scale diffusion problems.

This chapter includes a presentation of the GRW algorithm, with details on its
derivation, implementation, equivalence with other schemes, sensitivity to parameters,
and convergence properties. Since the GRW approach is highly recommended for
large scale simulations of advection-dominated transport processes, where PT has lim-
ited accuracy and finite element/difference schemes suffer from numerical diffusion,
some relevant applications to contaminant transport in groundwater are also presented
for the purpose of illustration.
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1. Introduction

It is well known that diffusion processes can be numerically simulated with random walk
(RW) algorithms. For simple diffusion processes the RW algorithm is identical with the fi-
nite difference (FD) scheme [1] but, as we shall discuss in the following, this equivalence is
not valid for complex diffusion processes [43]. The RW algorithm can be used to model the
transport of arbitrary physical quantities if parts of the transported quantity are associated
with fictitious particles obeying the RW law. To reduce the computational effort and to im-
prove the smoothness of the numerical solution, the gradient of the transported quantity can
also be associated with the particles. Integrating the gradient transported by each particle
over the computation domain the simulated field is obtained with a higher accuracy [15].
The “gradient random walk” algorithm was first developed by Chorin [4] for the simulation
of turbulence, the transported quantity being the vorticity. In other applications, mainly
for transport in porous media, to save memory and to avoid boundary effects, a grid free
algorithm called “particle tracking” (PT) is used [21, 40, 39]. The PT algorithm consists of
generating trajectories in continuous space for each particle, by performing at discrete time
steps an advection displacement and a random Gaussian one.

The application of sequential RW algorithms to solve practical transport problems is
relatively limited. A good estimation of the concentration field requires a large number of
particles at each grid point. Sequential algorithms generate a random number, implying
a certain number of numerical operations, for every jump of each particle. Therefore, if
one requires that the numerical solution should be identical to the analytic solution to three
significant figures, the number of tracer particles simulated must be enormous ([38], p. 95).
In this chapter we propose an improvement of the RW algorithm aiming to eliminate this
limitation. Towards this aim, all the particles from a given grid node are moved simultane-
ously, not individually. This is possible because the number of the particles jumping from a
given node to a neighbor node obeys a Bernoulli distribution. In this way a great number of
particles can be distributed generating only a single random number and the necessary ran-
dom number generations are significantly reduced. We call this algorithm “global random
walk” (GRW). A more general form of the GRW algorithm is obtained when a part of the
particles remain at the initial node and only the rest of them are scattered to the neighboring
nodes according to the Bernoulli distribution.

The number of particles jumping from a given node to a single neighboring node ac-
cording to GRW rules fluctuates about the mean value. These fluctuations can be eliminated
if we allow the particles to be divided in parts and exactly, half of them jumping to the left
and the other half to the right. We show that for simple diffusion processes this determinis-
tic GRW algorithm, without fluctuations, is identical with a FD algorithm. Thus, GRW can
be thought as a generalization of FD algorithm. If we do not intend to give up the particle
indivisibility, then the fluctuations cannot be completely canceled. The minimum magni-
tude of the fluctuations is that corresponding to a single particle. In this case a form of GRW
with reduced fluctuations is obtained: if at a node there is an odd number of particles, then
one of the particles is randomly distributed to the left or to the right and the rest of them
is divided to half. Such GRW algorithms have proved to be valuable tools for large scale
simulations of environmental [30, 31, 34, 35] and life-science problems [33], as well as for
theoretical investigations on passive sclar transport in random media [36, 37].
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Models of passive scalar transport in highly heterogeneous media, such as groundwater
systems, turbulent atmosphere, or plasmas, are often based on a stochastic partial differen-
tial equation for the concentration field c(x, t),

∂tc+V∇c = D∇2c, (1)

with space variable drift V(x) which is a sample of a random velocity field, and a local
diffusion coefficient D which is assumed constant [30, 31, 36, 37, 25]. The normalized
concentration solving (1) for the initial condition c(x, 0) = δ(x − x0) is the probability
density function of the diffusion process described by the Itô stochastic ordinary differential
equation

Xi(t) = x0i +

∫ t

0
Vi[X(t′)]dt′ +Wi(t), (2)

where i = 1, 2, 3, x0i = Xi(0) are deterministic initial positions and Wi are the components
of a Wiener process of mean zero and variance 2Dt [19].

In this chapter we shall present several applications to contaminant transport in saturated
groundwater systems. The time-stationary random velocity field V(x) is in this case the
solution of the continuity and Darcy equations

∇V = 0, V = −K∇h, (3)

where K(x) is the hydraulic conductivity of the medium and h is the piezometric head
[25]. Dirichlet boundary conditions, consisting of constant heads at the inlet and outlet
boundaries of the domain, ensure the stationarity in time of the velocity field V. The
hydraulic conductivity K is supplied by various interpretations of field-scale measurements
in the form of a spatially distributed random parameter (random field) [6].

If the random velocity field, obtained by solving (3) for an ensemble of realizations of
the K field, has a finite correlation range then it can be shown that, under certain conditions,
the ensemble mean concentration is described asymptotically by an upscaled model of form
(1), with drift coefficient given by the mean velocity and enhanced diffusion coefficients
proportional with the velocity correlation lengths [20, 12]. Under less restrictive condi-
tions, with the only assumption that the first two spatial moments of the concentration are
finite at finite times, the mean concentration can still be described by an equivalent Gaussian
distribution with time variable diffusion coefficients [37], referred to as the “macrodisper-
sion” model in the hydrological literature [6]. Root-mean-square deviations of the solutions
to (1), for fixed realizations of the velocity field, from the predictions of the upscaled model
are often used to quantify the uncertainty in stochastic modeling of transport in random
environments [30, 34, 35, 36]. When the estimated mean-square uncertainty is acceptably
small, one considers that “ergodic conditions” are met and the macrodispersion model can
be successfully used to describe the transport in a single realization of the groundwater
formation [30]. Nevertheless, for contamination risk assessments mean-square uncertainty
assessments are not enough and extreme values of the stochastic predictions are also re-
quired. Such a task can be carried out by assessing the correlations and the full probability
distributions of the input/output parameters [3].

When solving advection-dominated transport problems associated to (1), like the one
considered here, with Péclet number Pe= Uλ/D = 100, where U is the amplitude of
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the mean velocity and λ a correlation length, the challenge is to ensure the stability of the
solutions and to avoid the numerical diffusion [25]. Therefore, numerical solutions to the
Itô equation (2), implemented in PT algorithms, are often used to simulate trajectories of
computational particles and to estimate concentrations by particles densities. PT methods
are stable, free of numerical diffusion, thus suitable for advection-dominated transport prob-
lems. However, since the computational costs increase linearly with the number of particles,
the estimated concentrations are too inaccurate for large-scale simulations of transport in
groundwater. Overcoming the limitations of the sequential PT procedure, the GRW algo-
rithm has no limitations as concerning the number of particles [30, 43]. As shown below in
Sect. 2.2, GRW provides accurate simulations of the concentration field at costs comparable
to those of a single-trajectory PT simulation.

The chapter is organized as follows. After recalling basic notions about Euler schemes
and PT methods in Section 2.1, we introduce in Section 2.2 the GRW algorithm as a weak
numerical scheme for the Itô equation and discuss its convergence and numerical efficiency
in Section 2.3. Section 2.4 contains a digression on numerical diffusion, where it is shown
that, for properly constrained space and time steps, RW methods are strictly free of nu-
merical diffusion. The exact unbiased one-dimensional GRW algorithm and different im-
plementation options are presented in Section 3.1, followed by numerical assessment of its
convergence (Section 3.2) and numerical boundary conditions (Section 3.3). In Sections 3.4
and 3.5 we present two-dimensional unbiased GRW algorithms and some relevant applica-
tions. Section 4.1 introduces the two-dimensional biased-GRW algorithm and its usefulness
in evaluating the unbiased GRW algorithms is presented in Section 4.2. Further, in Section
5 we demonstrate the ability of the GRW approach to produce a detailed sensitivity and
uncertainty analysis of the macrodispersion model. Conclusions are presented in Section 6.

2. Random walk simulations of diffusion processes

2.1. Itô equation and Particle Tracking

Let us consider the one-dimensional Itô equation (2) and an equidistant time discretization
0 < δt < · · · < kδt < · · · < Kδt = T . In most of its implementations, the PT simulation
of the particle’s trajectory consists of an Euler approximation Yt of the solution X(t), which
is a continuous time process satisfying the iterative scheme

Yk+1 = Yk + Vkδt+ δWk, (4)

where Yk = Ykδt, Vk = V (Yk), and δWk = Wk+1−Wk is the increment of the Wiener pro-
cess. The Euler scheme (4) provides a grid-free PT algorithm which generates the trajectory
of a computational particle in continuous space.

While the strong convergence of order β > 0 of the Euler scheme requires

lim
δt−→0

E (|Xt − Yt|) ≤ Cδtβ ,

where E denotes the expectation, for the weak convergence of order β > 0, it suffices that

lim
δt−→0

|E (g(Xt))− E (g(Yt))| ≤ Cδtβ ,
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for some functionals g(Xt) (e.g. moments E(Xm
t ), m ≥ 1).

For strong pathwise convergence, the Euler scheme (4) has to consider the Wiener pro-
cess specified in the Itô equation (2). For weak convergence, when only the probability
distribution is approximated, the increments δWk of the Wiener process can be replaced by
random variables ξ with similar moments. For weak Euler scheme of order β = 1 the first
three moments of ξ have to satisfy, for some constant M , the condition [19, Sect. 5.12]

|E(ξ)|+
∣∣∣E(ξ3)

∣∣∣+ ∣∣∣E(ξ2)− δt
∣∣∣ ≤ Mδt2.

Easily generated noise increments satisfying the above condition are the two-states ran-
dom variables

ξ : Ω −→ {−
√
2Dδt,+

√
2Dδt}, P{ξ = ±

√
2Dδt} =

1

2
. (5)

2.2. Weak Euler scheme and global random walk

The weak Euler scheme for equation (2) without drift term is given by (4) with Vk = 0 and
Wiener process increment δWk replaced by (5),

Yk+1 = Yk + ξ, (6)

where the increment of Yk has a constant amplitude,

|Yk+1 − Yk| =
√
2Dδt = δx. (7)

A computational particle described by the PT algorithm (6) moves on a regular one-
dimensional lattice with lattice constant δx. If one considers a superposition of N PT
procedures (6), then at a given time step k the n(i, k) particles lying at the lattice site i are
spread according to

n(i, k) = δn(i− 1, i, k) + δn(i+ 1, i, k), (8)

where δn(i− 1, i, k) and δn(i+ 1, i, k) are, respectively, the numbers of particles jumping
to the left and to the right first-neighbor sites. Since (6) does not allow particles trapping at
lattice sites, the evolution of the number of particles at a grid site j is governed by

n(j, k + 1) = δn(j, j − 1, k) + δn(j, j + 1, k), (9)

When the N particles are released at t = 0 from a single lattice site, then the equations (8-9)
describe their evolution as a succession of independent “even and odd modes”: if at given
k even lattice sites are occupied by particles the odd sites are necessary empty; at k + 1 all
particles from even sites jump to odd sites that were previously empty, and the previously
occupied even sites become empty (see Fig. 1).

For large N it is reasonable to assume that the probability of the surrogate increments
of the Wiener process (5) can be approximated by the relative frequency of lef/right jumps,

P{ξ = ±
√
2Dδt} = lim

N−→∞

δn(i− 1, i, k)

N
= lim

N−→∞

δn(i+ 1, i, k)

N
=

1

2
. (10)
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In the limit of large N , by inserting (10) into (8) one obtains

δn(i± 1, i, k) =
1

2
n(i, k), (11)

and (9) becomes

n(j, k + 1) =
1

2
[n(j − 1, k) + n(j + 1, k)] (12)

Since n(j, k)/N estimates, for large N , the probability distribution of the particles at site i
and time k, (12) divided by N becomes a master equation for discrete time RW, the solution
of which is the Bernoulli distribution [13]. Further, one defines the particles concentration

c(j, k) = n(j, k)/(lδx), (13)

where l = 1 for nonsingular initial conditions (i.e., particles distributed over more than one
lattice site) and, for singular initial conditions which, as shown above, generate independent
even and odd modes, we can chose l = 2 to avoid discontinuities in the concentration field.
With (13), the relation (12) leads to

c(j, k + 1)− c(j, k) =
Dδt

δx2
[c(j − 1, k) + c(j + 1, k)− 2c(j, k)] , (14)

where, according to (7),

D =
δx2

2δt
. (15)

Equation (14) is the forward-time centered in space finite difference scheme, with stabil-
ity parameter [1, 5] Dδt/δx2 = 1/2, for the one-dimensional partial differential diffu-
sion equation ∂tc = D∂2

xc, which is the Fokker-Planck equation (1) associated to the Itô
equation (2), particularized to one-dimensional diffusion without drift term, i.e., the one-
dimensional Wiener process.

For finite N , the number of jumping particles δn(i ± 1, i, k) are obviously random.
For large enough N however, the random variables δn(i ± 1, i, k) can be approximated as
follows: if the number n(i, k) of particles lying at the grid site i at time k is even, then half
of them jump to the left and half to the right, according to (11); if n(i, k) is odd, then one
particle is allocated to either δn(i − 1, i, k) or to δn(i + 1, i, k) with unbiased probability
of 1/2. This simple rule achieves the implementation of the algorithm described by (8-9).
Since this approach approximates the random walk equation (12) and the random walkers
are distributed over lattice sites with the global procedure described above, it has been called
“global random walk” (GRW) [43]. The GRW algorithm corresponds to a superposition of
PT procedures described by the weak Euler schemes (6) and can be itself thought as a weak
Euler scheme which provides the particles concentration and estimations of the moments of
the process (6). In case of genuine diffusion, without drift, GRW is also equivalent with the
FD scheme (14) for the one-dimensional diffusion equation. But this equivalence fails in
presence of a space-variable drift term (see Section 3.1 below). Nevertheless, as we will see
in Sections 3.1 and 3.2 below, in all unbiased GRW algorithms the distribution of particles
jumping from a lattice site at every time step is still equivalent with a superposition of weak
Euler schemes for the Itô equation (2).
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2.3. Numerical example, convergence and computing time

Figure 1 illustrates the evolution of the number n(i, k) of random walkers over the first three
simulation steps, obtained with a straightforward MATLAB implementation of the one-
dimensional GRW algorithm described above. One remarks the occurrence of independent
even and odd modes, as a consequence of the singular initial distribution of particles, that
were localized at a single lattice site.
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Figure 1. Distribution of N = 300 random walkers starting at x = 100 after the first three
time steps of the GRW simulation.

The evaluation of the moments E(Xm
t ) within the numerical implementation of the

weak Euler scheme (6) consists of an arithmetic average, over an ensemble of trajectories
(6), of the position of the particles at a given time,

E(Xm
kδt) ≈

1

N

N∑
i=1

Y m
k ,

which approximates the stochastic average with respect to the probability distribution,
E(Xm

t ) =
∫
xmp(x, t)dx. But, as far as one approximates probability distributions and

their moments, the trajectories of the weak Euler scheme are in fact not necessary. The
probability density is given by the normalized concentration, p(x, t) = c(x, t)/N and its
GRW estimation by (13) yields p(x, t) = n(iδx, kδt)/(Nlδx). With these, the discretiza-
tion of the expectation integral giving the estimation of the m-th order moment of Xt reads

E(Xm
kδt) ≈

1

N

L∑
i=1

(iδx)mn(i, kδt), (16)
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where by L we denoted the length of the one-dimensional lattice. In particular, with
(16) one obtains GRW estimates of the mean M = E(Xt) and diffusion coefficient
D = [E(X2

t )− E(Xt)
2]/(2t) of the Wiener process. GRW simulation results, for δx = 1

and δt = 0.5, are presented in Figs. 2-5. Figure 2 shows that the estimated mean and
diffusion coefficient approximates quite well the nominal values M = 0 and D = 1 of the
simulated Wiener process, even for a moderate number of particles N = 300. The distribu-
tion of the number of particles over the lattice, ni, presented in Fig. 3 also shows a discrete
Gaussian shape, with discontinuities typical for independent even and odd modes [43].

It is possible to further simplify the GRW algorithm by completely removing the ran-
domness from the scheme. This can be done by setting δn(i − 1, i, k) and δn(i + 1, i, k)
to the exact value of n/2. In this case N has no longer the meaning of a number of random
walkers and can be taken as an arbitrary positive real number, for instance equal to 1. This
deterministic GRW scheme is equivalent to the finite-difference scheme (14) for the one-
dimensional diffusion equation and converges as δx2 for δx → 0 [43]. Since according to
relation (15) δx2 ∼ δt, the deterministic GRW has the same order of convergence with the
time step as the weak Euler scheme of order β = 1. The convergence of the stochastic GRW
simulation reaches the same order only if the number of random walkers N is large enough
to smooth out the random fluctuations of n(i, k) in (8-9). Figure 4 shows the dependence
on N of the absolute error eD(t) = |Dgrw(t)−D|. Figure 5 illustrates the convergence of
the error norm ∥Dgrw −D∥ defined by

∥Dgrw −D∥2 =
T/δt∑
k=1

[Dgrw(kδt)−D]2 .

0 50 100 150 200
−0.5

0

0.5

1

1.5

t

D(t)
M(t)

Figure 2. GRW estimates of the diffusion
coefficient D(t) and of the mean M(t).
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15
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t=200

Figure 3. Distribution of N = 300 ran-
dom walkers after 200 time steps.

Note that the GRW scheme described above is practically insensitive to the number
of random walkers N . Assuming that all L grid points contain random walkers at all the
computation time steps, one needs LT calls of a uniformly-distributed random-numbers
generator for the entire simulation. Hence, the total computation time is of the order of that
for the simulation of a single trajectory of the Itô process by the weak Euler scheme. Indeed,
comparing LT with the computational costs of the order NT for a superposition of N PT
simulations, we can see that the GRW algorithm achieves a speed-up of computations, with
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Figure 4. Absolute errors of the esti-
mated diffusion coefficients for increas-
ing numbers of particles N .
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Figure 5. Convergence of the error norm
of the estimated diffusion coefficients
with the number of particles N .

respect to PT, of the order N/L. For example, while the convergence investigations with
GRW presented in Figs. 4-5 were performed in about one second, similar investigations
with the Euler scheme required several minutes on the same computer. In case of realistic
simulations of diffusion processes, when very large numbers of particles should be consid-
ered, e.g. Avogadro’s number N = 1024, as well as large grids of the order of L = 106

nodes, a huge speed-up of computations by a factor of 1018 can be achieved by using the
GRW algorithm.

2.4. Digression on numerical diffusion

The simplest way to estimate the numerical diffusion produced by a numerical scheme is
to compare the diffusion coefficients computed from the corresponding numerical solution
to their nominal values [25]. Such a test is presented in Fig. 2, which shows that the GRW
algorithm accurately reproduces the diffusion coefficient of the Wiener process. In Section
2.3 we have shown that for genuine diffusion processes the GRW algorithm is equivalent
with a FD scheme. Since FD schemes are not unconditionally free of numerical diffusion,
one may be tempted to say that, by virtue of this equivalence, GRW also generates numer-
ical diffusion (e.g. [9]). This assertion is not only wrong, but also in flagrant contradiction
with the basic property of all RW methods, that of being strictly free of numerical diffusion.

Before proceeding with the discussion of the generic RW method we first note that
the GRW algorithm (8-9), constrained by the relation (15), is equivalent to the FD scheme
(14) with stability parameter r = 1. Since FD schemes with r ≤ 1 are stable and free
of numerical diffusion [5] GRW cannot generate numerical diffusion. GRW is also stable
because, as shown by relation (16) for m = 0, the number of random walkers is conserved.

In general, a one-dimensional RW algorithm for genuine diffusion is a cumulative pro-
cess consisting of a sum Xk =

∑k
l=1 δXl of independent increments δXl, with E(δXl) = 0

and E(δX2
l ) = 2Dδt. The independence of increments implies

E(X2
kδt) =

k∑
l=1

δX2
l = 2Dkδt, (17)
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hence the computed diffusion coefficient is E(X2
kδt)/(2kδt) = D, i.e., the RW scheme is

unconditionally free of numerical diffusion. In particular, this is the case of strong and weak
Euler schemes (4) and (6). Since GRW is a superposition of weak Euler schemes it is also
unconditionally free of numerical diffusion. Note that the equivalence with a superposition
of weak Euler schemes holds only if the amplitude of the increments is given by (7), i.e.,
if the time step, the space step, and the diffusion coefficient are related by (15). From (15)
and (16) one obtains, for m = 2,

E(Xm
kδt) ≈ δx2

L∑
i=1

i2
n(i, kδt)

N
= 2Dδt

L∑
i=1

i2
n(i, kδt)

N
. (18)

Equating (18) and (17) we find
∑L

i=1 i
2n(i, kδt)/N = k. This relation is a consequence of

the GRW rule for distributing particles over lattice sites. For instance, the GRW distribution
of N particles, initially located at the origin of a symmetric one-dimensional lattice, yields
2(12 · 1

2 + 02 · 1
2) = 1 at k = 1, then 2(22 · 1

4 + 12 · 0 + 02 · 1
2) = 2 at k = 2, etc.

Another approach for moving groups of particles, similar with GRW, was described by
Delay et al. [7, 8]. In their approach, to the center of the square cells of a regular lattice
one associates a variable that represents the number of particle which are then uniformly
distributed, proportional with the area of the intersection of a “dispersion rectangle” with
the neighboring cells. In the one-dimensional case the dispersion interval is the segment
[−

√
2Dδt,

√
2Dδt] [7], so that the particles are distributed according to a deterministic

rule which, for genuine diffusion is identical to the GRW rule (12). Yet, this approach
is different from GRW in that the space and time steps are not related with the diffusion
coefficient, being instead adjusted by trial and error. As stated by the authors, their algo-
rithm necessarily generates some numerical diffusion [7, 8, 9]. Since their approach uses
the GRW distribution rule and a δx independent of D and δt, one generates an artificial
diffusion which can be exactly quantified by (18) as δx2/(2kδt)−D. Hence, the numerical
diffusion can be completely removed in the one-dimensional algorithm of Delay et al. [7]
by imposing the restriction (15) on space and time steps, which transforms their approach
into a deterministic GRW.

Coarse-graining by the definition of the concentration field also may induce numerical
diffusion. For instance, if we chose l = 2 to define the concentration with (13) we also have
to chose dx ≈ 2δx to approximate the expectation and to obtain the correct form of (16).
If dx = δx were chosen, then all the moments of Xt would be divided by 2. Similarly,
wrong results may be obtained if the concentration is defined as space average over more
lattice sites. This issue, specific to continuous modeling of discrete systems, can be resolved
by defining continuous fields as averages over symmetrical space-time “measurement” do-
mains of the physical properties of the “microscopic” constituents of the system. The only
requirement is that the particles move along piecewise analytical trajectories [46, 44]. This
is for instance the case of a system of random walkers with piecewise constant velocities
δx/δt and −δx/δt. Using this approach to continuous modeling, we proved that there is a
space-time continuum scale where the gradient of the concentration and the flux of random
walkers are related by the Fick’s law [45]. We have thus an independent proof that RW
algorithms are free of numerical diffusion. Consequently, when numerical diffusion occurs
in RW methods it can only be produced by inappropriate implementation options.
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3. Unbiased GRW algorithms

3.1. Exact one-dimensional GRW algorithm

The one-dimensional GRW algorithm, which generalizes the algorithm (8-9) presented in
Section 2.2 to account for advective displacements, describes the scattering of the n(i, k)
particles from (xi, tk) by

n(j, k) = δn(j + vj , j, k) + δn(j + vj − d, j, k) + δn(j + vj + d, j, k), (19)

where vj = Vjδt/δx are discrete displacements produced by the velocity field and d de-
scribes the diffusive jumps. The quantities δn(j+vj±d, j, k) in (19) are Bernoulli random
variables describing the number of particles jumping to the left and to the right of the ad-
vected position j+vj and δn(j+vj , j, k) gives the number of particles which remain at the
lattice site reached after an advective displacement. Unlike in the simple algorithm from
Section 2.2, now only the group of particles δn(j+vj−d, j, k)+δn(j+vj+d, j, k) evolves
like a superposition of weak Euler schemes, and only over a time step. If δn(j+vj , j, k) > 0
at all times, then the even and odd modes are mixed and the particles distribution shown in
Fig. 3 will be smoothed out. The distribution of the particles at the next time (k + 1)δt is
given by

n(i, k + 1) = δn(i, i, k) +
∑
j ̸=i

δn(i, j, k). (20)

As follows from (19), the contributions δn(i, j, k), j ̸= i come from all lattice sites and
δn(i, i, k) from those satisfying j + vj = i.

The average number of particles undergoing diffusive jumps and the average number of
particles remaining at the same node after the displacement vj are given by the relations

δn(j + vj ± d, j, k) =
1

2
r n(j, k), (21)

δn(j, j + vj , k) = (1− r) n(j, k), (22)

where 0 ≤ r ≤ 1 is a rational number. A consistency requirement is that, for the same
time step δt, the algorithm described by (19-22) reproduces the mean square displacement
given by the algorithm (8-9), which is strictly equivalent with a superposition of weak
Euler schemes. If δx′ is the space step used in (8-9), then the mean square displacement
of the particles jumping from j to first-neighbor sites is n(j, k)δx′2. In the new algorithm,
where in the mean only a fraction r of the particles reaching j + vj undergo jumps of
amplitude dδx, using (21) one obtains rn(j, k)(dδx)2. Equating the two expressions of the
mean square displacement and using (15) one obtains the following relation between the
parameters of the GRW algorithm

D = r
(dδx)2

2δt
, (23)

which generalizes (15) and ensures that the scheme does not produce numerical diffusion.
For given δx and δt, using (23) one obtains combinations of parameters d and r for any
possible value of the diffusion coefficient D.



Global random walk 13

Particularizing the above one-dimensional GRW algorithm for genuine diffusion, i.e.,
letting vj = 0 in (19), one can easily see that the evolution of the mean number of particles
is described by

n(i, k + 1) =
r

2
n(i+ d, k) + (1− r)n(i, k) +

r

2
n(i− d, k). (24)

According to (13), n(i, k) is proportional with the concentration c(i, k). Hence, the relation
(24) has the form of the explicit FD scheme for the one-dimensional diffusion equation
∂c = D∂2

xc. Since from (23) we have δt = O(δx2), the FD scheme (24) is a consistent
approximation of the partial differential diffusion equation and, by the condition r ≤ 1
(equivalent with von Neumann’s criterion), it is also stable. The stability and consistency
imply the convergence of the order O(δx2) to the exact solution of the initial value problem
for the diffusion equation [14]. Equation (14), corresponding to the algorithm presented in
Section 2.2, is the particular case of (24) for r = 1.

The exact GRW algorithm is implemented by specifying the procedure to calculate the
fluctuating quantities in the right hand side of (19). The fraction r of the number of particles
undergoing jumps to neighboring nodes must be chosen as a positive rational number r ≤ 1,
such that (1−r)N is an integer equal to the total number of particles remaining at the same
site after an advective step. The latter are calculated recursively, at each site j as follow.
We proceed by increasing the index j and if j1 is the first site with n(j1, k) > 0, then
δn(j1 + vj1 , j1, k) = [(1− r)n(j1, k)], where [·] is the integer part of the expression in the
brackets. Further, we compute and store the rest Rj1 = (1−r)n(j1, k)−δn(j1+vj1 , j1, k).
At the next site containing particles, j2 > j1, we compute δn(j2 + vj2 , j2, k) = [(1 −
r)n(j2, k) +Rj1 ]. Repeating these operations for increasing index j, we obtain

δn(j + vj , j, k) =

(1− r)
∑
j′≤j

n(j′, k)

−

(1− r)
∑
j′<j

n(j′, k)

 . (25)

Averaging (25) over a large number of GRW simulations one obtains the relation (22) for
the mean number of particles. Since δn(j, j, k) is known, (19) relates the random variables
δn(j + vj − d, j, k) and δn(j + vj + d, j, k) and only one of them has independent values.

The GRW algorithm performs the evaluation of the random variables δn(j+vj±d, j, k)
directly, not as a sum of the individual jumps of the n ≡ n(j, k)−δn(j, j, k) particles. Since
each of the n particles can reach the node j+vj−d with a probability equal to 1/2, it follows
that the probability for δn(j+ vj − d, j, k) to take the value m, 0 ≤ m ≤ n, is given by the
Bernoulli distribution bn(m) = 2−nCm

n . To assign to δn(j + vj − d, j, k) a random value
satisfying the Bernoulli distribution, at each time step, a random number η with a uniform
distribution in the interval [0, 1] is generated. If we denote by Fn(m) =

∑m
l=0bn(l), 0 <

Fn(m) ≤ 1, the Bernoulli repartition, then δn(j+ vj −d, j, k) takes the value m satisfying
the condition Fn(m− 1) ≤ η < Fn(m), where we use the convention Fn(−1) = 0.

The implementation of the GRW algorithm as a computer code encounters some dif-
ficulties related to the computation of the Bernoulli distribution bn(m) = 2−nCm

n and of
the corresponding repartition Fn(m) =

∑m
i=0bn(i). When the number of particles is of

order 106, the computation of bn(m) or Fn(m) takes too much time to be performed at
each computation step. Therefore the values of Fn(m) are computed only once and stored
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in files for values n = 2k with 1 ≤ k ≤ 20. Due to the symmetry of Fn(m) with respect
to m = n/2, only the values Fn(m) ≤ 0.5 are stored. If n < 221, a binary representa-
tion n =

∑20
l=0a(l)2

l is used. The 2l particles of a group with a(l) ̸= 0 are scattered in
δnl(j + vj − d, j, k) and δnl(j + vj + d, j, k), as previously described, using a random
number η uniformly generated in the interval [0, 1]. The final result is obtained from

δn(j + vj − d, j, k) =
∑20

l=0
a(l)δnl(j + vj − d, j, k).

If n ≥ 221, then there are several groups consisting of 220 particles and for each group the
procedure from above can be used. This method, referred to as GRW0 (first used in [42]),
becomes time expensive for very large n (see the “GRW0” curve in Fig. 6). Therefore,
to increase the efficiency of the GRW algorithm, we introduce an approximation based on
reduced variables ξ = (m − n/2)/

√
n/4 and the corresponding repartitions Fn(ξ). If

n ≥ 221 we approximate Fn(ξ) by the repartition corresponding to n = 220 as function of
the reduced variable ξ. We found that the results obtained in this way are fully satisfactory.
For instance, the relative error of the values δn obtained using F220 instead of F230 is of
the order 10−9. In this way, GRW can handle a number of particles equal to the maximum
number of particles that can be represented in the internal memory of the computer. We
also note that an even simpler approximation uses the fact that for n → ∞, the repartition
Fn(ξ) tends to the normal Gaussian repartition, according to De Moivre-Laplace theorem
[23]. Then, the number of particles jumping to the left, δnl(j + vj − d, j, k), can be readily
determined by using the error-function the instead repartition (see GRW-erf curve in Fig.
7). This procedure is a bit faster if n < 1012 but attenuates the fluctuations of the number
of particles.

In case of constant diffusion coefficients, two- and three-dimensional GRW algorithms
can still be implemented by performing the 1-dimensional global scattering procedures de-
scribed in this section on x1, x2 and x3 space axes, according to the values of velocity
components and diffusion coefficients. But for variable coefficients this extension of the
one-dimensional procedure doesn’t work and the two-dimensional algorithm described be-
low in Section 3.2 should be used.

One can also define a modified GRW algorithm which is identical with the FD algorithm
for V (x) ≡ 0, if the particles can be divided and n(j, k) is a real number, not an integer.
Instead of (21) we introduce

δn(j + vj ± d, j, k) =
1

2
r n(j, k), (26)

and in analogy with (22) we consider

δn(j, j, k) = (1− r)n(j, k) (27)

Then (19) is identical satisfied and all the quantities in (20) are defined. In this case, δn(j+
vj − d, j, k) is not anymore a random variable but its value is uniquely determined by (26)
and coincides with the mean value of the corresponding random variable in GRW. Therefore
we refer to this modified algorithm, which generalizes the deterministic algorithm without
advection and without parameters d and r, as a “deterministic” GRW (GRWD).



Global random walk 15

Another form of the GRW algorithm can be obtained by both preforming a deterministic
scattering and preserving the particles indivisibility. For this purpose, we use (20) and
instead of (26) we introduce

δn(j + vj − d, j, k) =

{
n/2 if n is even

[n/2] + θ if n is odd,
(28)

where n = n(j, k) − δn(j + vj , j, k), [n/2] is the integer part of n/2 and θ is a random
variable taking the values 0 and 1 with probability 1/2. Further, the number of particles
jumping in the opposite direction, δn(j + vj + d, j, k), is determined by (19). In compar-
ison with GRW, this algorithm reduces the fluctuations of the number of particles to those
of a sigle random walker and we call it “reduced fluctuations” GRW (GRWR). Since the
fluctuations do not vanish, only the average of the GRWR solution is identical with the
FD solution. Solutions for the advection-diffusion equation (1) can be obtained with either
GRWD, GRWR, or with the stochastic algorithm GRW. The latter is expected to be more
accurate when the fluctuations significantly influence the simulated process [16, 10, 17]. In-
stead, in large scale, advection-dominated transport problems where the fluctuations of the
velocity field are more important than the fluctuations of the number of particles, GRWD
and GRWR are more efficient. In this case, the use of GRWR requires reduced computing
resources with respect to either GRW and GRWD algorithms. Unlike in the exact GRW
algorithm, in GRWR only one random number has to be generated, at every time step and
only when at a given site there is an odd number of particles. Because the indivisibility
of particles is preserved, the diffusion front has a smaller extension than in the case of
GRWD algorithm and, consequently, smaller grids are necessary. An efficient implemen-
tation of GRWR can be obtained if instead of using (28) and generating random numbers
one redistributes the rests Rj , appearing in the computation of δn(j+ vj , j, k) and the rests
Rj+vj = n/2− [n/2] of the division by 2 of the number of jumping particles, and, similarly
to (25), one calculates δn(j + vj − d, j, k) = [n/2 + Rj + Rj+vj ]. To ensure the strict
conservation of the number of particles, besides the condition requiring that (1 − r)N be
an integer, related to the use of parameter r, N should also be a power of 2. Nevertheless,
if N ≥ 108 the possible truncation errors are negligible and these precautions are no longer
necessary.

The GRW algorithms are much more faster and accurate than the sequential PT pro-
cedure. The computational effort in the PT method is due to the fact that every particle is
separately displaced and all the trajectories must be stored and post-processed to obtain con-
centrations. Moreover, the large numbers of particles necessary to have good concentration
estimations may be prohibitive for PT simulations. The GRW method, where groups of par-
ticles are simultaneously displaced, saves time and memory. In the following we show that
GRW allows a faster and more complete simulation of the diffusion processes. To illustrate
the advantage of our method when large numbers of particles are necessary, the computing
time for GRW was compared with the computing time for a PT method (“ParTrace” code
described in [22]). The same problem was solved on a Cray T3E parallel computer [43]. In
Fig. 6 we present the simulation of an isotropic diffusion, with D = 0.5, into a cube the
side of which consisted of 21 nodes, for 10 time steps and for different number of particles
injected at the initial moment into the center of the cube. GRW needs less than one sec-
ond and only one Cray computing node while the computing time for “ParTrace” linearly
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increase with the number of particles and more Cray nodes are required (we stopped the
computation at 109 particles and 256 Cray nodes). The middle curve in Fig. 6 corresponds
to GRW0 algorithm described above, where no approximations of binary repartitions are
used. In this case the computing time still remains orders of magnitude smaller than that
of PT but, for N > 109 the time increases with N . The comparison from In Fig. 7, done
for the same problem, shows that for more than 1012 particles the GRW algorithm and its
approximation using the error function (GRW-erf) need almost the same cpu-time, which
is twice the cpu-time for the deterministic algorithm GRWD. The reduced fluctuations al-
gorithm GRWR (not shown in the picture) needs practically the same cpu-time as GRWD
but, for larger total simulation times GRWR is faster because, as noted above, it preserves
the indivisibility of particles and the diffusion fronts have smaller spatial extension.
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Figure 6. CPU times for PT, the exact
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reduced fluctuations GRW. The comparison
was done for simulations over ten time-steps
of the three-dimensional Gaussian diffusion
with constant coefficient.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1e+06 1e+12 1e+18 1e+24

se
co

nd
s

number of particles

GRW

GRW-erf

GRWD

Figure 7. CPU times for the GRW algo-
rithm that uses the Bernoulli repartition for
n = 1020 particles to approximate repar-
titions for larger numbers of particles, the
error-function approximation GRW-erf and
for the deterministic algorithm GRWD.

The GRW algorithm and its modified forms GRWD and GRWR use the relation (20)
where δn(i, j, k) is non-vanishing for every j satisfying j + vj ± d = i. Therefore, if V (x)
varies in space, the evolution of the concentration in a node is obtained, unlike in (24), by
contributions from more than the first neighboring nodes. The terms in (19) are not apriori
known, because they depend on the value of V in xj . In this case, the GRW algorithm is no
more equivalent with a FD scheme. All these GRW versions remain equivalent with a weak
Euler scheme, but only over single time steps, because of the new parameter r. Therefore
for space-variable drift V (x) the convergence properties cannot be inferred theoretically,
as for the simple GRW from Section 2.2. However, evaluations of the unbiased GRW
algorithm can be done by comparisons with the biased algorithm that will be presented in
Section 4.1.

3.2. Simulation of the one-dimensional Gaussian diffusion

We verify the GRW algorithm described in the previous section for the solution of the
equation (1), in one dimension, with V (x) ≡ 0, D(x) ≡ 0.5 and initial condition
limt−→0+ c(x, t) = N0δ(x), where δ(x) is the Dirac function. In this case the solution
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has a Gaussian analytic form and is given by

cGauss(x, t) = N0(2πt)
−1/2 exp

{
−x2

2t

}
. (29)

Different numerical solutions obtained by GRW are quantitatively compared with the an-
alytical solution (29) in the space interval x ∈ [−1, 1]. The comparison is achieved at the
time tf , when the number of particles which left the interval [−1, 1] is 1% of the total
number of particles. From the condition

1

N0

1∫
−1

cGauss(x, tf ) dx = erf

(
1√
2tf

)
= 0.99,

we have tf = 0.15.
The numerical solution is obtained using the GRW, GRWD and GRWR algorithms, for

vi = 0 and d = 1. Initially N particles are introduced in the origin of the space grid. We
consider a sequence of grids with the space steps δx = (10g)−1, where g = 1, 2, ..., 10.
Since D = 0.5, from (23) it follows that the corresponding time steps are δt = r δx2 =
r (10g)−2 and the numerical simulation contains kf = tf/δt = 15g2/r time steps. To
eliminate the boundaries effect on the numerical solution we must choose a large enough
grid so that no particles reach the boundary at time tf . A particle covers the maximum
distance if it makes all the kf jumps in the same direction. Therefore the space grid must
contain at least kf nodes on a side and on the other of the origin where all the N particles
initially are located.

We want to compare c defined by (13) with the analytic solution (29), at time tf and
over the spatial interval [−1, 1]. For r = 1, because of the singular initial condition , there
are independent even and odd modes and we have to chose l = 2 in the concentration
definition (13), i.e., c = n̄/(2δx). The nodes corresponding to x = ±1 are always even,
±1/δx = ±10g, and we introduce the quantity

if =

{
10g if kf is even

10g − 1 if kf is odd
,

such that xf = ±if δx should be the node in the interval [−1, 1] which contains particles at
tf and is the closest to x = ±1. Then for r = 1 we characterize the accuracy of the solution
c with respect to the analytical solution cGauss by the norm ∥c− cGauss∥, defined as

∥c− cGauss∥
2 =

1

if + 1

if∑
i=0

[
1

N
c((2i− if )δx, tf )−

1

N0
cGauss((2i− if )δx, tf )

]2
, (30)

where only the nodes containing particles at tf are taken into account. If r < 1, then the
two numerical modes are mixed by the particles remaining at the same node. In this case
one can use a formula analogous to (30) with if = 10g, summing over all (2if + 1) nodes
of the grid and with c = n̄/δx, defined by (13) for l = 1.

The analysis of the GRWD algorithm, equivalent to a FD scheme, indicates a linear
behavior of the norm ∥cFD − cGauss∥ as function of δx2 for several values of the parameter
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r, hence the convergence of order δx2 of the FD scheme. The same investigation shows
that the maximum precision of the finite difference scheme is obtained for r ≈ 0.3 [43].

In the following we fix the parameter r = 1. By c(xi, tk) we denote the numerical
solution obtained with the GRW algorithm described in the previous section. In fact this
solution also depends on the spatial resolution δx = (10g)−1, the total number of the
particles N , and the number of simulations used to compute the mean number of particles n̄
which, introduced in (13), give the concentration estimation. To investigate the convergence
of as function of δx and N , we consider here single GRW simulations, for which n̄ = n
and, because r = 1, from (13) we have c = n/(2δx). We computed the norm (29) for
the numerical solution for increasing N obtained with GRW and GRWR algorithms for
δx = 0.1 (Fig. 8) and δx = 0.01 (Fig. 9). The results shown in Figs. 8 and 9 indicate
that for a large enough number of particles N , both GRW and GRWR approximates the
analytical solution as well as the FD scheme. Since the fluctuations in GRWR are reduced
to minimum, this algorithm becomes equivalent to the FD scheme for a smaller value of N .

1e-03

1e-02

1e-01

1e+00

1e+01

1e+03 1e+06 1e+09 1e+12

||C
-C

G
au

ss
||

number of particles

GRW

GRWR

Figure 8. Convergence of GRW and re-
duced fluctuations algorithm GRWR towards
the analytical Gaussian solution as function
of number of particles for δx = 0.1.

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03 1e+06 1e+09 1e+12

||C
-C

G
au

ss
||

number of particles

GRW

GRWR

Figure 9. Convergence of GRW and re-
duced fluctuations algorithm GRWR towards
the analytical Gaussian solution as function
of number of particles for δx = 0.01.

We also remark the decrease ∼ 1/
√
N of the norm in case of GRW solutions. Thus

this numerical investigations suggests a converges to the analytical solution as O(δx2)
+O(1/

√
N), at moderate N , and a convergence of the order O(δx2) as for the finite dif-

ferences scheme, for larger N , when the condition 1/
√
N = O(δx2) is met. The GRWR

curves from Figs. 8 and 9 indicate a faster convergence with N , as already suggested by
the results from Fig. 5.

Since GRW algorithm can use large numbers of particles, it is “self-averaging”, in the
sense that Monte Carlo repetitions are not necessary and the required precision can be
achieved in a single GRW simulation. This is the essential difference with respect to the se-
quential PT procedures, which may be thought as “analogical Monte Carlo method” where
the solution of the diffusion equation is obtained by averages over individual trajectories of
individual particles (e.g. [19]).
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3.3. Numerical boundary conditions

The boundary conditions for GRW algorithm depend on the values of d and vi. In this
section we discuss only the simplest case d = 1 and vi = 0 analyzed in the previous
section. In more complicated cases the boundary conditions can be similarly derived by
means of the methods presented in the following.

To formulate the boundary conditions we use the numerical flux of particles J(x, t)
defined as the number of particles crossing at time t the coordinate x. We evaluate the
numerical flux during a time step δt , so that the value obtained should be assigned to
the middle of the time step. For d = 1 and vi = 0 the particles jump only between the
neighboring nodes, so that the numerical flux should be assigned to the middle of the space
step,

J(i+ 1/2, k + 1/2) =
1

δt
[δn(i+ 1, i, k)− δn(i, i+ 1, k)] . (31)

For the GRWD algorithm, using (26) and (13) with l = 1, the relation (31) becomes

J(i+ 1/2, k + 1/2) = r
δx

2 δt
[c(xi, tk)− c(xi+1, tk)] .

From (23) it follows that this is the usual FD form of the Fick’s law

J(x, t) = −D∂xc(x, t) . (32)

Let us consider a finite grid with 2L + 1 nodes, i = −L,−L + 1, ..., L. Since vi = 0
and d = 1, the boundary conditions imply only the nodes i = ±L. We discuss only the
boundary i = L, the case i = −L being similar. A Dirichlet boundary condition can be
formulated fixing the number of particles at the boundary n(L, k) = nb(k), with nb(k) a
given function of time. For other boundary conditions, including those of von Neumann
type, we must evaluate the boundary flux

J(L+ 1/2, k + 1/2) =
1

δt
[δn(L+ 1, L, k)− δn(L,L+ 1, k)] (33)

In this formula δn(L+1, L, k) is determined by means of the GRW algorithm from n(L, k),
but the number of particles δn(L,L + 1, k) jumping from outside in the node i = L is
unknown. Therefore the boundary condition can be formulated by calculating δn(L,L +
1, k) such that the flux (31) would have the requested value. Consider a von Neumann
boundary condition

J(L+ 1/2, k + 1/2) = Jb(k + 1/2) , (34)

where Jb is a given function of time. From (33) it follows the boundary condition

δn(L,L+ 1, k) = δn(L+ 1, L, k)− δtJb(k + 1/2). (35)

For Jb(k + 1/2) = 0, from (35) we obtain the boundary condition for impermeable walls.
For numerical simulations with r = 1 which use a single numerical mode, we must take
into account that (35) mixes the numerical modes. The mixing of the numerical modes can
be avoided by summing up (35) over two time steps.



20 Nicolae Suciu and Călin Vamoş

Absorbing boundary condition corresponds to the case when all the particles leaving
the grid are removed, no particles being introduced from the exterior of the grid. In this
case,

δn(L,L+ 1, k) = 0 , (36)

and the flux from the grid towards its exterior has the maximum value. The stationary
boundary condition imposes the equality of the fluxes on a side and the other of the bound-
ary

J(L+ 1/2, k + 1/2) = J(L− 1/2, k + 1/2) .

Using (31) and (19) we obtain the boundary condition

δn(L,L+ 1, k) = n(L, k)− δn(L,L, k)− δn(L,L− 1, k). (37)

Applied to GRWD (which is equivalent to the FD algorithm), this condition becomes, by
means of (26) and (27), the “transmission boundary condition” [18]

n(L+ 1, k) = 2n(L, k)− n(L− 1, k).

If we perform a numerical simulation on a finite grid of a nonstationary diffusion pro-
cess in an unbounded domain after the particles reach the grid boundary, then we must
formulate special boundary conditions. A method to obtain such nonstationary conditions
is to express the time derivative of the concentration at the boundary by means of the time
derivatives of the inside neighboring nodes. From the one-dimensional version of (1) with
V (x) = 0,

∂tc = D∂2
xc.

one obtains

∂tc(x− δx, t− δt) = D∂2
xc(x− δx, t− δt)

= D∂2
x[c(x, t)− ∂xc(x, t)δx− ∂tc(x, t)δt+O(δx2)]

= ∂tc(x, t)−D∂3
xc(x, t)δx+O(δx2),

where we used the relation δt = O(δx2) derived from (23). Then we have

∂tc(x, t) = ∂tc(x− δx, t− δt) +O(δx). (38)

Repeating the same argument for ∂tc(x− 2δx, t− δt) we also obtain

∂tc(x, t) = 2∂tc(x− δx, t− δt)− ∂tc(x− 2δx, t− δt) +O(δx2). (39)

For x = Lδx and t = (k + 1) δt, these relations written in finite difference, using (13),
give the nonstationary boundary condition

n(L, k + 1) = n(L− 1, k + 1)− n(L− 1, k) + n(L, k) (40)

and
n(L, k + 1) = 2n(L− 1, k + 1)− 2n(L− 1, k)− n(L− 2, k + 1)+

n(L− 2, k) + n(L, k) .
(41)
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These conditions are expected to give an useful approximation when the particles distribu-
tion near the boundary is a good approximation of the solution. But when the first particles
approach the boundary, there are significant fluctuations of the particles number. There-
fore at the value obtained from (40) and (41) supplementary conditions are imposed: a)
n(L, k + 1) > 0; b) n(L, k + 1) must be smaller than the value obtained from the imper-
meable wall condition (35) with Jb = 0.

As an illustration of these boundary conditions we continue the simulation of the previ-
ous section for a temporal interval three times larger than tf . We use the GRWD algorithm
defined by (26) and (27) with the parameter r = 0.3, In these simulations δx = 0.1 and
the computational interval contains the spatial interval [−1, 1]. In Fig. 10 we represent
the time evolution of the boundary concentration for four different boundary conditions.
The points BC1 correspond to the impermeable wall boundary condition given by (35) with
Jb = 0, BC2 and BC3 to the nonstationary boundary conditions (40) and (41), and BC4
to the absorbing condition (36). The nonstationary condition (40) do not improve the ac-
curacy with respect to (35) and (36). We have found that the condition BC3 given by (41)
keeps the norm (30) at values smaller than 0.02, which proves that it is suitable to be used in
simulation of nonstationary diffusion. The same conclusion can be drawn from the spatial
variation of the concentration at the final time shown in Fig. 11.
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Figure 10. Concentrations at the right
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3.4. Two-dimensional GRW algorithms

As already mentioned in Section 3.1, for constant diffusion coefficients the two and three-
dimensional algorithms can be simply built by repeating the one-dimensional procedure for
all space directions. Figure 12 illustrates such a two-dimensional GRW algorithm where,
after the advective step the particles execute jumps on x2-direction, then jumps on x1-
direction, both according to the one-dimensional rule (19). When the diffusion coefficients
vary in space two different parameters r are needed to describe the ratios of particles under-
going jumps (see Section 3.5 below) and the GRW algorithm follows the rules illustrated in
Fig. 13 [33].

The two-dimensional algorithm from Fig. 12 is mainly useful in simulations of
advective-diffusive transport, described by (1), in heterogeneous media characterized by
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Figure 12. Two-dimensional GRW algo-
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Figure 13. Two-dimensional GRW algo-
rithm for independent longitudinal and trans-
verse random walks.

highly variable velocity fields dominating the diffusion process, which therefore can be
sufficiently well approximated as isotropic and characterized by a single diffusion coeffi-
cient [28, 30, 31, 33, 34, 36, 37]. The values of the normalized concentration at a given
time t = kδt and at a lattice site (x1, x2) = (i1δx1, i2δx2), where δt is the time step and
δx1, and δx2 the space steps, can be estimated from the particles distribution produced by
GRW simulations with the formula

c(x1, x2, t) =
1

N

1

4δx1δx2

i1+1∑
i′1=i1−1

i2+1∑
i′2=i2−1

n(i′1, i
′
2, kδt). (42)

Figure 14 shows the concentration field at successive times given by (42) for a GRW sim-
ulation of isotropic diffusion in a velocity field generated as a sample of a random space
function (see Section 5.1), in case of a singular initial distribution of particles. Figure 15
shows concentration fields for a non-singular initial condition.

Let us analyze in more detail the particles distribution in case of the initial
condition consisting of N particles uniformly distributed over NX0

grid sites. By
n(i1, i2, k;x0,1, x0,2) we denote the distribution of particles at the time step k given by
the GRW procedure for a diffusion process staring at (x0,1, x0,2). Since the distribution of
the particles at time k can be written as

n(i1, i2, k) =
∑

x0,1,x0,2

n(i1, i2, k;x0,1, x0,2),

it follows that

1

N

∑
i1,i2

n(i1, i2, k)

=
1

NX0

∑
x0,1,x0,2

NX0

N

∑
i1,i2

n(i1, i2, k;x0,1, x0,2). (43)

Thus, according to (43), the concentration (42), as well as its spatial moments, are averages
over the trajectories of the diffusion process starting at given initial positions and over the
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Figure 14. The concentration field, at t = 0,
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distribution of 1010 particles released at the
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same times as in Fig. 14, for a uniform initial
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distribution of the initial positions. The ability of the GRW to distinguish between the
two kind of averages has useful applications in investigations on dependence on initial
conditions and memory effects of diffusion in random velocity fields [34, 36, 37].

3.5. GRW algorithm for two-dimensional diffusion in non-homogeneous and
anisotropic media

In the following we consider a two-dimensional diffusion process described by the diagonal
diffusion tensor ∥∥∥∥∥ Dx(x, y) 0

0 Dy(x, y)

∥∥∥∥∥
and the diffusion equation

∂tc = ∂x(Dx∂xc) + ∂y(Dy∂yc).

The GRW solution of the diffusion equation with spatially dependent diffusion coefficients
should use correction terms associated with the drift term (−∂xDx,−∂yDy) [32]. However,
for the purpose of illustration, we consider here only the particular case of slowly variable
diffusion coefficients, i.e., ∂xDx ≈ 0 and ∂yDy ≈ 0, for which the diffusion equation can
be approximated by

∂tc = Dx∂
2
xc+Dy∂

2
yc. (44)

The equation (44) has no drift terms and the diffusion coefficients vary in space. In this
case, simulations using the superposition of one-dimensional GRW rules (19) illustrated in
Fig. 12 are no longer accurate. Therefore, we use the new algorithm from Fig. 13, where
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the particles lying at a lattice site are globally spread according to the rule

n(i, j, k) = δn(i, j | i, j, k)
+ δn(i− dx, j | i, j, k) + δn(i+ dx, j | i, j, k)
+ δn(i, j − dy | i, j, k) + δn(i, j + dy | i, j, k) (45)

where n(i, j, k) is the number of particles at the site (xi, yj) = (iδx, jδy) at the time kδt.
Unlike the two-dimensional algorithm presented in Fig. 12, where the one-dimensional
procedure is applied successively for longitudinal and transversal directions, the procedure
(45) moves the particles simultaneously along the principal directions of the diffusion tensor
as illustrated in Fig. 13 (for the general case of a non vanishing drift).

The anisotropy is taken into account by two different parameters dx and dy which de-
scribe the diffusive jumps along the coordinates axes. The spatial variation of the diffusion
coefficients is described through the variable parameters

rx =
2Dxδt

(dxδx)2
, ry =

2Dyδt

(dyδy)2
. (46)

After the global change of state of the lattice by the procedure (45) applied at every site
containing particles, the new numbers of particles at sites are obtained similarly to (20) by
summation over two spatial indices.

The average over an ensemble of simulations of the terms in (45) are related by

δn(i± dx | j, k) = 1

2
rx(i, j) n(i, j, k),

δn(i | j ± dy, k) =
1

2
ry(i, j) n(i, j, k),

δn(i, j | i, j, k) = [1− rx(i, j)− ry(i, j)] n(j, k).

These relations can be used to show that for slowly variable diffusion coefficients this two-
dimensional GRW algorithm approximates the finite difference scheme for the diffusion
equation (44).

The lattice steps δx and δy are chosen accordingly to the desired resolution of the
concentration field. The time step δt is inferred from the condition rx + ry ≤ 1, which
states that the numbers of diffusing particles are limited by the numbers of particles at the
lattice sites. Using (46) one obtains

δt ≤
[
2Dmax

x

(dxδx)2
+

2Dmax
y

(dyδy)2

]−1

, (47)

where Dmax
x and Dmax

y are the upper bounds of the diffusion coefficients Dx(x, y) and
Dy(x, y).

The two dimensional algorithm (45) has been used to simulate the diffusion through
the human skin [33]. A two dimensional geometry with the x-axis parallel and the y-axis
perpendicular to the surface of the skin was used. A thin film consisting of N = 1020 water
molecules with ∆x = 10 mm was considered to be applied on the surface of the skin.
Since the skin structure is stratified, the diffusion can be described by the two-dimensional
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equation (44). To describe the diffusion in the horizontal direction the lattice dimension on
the x axis was 3∆x. An acceptable resolution was obtained with δx = 0.1mm, (300 nodes
per horizontal lattice length). A simplified two layers structure of the skin was considered,
with thickness y1 = 0.1mm and y2 = 0.5mm respectively. With a resolution of δy = 0.01
mm the lattice extended over 10 nodes in the first layer and over 50 nodes in the second.

Because of the nonhomogeneous structure of the skin the diffusion coefficients show
spatial fluctuations about the mean value. At every lattice site the coefficients Dx and Dy

were generated as normal random variables with the mean value equal to half the maximum
values Dmax

x and Dmax
y and variance equal to a fraction p = 0.1 of the corresponding

maximum. Since the cells are rather flat, the coefficient Dmax
x = 2Dmax

y = 5.8810−7 m2/s
was considered for the first layer. In the second layer an isotropic diffusion coefficient ten
times larger than in the superior layer was chosen. Between the layers a transition zone of
thickness 3δy was placed, where diffusion coefficients vary linearly [33].

Two different boundary conditions were used. At the surface of the skin, the molecules
which jump in the exterior of the domain were blocked on the boundary. At the infe-
rior boundary a “transmission boundary condition” in the first order of approximation (41)
was imposed. This last condition has the property to not disturb the diffusion front at the
boundary. The time step was chosen using the condition (47). Some simulation results are
presented in Figs. 16 and 17. The high resolution GRW simulations were further used to
estimate probability distributions of water molecules and fluxes through the superior and
inferior layers of the skin model [33].

Figure 16. The distribution of the water
molecules in the skin after 5 minutes.

Figure 17. The distribution of the water
molecules in the skin after 200 minutes.

4. Two dimensional biased-GRW algorithm

4.1. The BGRW algorithm

The GRW algorithm was introduced in Section 2.2 as a superposition of many PT proce-
dures, implemented as weak Euler schemes for the Itô equation (2). Further, in Section 3.1,
GRW was generalized by allowing groups of particles to be captured at a lattice site after
the advection step, so that it remains equivalent with the Weak Euler scheme (i.e., it moves
particles by advection displacements followed by unbiased random walk jumps) only for a
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time step. Both GRW algorithms were shown to be also equivalent, in case of vanishing or
constant drift coefficients, with the FD scheme for the diffusion equation. Since the global
spreading of the particles is given by rules which update the state of the lattice sites, e.g.
(8-9), (19-20), (45), GRW is a particular cellular automaton (CA), i.e., it is a stochastic
process in the space of configurations, defined at a given time by the occupation numbers at
each lattice site [29]. What makes the GRW algorithm different from a typical CA approach
[17] is that the number of particles per grid site is not limited by an “exclusion principle”
and there are no limitations for the total number of particles. Therefore, as shown in Figs.
8-9, GRW is “self-averaging” in the sense that the solution given by a single simulation is
practically the same as that obtained after averaging over large ensembles of simulations.
By working with integers, GRW is free of round-of errors, avoids numerical diffusion and
it is inherently stable (see Sections 2.2 and 3.1). However, for variable drift and diffusion
coefficients overshooting errors occur when the particles jump over more than one lattice
site (see Fig. 18). This is mainly the case of diffusion in space variable velocity fields, when
the velocity at the sites between the initial and final position of the group of particles during
the advection step may have sharp variations. Since by playing only with the parameters δx,
δt, d, and r of the unbiased GRW algorithm it is very difficult to reduce the overshooting
errors [28], a better solution is to modify the CA rule of moving groups of particles.

To get rid of overshooting errors, we impose that particles jump only to the nearest
sites (Fig. 19). In this procedure the advection will be simulated by a bias in the random
walk jumps. Therefore, we call it “biased global random walk” (BGRW) algorithm. Since
BGRW moves all the particles lying at a lattice site in a single numerical procedure, N
can be as large as necessary to ensure the self-averaging, which is the main difference with
respect to other CA for diffusion without exclusion principle (e.g. [17]).
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Figure 18. Change of state in unbiased
GRW algorithm over a time step δt = 0.5.
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Figure 19. Change of state in BGRW algo-
rithm over a time step δt = 0.0025.

The 2-dimensional BGRW is defined by the CA rule

n(i, j, k) = δn(i, j | i, j, k)
+ δn(i+ 1, j | i, j, k) + δn(i− 1, j | i, j, k)
+ δn(i, j + 1 | i, j, k) + δn(i, j − 1 | i, j, k), (48)

where n(i, j, k) is the number of particles at the site (x, y) = (iδx, jδy) at the time t =
kδt. Corresponding to the components of the drift (velocity) and diffusion coefficients of
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the transport problem, Vx(x, y, t), Vy(x, y, t), Dx(x, y, t) and Dy(x, y, t), we define the
dimensionless parameters

vx = Vx
δt

δx
, vy = Vy

δt

δy
, rx = Dx

2δt

δx2
, ry = 2Dy

2δt

δy2
. (49)

The averages of the terms in (48) over an ensemble of simulations are related by

δn(i, j | i, j, k) = (1− rx − ry) n(i, j, k),

δn(i± 1, j | i, j, k) = 1

2
(rx ± vx)n(i, j, k),

δn(i, j ± 1 | i, j, k) = 1

2
(ry ± vy)n(i, j, k). (50)

The last four terms in (48) are Bernoulli random variables which, for the simulations pre-
sented in the following, were approximated as in the reduced fluctuations algorithm GRWR
presented in Section 3.1.

Defining the particle density ρ(x, y, t) = n(i, j, k) and summing the contributions from
the first neighbors to a lattice site, from (48-50) one obtains

ρ(x, y, t+ δt)− ρ(x, y, t)

δt
+

Vxρ(x+ δx, y, t)− Vxρ(x− δx, y, t)

2δx
+

Vyρ(x, y + δy, t)− Vyρ(x, y − δy, t)

2δy
=

Dxρ(x+ δx, y, t)− 2Dxρ(x, y, t) +Dxρ(x− δx, y, t)

δx2
+

Dyρ(x, y + δy, t)− 2Dyρ(x, y, t) +Dyρ(x, y − δy, t)

δy2
, (51)

which is just the forward in time centered in space FD scheme for the Fokker-Plank equation

∂tρ+ ∂x(Vxρ) + ∂y(Vyρ) = ∂2
x(Dxρ) + ∂2

y(Dyρ). (52)

The advection-diffusion equation which corresponds to Fick’s law

∂tρ+ ∂x(V
∗
x ρ) + ∂y(V

∗
y ρ) = ∂xDx∂xρ+ ∂yDy∂yρ,

is equivalent to (52) if the new drift coefficients are given by the relations V ∗
x = Vx−∂xDx

and V ∗
y = Vy − ∂yDy [19] and the corresponding BGRW algorithm can be easily derived.

As it follows from (50), BGRW is subject to the restrictions

rx + ry ≤ 1, |vx| ≤ rx, |vy| ≤ ry. (53)

Adding the conditions rx ≤ 0.5 and ry ≤ 0.5, the von Neumann criterion for stability
is satisfied, implying that there is no numerical diffusion. The last two inequalities in (53)
ensure that the Courant numbers Vxδt/δx and Vyδt/δy are sub-unitary, thus the algorithm
also avoids the overshooting errors. As shown by (51), the BGRW algorithm is equivalent
with a FD scheme even in case of space-time variable velocity fields, unlike the unbiased
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GRW, for which the equivalence holds only for constant velocity. Instead, because the ad-
vective displacement is accounted for by biased jump probabilities, BGRW is not equivalent
with an Euler scheme.

As a direct consequence of (53), we can see that removing the overshooting errors re-
quires high computational costs. Let us consider an isotropic two-dimensional diffusion
in groundwater (Dx = Dy = D = 0.01 m2/day) in a mean flow of U = 1 m/day ori-
ented along the x axis and with a standard deviation σ = 0.2 m/day. The velocity field is
generated as a realization of a periodic random field, consisting of a superposition of 64 sin-
modes which approximates a Gaussian field (see Section 5.1 and Equation (60)). Assuming
that the maximum velocity can be as large as V max = U+5σ = 2 m/day, from (49) and the
second condition (53) it follows that δx ≤ 2D/V max

x = 0.01 m. Since this space step also
fulfils the third condition (53), in the following we take δy = δx. Correspondingly, from
(49), δt = 0.0025 day (the case represented in Fig. 19). The simulation of the transport
over 100 days, for a point instantaneous injection at the origin of the lattice, required about
15 cpu hours. For the same problem and consuming the same cpu time, the unbiased GRW
algorithm with δx = 0.1 m and δt = 0.5 day (Fig. 18) was able to perform a transport sim-
ulation over 4000 days, on the same computer (IBM Regatta-Power 4) [32]. Nevertheless,
the BGRW simulations are very helpful for the evaluation of other numerical methods [32],
mainly, as in the case presented here, when no analytical solutions are available.

We computed the first and second centered spatial moments of the density ρ, defined by

µα(t) =

∫ ∫
αρ(x, y, t)dxdy, µαα(t) =

∫ ∫
(α− µα)

2ρ(x, y, t)dxdy, (54)

where α stands for x or y and the integrals are computed over the support of ρ. Further,
using (54), we computed the derivatives of the 1-st moments V cm

α = dµα/dt, which rep-
resent the velocity components of the center of mass of the solute body, and the half-rates
of increase with time of the 2-nd moments Deff

αα = µαα/(2t), which in the large time limit
define the effective diffusion coefficients for the transport process [2].

The self-averaging of the GRW simulations for the transport problem considered here is
ensured if the total number of particles is of the order N = 1010 [28]. Using this value of N
in all cases, the numerical solution ρ = n was estimated by the actual number of particles
n at the lattice sites.

The moments (54) were computed with BGRW for the parameters δx = 0.01 m and
δt = 0.0025 day (case b1) and for a finer discretization, δx = 0.005 m and δt = 0.000625
day (case b2), with rx = ry = r = 0.5 in both cases. The errors of BGRW simulation for
the case (b1) are estimated by

ε(V cm
α ) =

√
1

T

∑k=T

k=0
(∆V cm

α )2(k), ε(Deff
αα ) =

√
1

T

∑k=T

k=0
(∆Deff

αα )2(k) (55)

where ∆V cm
α and ∆Deff

αα are the deviations of the corresponding quantities computed in
case (b1) with respect to those obtained in case (b2) and T is the simulation duration. The
error estimates presented in Table 1 are orders of magnitude smaller than the fluctuations
of the first two moments of the density ρ (governed by the physical parameters D = 0.01
m2/day and σ = 0.2 m/day). A numerical investigation on the convergence of BGRW by
comparisons with analytical solutions has not yet been done. However, since there are no
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ε(V cm
x ) ε(V cm

y ) ε(Deff
xx ) ε(Deff

yy )

0.00033 m/day 0.00026 m/day 0.00075 m2/day 0.00002 m2/day

Table 1. Errors for the BGRW simulation case (b1) estimated by comparison with the BGRW
simulation case (b2).

overshooting errors, it is expected that, for the large number of particles used in simulations,
the convergence order for BGRW is the same as that for GRW simulations of genuine
diffusion (which was shown in Section 3.2 to be O(δx2)). Since, due to conditions (53), this
order is much smaller than for the particles methods with overshooting, BGRW solutions
can serve as reference to evaluate the coarser (but faster) unbiased GRW algorithm.

As an illustration, we compare in Figs. 20 and 21 the deviations ∆V cm
α and ∆Deff

αα

with respect to BGRW (case b1) of the results given by unbiased GRW for the sets of
parameters δx = 0.1 m, δt = 0.5 day, r = 0.25 (case u1) and δx = 0.01 m, δt = 0.1 day,
r = 0.408 (case u2). The corresponding error estimations via (55) are given in Table 2.
Estimates like those given in Table 2 can be used to check whether the numerical setup of
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Figure 20. Deviations ∆V cm
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ε(V cm
x ) ε(V cm

y ) ε(Deff
xx ) ε(Deff

yy )

(u1) 0.02359 m/day 0.01716 m/day 0.01317 m2/day 0.00257 m2/day
(u2) 0.00612 m/day 0.00524 m/day 0.00312 m2/day 0.00039 m2/day

Table 2. Errors for the unbiased GRW simulations case (u1) and case (u2) estimated by comparisons
with the BGRW simulation case (b1).

the unbiased GRW simulation fulfils the accuracy requirements for specific investigations.
For instance, we conclude that even if the coarser discretization (u1) yields errors ε(Deff

xx )
of the order of the local diffusion coefficient D it is still accurate enough to reproduce the
behavior of the expectations (averages over ensembles of velocity fields) of the longitudinal
effective coefficients Deff

xx , which are one order of magnitude larger than D [30, 31]. In
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this case the unbiased GRW can be successfully used in investigations on the large time
behavior and self-averaging properties of the transport process [31, 11]. Since for (u2) the
errors are one order of magnitude smaller, in this case the unbiased GRW can be used to
simulate the behavior in single realizations. BGRW should be used when higher accuracy
is necessary (e.g. smaller time scales, transport in multi-phase systems, complex reaction-
diffusion processes).

BGRW is similar to the CA method for reaction-diffusion processes proposed by Kara-
piperis and Blankleider [17] and their modeling strategy for the reaction step can be directly
implemented in our algorithm. The essential difference is that, instead of the sequential
procedure of Karapiperis and Blankleider [17], BGRW performs a global spreading of par-
ticles over lattice sites and, moreover, benefits from the flexibility of choosing the global
spreading method (Bernoulli distributions, reduced fluctuations GRW, erf-GRW, presented
in Section 3.1). Since BGRW is anyway equivalent to a FD method, the question naturally
arising is why don’t use just the FD scheme? For two reasons. First, by using particles
BGRW yields a physical meaningful smallest particles density, that of one particle per lat-
tice site, and diffusion fronts have a smaller extent than for FD schemes, which reduces
the computational effort. The second reason is that BGRW mimics the molecular chaos by
the fluctuations of the numbers of particles. Therefore, BGRW is able to describe phenom-
ena that are not captured by FD numerical approaches. For instance, coherent structures
produced by the interplay of reaction dynamics and molecular chaos, in absence of concen-
tration gradients, when the diffusion term of FD vanish, already captured by particles-CA
[17], can be efficiently simulated by a BGRW algorithm.

4.2. Evaluation of unbiased GRW by comparison with BGRW

We consider the generic problem for transport in groundwater, the numerical setup (b1) for
BGRW, and the setup (u1) for the unbiased GRW, described in the previous section.

To assess the reliability of the faster, but coarser, unbiased GRW simulations we shall
use the overshooting-free (and more expensive in terms of cpu time) BGRW algorithm.
Because of the statistical nature of the predictions for groundwater contamination, we go
beyond the single realization comparisons done in the previous section, and proceed with
an evaluation of GRW solutions for the means and fluctuations of the observables of the
transport process, computed by averaging over an ensemble of 256 velocity realizations.
As observables we consider the spatial moments of the solute concentration and the space
average of the concentration over the cross-section of the solute plume.

The two-dimensional version of the equation (1) was solved by GRW and BGRW, for
identical realizations of the velocity, point instantaneous injection at the origin of the com-
putational domain. The grid dimensions were fixed to L1 = 150 m and L2 = 20 m, so that
during the total simulation time, T = 100 days, no particle reached the boundary. We eval-
uated, from both GRW and BGRW simulations, the first and the 2-nd spatial moments of
the concentration (54), the velocity components of the center of mass V cm

l (t) = dµl(t)/dt,
and the effective diffusion coefficients Deff

ll (t) = µll(t)/(2t), where l = 1, 2. The cross-
section concentration was computed as mean concentration in a narrow slab of dimensions
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1 m (= 10δx) times 20 m (= L2) with the formula [30]

C(x1, t) =
1

N

1

10δxL2

L2/δx∑
i2=1

5∑
i′1=−5

n(i1 + i′1, i2, kδt). (56)

For comparisons we used the cross-section concentration at the center of mass of the plume,
i.e., (56) evaluated at x1 = µ1(t).

The evaluation of the center of mass velocity was done using the absolute errors

δ(Φ) = Φ(GRW)− Φ(BGRW), (57)

where Φ stands, respectively, for the expectation E(V cm
l ), computed by arithmetic

means over the 256 velocity realizations, and for the corresponding standard deviations
SD(V cm

l ) = {E[(V cm
l )2]− [E(V cm

l )]2}1/2. The results for l = 1 and l = 2 are presented
in Figs 22 and 23. In these figures we also plotted by horizontal lines the mean values of
the errors (57) calculated by

∥δ(Φ)∥ =

{
1

T − T1

∫ T

T1

[δ(Φ)(t)]2dt

}1/2

, (58)

where T1 = 1 day.
The evaluation for the effective coefficients Deff

ll and cross-section concentration C
were achieved by using the percentage relative errors

ε(Φ) = 100
Φ(GRW)− Φ(BGRW)

Φ(BGRW)
, (59)

where Φ stands, again, for the corresponding expectations, E(·), and standard deviations,
SD(·). The results for the longitudinal and transverse effective coefficients are given in
Figs 24 and 25, respectively, and those for the cross-section concentration in figure 26. The
horizontal lines in these figures correspond to the mean errors (59), calculated similarly to
(58), as ∥ε(Φ)∥.
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Figure 22. Evaluation of the longitudinal
component of the center of mass velocity.

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

10 20 30 40 50 60 70 80 90 100

m
 / 

da
y

Days

δ(E(Vcm
2  ))

δ(SD(Vcm
2  ))

Figure 23. Evaluation of the transverse
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Figure 24. Evaluation of the longitudinal
effective diffusion coefficient.
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Figure 25. Evaluation of the transverse ef-
fective diffusion coefficient.
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Figure 26. Evaluation of the cross-section
concentration at the plume center of mass.

A comparison between Figs. 22 and 23 and the theoretical expectation values
E(V cm

1 ) = 1 m/day and E(V cm
2 ) = 0 m/day [37], shows that GRW reproduces the mean

and the fluctuations of the velocity of the plume center of mass with a very good precision
of the order of a few cm/day. Figures 25 and 27 also show that the GRW estimations of the
longitudinal effective coefficient and cross-section concentration are obtained with a satis-
factory precision of about 5%. The errors for the transverse effective coefficient are larger,
mainly those for the standard deviation (Fig. 25). However, since limit theorems results for
the long time behavior of the transport process considered here predict up-scaled diffusion
coefficients given by asymptotic expansions truncated at the order of local diffusion coef-
ficient D [37], absolute errors of the GRW estimates for the transverse coefficient smaller
than D are also acceptable. The GRW algorithm, validated in this way by comparisons
with BGRW results, has been used to evaluate the classical “first-order approximation” of
the longitudinal effective diffusion coefficients [31].
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5. Sensitivity/uncertainty analysis of macrodispersion model

5.1. Monte Carlo simulations

To enable the simulation of large ensembles of transport realizations, a linearization of
the flow equation (3) was considered and the velocity samples were generated, for given
statistics of the hydraulic conductivity K, by the Kraichnan’s randomization method [26],
which has been successfully used in numerical investigations on large scale behavior of the
passive transport in aquifers [11, 30, 31]. We considered a log-normally distributed con-
ductivity K, i.e., a normal lnK field with variance σ2 and exponential isotropic correlation
ρ(|x1 − x2|) = σ2 exp(−|x1 − x2|/λ), where λ is the correlation length. For a given pres-
sure gradient between the inlet and outlet boundaries, which fixes the value of the ensemble
mean velocity U = |⟨V⟩|, the incompressible Darcy flow, solution of equations (3), was
approximated by a superposition of Np periodic modes [27]

Vi(x)=Uδi1 + Uσ

√
2

Np

Np∑
l=1

pi(ql) sin(ql · x+ αl). (60)

The wave vectors ql are mutually independent random variables, with probability distribu-
tion proportional with the spectral density of the lnK field, and the phases αl are random
variables uniformly distributed in the interval [0, 2π]. The functions pl are projectors which
ensure the incompressibility of the flow. It has been shown that Vi tends to a Gaussian
random field when Np → ∞ [26]. It was also found that Np = 6400, which we fix in
the following, provides reliable approximations of the velocity field at the problem’s spatial
scale considered here [30, 11].
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the longitudinal and transverse diffusion co-
efficients for a singular initial condition.

The mean velocity occurring in (60), which can be freely chosen, was set to a typical
value of U = 1 m/day. We also have chosen a typical local-scale diffusion coefficient in
(1), D = 0.01 m2/day, and λ = 1 m for the correlation length of the lnK field, so that the
Péclet number was set to Pe= Uλ/D = 100. Transport simulations were carried out with
the two-dimensional unbiased GRW algorithm with reduced fluctuations, constructed as a
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superposition of one-dimensional GRW procedures (see Section 3.4 and Fig. 12), within the
numerical setup (u1) described in Section 4.1. The total number of particles was N = 1010,
a value which ensures the self averaging of the single GRW simulations and, as shown in
Fig. 27, yields estimates of effective diffusion coefficients that are indistinguishable from
those for N > 1010 (in fact we found that they coincide in the limit of double precision
[28]). In this way, we excluded a possible source of errors, that was important in traditional
Monte Carlo simulations based on PT procedures using thousands of particles (e.g. [27]).
By averaging over ensembles of 1024 realizations we estimated mean values and standard
deviations of the effective diffusion coefficients (see e.g. Fig. 28) with Monte Carlo errors
smaller than half the local coefficient D [34].

We conducted Monte Carlo simulations for two cases, corresponding to two extreme
degrees of heterogeneity: σ2 = 0.1, for which the approximation (60) of the velocity field
is accurate and the macrodispersion model is expected to provide a reliable description of
the mean behavior of the transport process, and σ2 = 6, an extremely large value, for which
(60) is no longer close to the true solution of flow equations (3) but can however serve to
illustrate the situation when the macrodispersion model might be inadequate.

The behavior of a passive tracer, initially uniformly distributed in slabs of dimensions
100λ × λ perpendicular to the mean flow direction, was simulated over 2000 days for the
low heterogeneity case σ2 = 0.1, in 1024 realizations of the random field (60), and over
300 days, in 100 realizations in the highly heterogeneous case σ2 = 6. The contours of
the solute plumes in the two extreme cases are compared in Figs. 29 and 30. (Note that
the spatial simulation domain was, in all cases, large enough to avoid the influence of the
boundaries.)
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Figure 29. Plume contours for σ2 = 0.1 at
t = 1000 days and at t = 1500 days.

50

100

150

200

250

300

-50 0 50 100 150 200 250

x 2
 (

m
)

x1 (m)

1 particle
1 000 000 particles

Figure 30. Plume contours for σ2 = 6.0 at
t = 10 days and at t = 100 days.

5.2. Sensitivity and uncertainty analysis

Monte Carlo estimates, by equal-weight (arithmetic) averages over the corresponding en-
sembles of realizations, hereafter denoted by ⟨· · ·⟩, were computed for the set of input
parameters of the macrodispersion model, consisting of longitudinal u = dE(X1)/dt
and transverse v = dE(X2)/dt components of the center of mass velocity, longitudinal
Dx = Deff

11 and transverse Dy = Deff
22 effective diffusion coefficients, for the only output
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parameter considered here, consisting of the cross-section space average concentration at
the center of mass (hereafter denoted by c), as well as for their cross-correlations, ⟨uv⟩,
⟨uDx⟩, ⟨uDy⟩, ⟨vDx⟩, ⟨vDy⟩, ⟨DxDy⟩, ⟨uc⟩, ⟨vc⟩, ⟨Dxc⟩, and ⟨Dyc⟩. Probability densi-
ties of the parameters, approximated by histograms, were summed-up to estimate cumula-
tive probability distributions.

Figure 31 shows that for low heterogeneity (σ2 = 0.1) the only input-input relevant
correlation is that between the longitudinal velocity of the center of mass and the transverse
effective diffusion coefficient. The sensitivity to the longitudinal mean flow velocity of the
transverse effective diffusion coefficient indicates its increased role in case of small mean
flow velocity. The results for the highly heterogeneous case (σ2 = 6) presented in Fig. 5
show stronger correlations between the input parameters, which are expected to facilitate
the uncertainty propagation and to reduce the reliability of the macrodispersion model.
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Figure 31. Correlations between the in-
put parameters of the macrodispersion model
(velocity components of center of mass, u
and v, and effective diffusion coefficients,
Dx and Dy) for σ2 = 0.1.
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As expected, for low heterogeneity (Fig. 33) there is a strong correlation between the
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longitudinal effective diffusion coefficient and the cross-section averaged concentration.
This suggests that, when the only output parameter of interest is the cross-section concen-
tration, the macrodispersion model can be trusted as reliable for single-realizations of the
transport process, in agreement with other observations that the cross-section concentration
can be modeled as an one-dimensional advection-diffusion process governed by the longi-
tudinal effective diffusion coefficient [30]. The situation is different for high heterogeneity
(Fig. 34), where the cross-section concentration is also strongly correlated with the trans-
verse effective diffusion coefficient. Again, this result renders questionable the applicability
of the macrodispersion model to highly heterogeneous media. To illustrate the capability of
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Figure 35. Probability distributions of the
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σ2 = 0.1.
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the Monte Carlo approach based on GRW simulations to produce a full statistical descrip-
tion of the transport process, we present in Fig. 35 the estimated cumulative probability
distribution of the longitudinal velocity of the center of mass and in Fig. 36 the distribution
of the cross section concentration at the plume’s center of mass.

6. Conclusion

The GRW algorithm moves groups of particles according to the random walk rule, general-
izing the usual sequential algorithms which generate trajectories of the individual particles.
Practically, GRW simulates the collective diffusive behavior of large systems of particles
at costs comparable with those of moving a single particle by sequential algorithms. This
results in a significant saving of memory and computing time. The number of particles is
limited only by the maximum number that can be represented on a computer. As a random
walk method, GRW is stable and free of numerical diffusion [43].

The unbiased GRW algorithm can be thought of as a weak Euler scheme for the Itô
equation which, instead of simulating individual trajectories, provides a numerical solution
for the corresponding probability density governed by the associated Fokker-Planck equa-
tion. For simple diffusion processes with constant drift coefficients, GRW generalizes the
FD scheme and, for large enough number of particles, has the same precision and reaches
the same order of convergence. The biased algorithm BGRW models the drift as a bias in
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the jump probability, and, therefore, it is no longer equivalent to an Euler scheme for the
Itô equation. Instead, BGRW is equivalent to a stable FD scheme free of numerical diffu-
sion for the Fokker Planck equation, even in the general case of space-time variable drift
and diffusion coefficients. Even though BGRW requires finer grids, hence higher computa-
tional resources, it is very useful as a reference method in evaluating the overshooting errors
of the unbiased GRW codes [32, 31]. By working with indivisible particles, both BGRW
and unbiased GRW avoid extending diffusion fronts beyond the minimum concentration
of one particle per lattice site, saving time, and mimic the molecular chaos by fluctuations
of the number of particles, accounting for subtle phenomena such as coherent structures at
equilibrium, which cannot be described by FD methods [17].

GRW algorithms are suitable for modeling complex diffusion processes such as
advection-dominated transport with random space-variable coefficients, with chemical
reactions between several molecular species, as well as radioactive decay processes.
The numerical modeling may benefit of the simple cellular automaton structure of the
GRW algorithms and of their ability to consider systems of particles as large as the
real number of species molecules involved in chemical reactions. Owing to the formal
equivalence of Fick’s and Darcy’s laws, GRW solutions of flow in porous media described
by Richards equation [25] can also be implemented. Another promising application is
the multidimensional GRW simulation for the evolution of the probability distributions
of the concentrations in reactive turbulent transport, modeled as diffusive process in a
multidimensional space constructed as cartesian product between the physical space and
the ranges of the species concentrations [3, 24, 41]. In principle, the GRW algorithm can
be adapted to solve problems for parabolic differential equations or ordinary stochastic dif-
ferential equations whenever they describe normal diffusion processes and are compatible
with random walk approximations. Anomalous diffusion processes do not belong to this
class but some anomalous transport problems can yet be solved similarly with the problem
of diffusion in random fields presented in this chapter. For instance, if the drift coefficients
are samples of a fractional Gaussian noise in space, ensembles of GRW simulations may
be used to assess the statistics of the resulting process, consisting of a superposition of
normal diffusion and fractional Brownian motion [37].
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