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Multiscale structure of time series revealed by the monotony spectrum
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Observation of complex systems produces time series with specific dynamics at different time scales. The
majority of the existing numerical methods for multiscale analysis first decompose the time series into several
simpler components and the multiscale structure is given by the properties of their components. We present a
numerical method which describes the multiscale structure of arbitrary time series without decomposing them.
It is based on the monotony spectrum defined as the variation of the mean amplitude of the monotonic segments
with respect to the mean local time scale during successive averagings of the time series, the local time scales
being the durations of the monotonic segments. The maxima of the monotony spectrum indicate the time scales
which dominate the variations of the time series. We show that the monotony spectrum can correctly analyze a
diversity of artificial time series and can discriminate the existence of deterministic variations at large time scales
from the random fluctuations. As an application we analyze the multifractal structure of some hydrological time
series.
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I. INTRODUCTION

By observing natural complex systems with a hierarchical
structure, such as those in geophysics, biology, finance,
ecology, internet traffic, etc., one obtains time series which
reflect their dynamics at different time scales [1]. Therefore a
correct multiscale analysis of such time series is essential to
design a proper model of complex systems [2,3].

The majority of the multiscale analysis methods first
decompose the time series in simpler components which are
associated with the time scales. For instance, the classical
spectral Fourier method decomposes time series into a sum of
trigonometric components while the multiresolution analysis
uses wavelets [3]. Other methods, such as the empirical mode
decomposition (EMD), build intrinsic mode functions (IMFs)
which are not predefined and are applicable to arbitrary
nonlinear and nonstationary time series [4–8]. An IMF is a
simple oscillatory mode satisfying two conditions: (i) between
two successive zeros there is a single local extremum; (ii) the
envelopes of the local maxima and minima are symmetric.
Hence it is a zero-mean oscillatory wave form modulated in
both amplitude and frequency.

Obviously, the results of such multiscale analyses depend
on the particular decomposition on which it is based. It is also
possible to obtain information about the multiscale structure
of a time series without decomposing it. For instance, the
visibility graph algorithms map time series into graphs in order
to apply graph theory to the time series analysis [9,10]. It uses
a very general approach based on the relative positions of the
local extrema.

The multiscale analysis method presented in this paper
relies on the variation of monotony properties of time series
during a succession of smoothings. The local time scale
(LTS) is the length of a monotonic segment (it is also
known as “characteristic time scale” [4]). The global spectral
characterization of a time series is given by the mean LTS
(MLTS). The successive averagings eliminate progressively
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the small LTSs until a monotonic averaged time series
is obtained. The multiscale structure is described by the
monotony spectrum (MS) which contains the variation of the
mean amplitude of the monotonic segments as a function of
the MLTSs for the averagings which reduces the number of
monotonic segments. The maxima of the MS indicate the
MLTSs which dominate the variations of the time series. This
method does not depend on any preliminary hypothesis or any
parameter to which we have to give a subjective, semiempirical
value.

The MS is a condensed description of the monotony
properties of a time series. A more detailed description is
given by the monotony graph defined as the plot displaying
the amplitudes of all the monotonic segments against their
length. We used the detailed information contained in the
monotony graphs to decompose a complex financial time
series into intrinsic components with minimal spectral
superposition [8]. First we separated the component with the
maximum time scale (the monotonic component if it exists)
and then we determined the other components such that their
monotony graphs are disjoint one from another and from
that of the first component. This algorithm was developed
into an automatic one which can determine the component
with the maximum monotonic variation [11]. We used it
to decompose time series with self-similar properties such
as the fractional Brownian motion into a self-similar set of
components.

II. MONOTONY SPECTRUM

Let us consider a time series with equidistant sampling
{x(n),n = 1,2, . . . ,N}. We denote by Ij , j = 1,2, . . . ,J its
monotony intervals. If nj , j = 1,2, . . . ,J + 1 are the positions
of its local extrema, then Ij = [nj ,nj+1) with the exception of
the last interval which is closed at both ends, IJ = [nJ ,nJ+1].
For a given time step n ∈ Ij , we define the LTS as the length
of that interval θj = nj+1 − nj . The amplitude of the local
variation is aj = |x(nj+1) − x(nj )|. The monotony graph of
the time series is the graph of all the couples (θj ,aj ). We
obtain a global description by averaging over the entire time
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FIG. 1. (a) A noisy time series and some of its averaged forms.
For the readability of the graph the plots are displaced vertically
by the quantities δi ∈ {2,4,6,7}. (b) MS of the time series in panel
(a) (◦ markers) and the noneffective MMVs (× markers). The local
extrema (• markers) correspond to the smoothed time series plotted
in panel (a).

series the local quantities defined above. The mean local time
scale (MLTS) is equal with � = (N − 1)/J . The mean of aj

is denoted A. The mean monotonic variation (MMV) is the
couple (�,A).

If the time series is a superposition of components with
different time scales, then the MMV characterizes only the
component with the smallest time scales. As an example we
analyze the time series in Fig. 1(a) composed by a Gaussian
white noise {z(n)} superposed on a deterministic trend {f (n)},
x(n) = f (n) + z(n). The trend has J = 5, 103 � θj � 273,
and (�(f ),A(f )) = (199.8,2.78) and for the noise J = 674,
1 � θj � 5, and (�(z),A(z)) = (1.4822,0.8056). (For an in-
finite Gaussian white noise, the probability that at a given
time there exists a local time extremum is 2/3 and then the
mean of J is 2N/3.) This is a two-level time series with
two dominant time scales related to the trend and the noise.
For {x(n)} we have J = 672, 1 � θj � 5, and (�(x),A(x)) =
(1.4866,0.8083), values almost identical with those for the
noise taken separately.

One can make apparent the larger scale variations of
such a noisy time series by successive smoothings with
increasing strength [12]. We use a succession of averagings
i = 0,1,2, . . . ,I and we denote by {x(i)(n)} the time series

averaged i times with the convention x(0)(n) = x(n). The ith
moving average is defined as

x(i)(n) = 1

2Ki + 1

Ki∑

k=−Ki

x(i−1)(n + k), (1)

where Ki > 0 and Ki < n � N − Ki . If n�Ki (n > N − Ki),
then the average is taken over the first n + Ki (the last
N − n + Ki + 1) values of x(i−1)(n). The properties of this
moving average are analyzed in [13]. The averagings are
stopped when there remains a single monotonic segment
JI = 1 and �I = N . If we know that the time series does
not contain a monotonic component, then we can reduce the
computing time by stopping the averagings when Ai becomes
smaller than 0.1 of the global amplitude of the averaged
time series.

There are averagings which only damp the variations of
{x(i)(n)} determining the decrease of Ai while Ji and �i remain
constant. The useful averages for the multiscale analysis are
those which also modify the shape of the averaged time series
by reducing the number Ji of the monotonic parts. We call them
effective averagings. After an effective smoothing, several
intervals Ij with small amplitudes are eliminated and their
neighboring monotonic segments are joined. If in the range
of such monotonic intervals there is a monotonic variation at
a larger scale, then the resulting new monotonic segment has
a greater amplitude than those of the preceding ones and it
contributes to the increase of the mean amplitude Ai .

We denote by E � I the number of the effective averagings
so that their indices are ie, e = 0,1,2, . . . ,E. We introduce
the notations J ∗

e = Jie , �∗
e = �ie , and A∗

e = Aie . Then �∗
e is

the effective MLTS (effMLTS) and (�∗
e ,A

∗
e ), is the effective

MMV (effMMV) for the eth effective moving average. For
the initial unsmoothed time series (i = 0) we do not have a
previous value Ji−1 and we make the convention i0 = 0 so
that (�∗

0,A
∗
0) = (�0,A0). (A list of these notations is given in

Appendix B.) When the averagings are stopped �∗
E = �I =

N − 1.
In order to obtain an optimal computing time, we have to

choose the succession of averagings such that the number
of inefficient averagings is reduced as much as possible.
As a general rule, we increase the averaging window by
�Ki at the ith averaging, Ki = Ki−1 + �Ki , because after
the elimination of the small scale fluctuations by the first
smoothings, the remaining variations have larger scales and
they need stronger smoothings to be damped. Because initially
we do not know if the time series contain small scale
fluctuations, during the first averaging �Ki = 0 and Ki = 1
is kept at its minimum value. When for the first time the
averaging is not effective, we make �Ki = 1. Numerical tests
showed that we can increase Ki faster than keeping �Ki = 1:
when the averaging is not effective we add a unity to �Ki ,
�Ki+1 = �Ki + 1. In the case of the time series in Fig. 1(a),
for the first 15 averagings Ki = 1 and it is increased gradually
to KI = 172 after I = 41 averagings.

We define the monotony spectrum (MS) of a time series
as the graph of the couples (�∗

e ,A
∗
e ), e = 0,1,2, . . . ,E. In

previous papers [8,11] we used the designation of MS for the
graph of (θj ,aj ) which is called above monotony graph. We
change the terminology because a spectrum usually describes
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the distribution of the properties of a time series over several
time scales and such information is obtained only by successive
smoothings.

The MS of the time series in Fig. 1(a) is plotted in
Fig. 1(b). The initial averagings determine the decrease of
A∗

e as the noise is damped. The time series averaged i = 11
times corresponding to the minimum of A∗

e contains obvious
fluctuations but with reduced amplitudes and longer LTSs
compared with the initial time series [Fig. 1(a)]. All these
averagings are effective such that e = i = 11. The following
averagings eliminate these residual fluctuations and, due to the
existence of the deterministic trend, A∗

e increases. When A∗
e

reaches its maximum (e = 22 and i = 26), all the small scale
variations are eliminated and the averaged time series has only
J ∗

22 = 5 monotonic parts approximating very well the trend
[Fig. 1(a)]. The next ten smoothings are not effective and the
next efficient averaging eliminates one of the trend oscillations
[e = 23 and i = 37 in Fig. 1(a)]. After i = 41 averagings,
from which E = 25 are effective, a single monotonic segment
remains.

This simple example illustrates the ability of the MS
to reflect multiscale structures. The MS in Fig. 1(b) has
three maxima corresponding to the MLTSs dominating the
time series variations. The first maximum at �∗

0 = 1.49 is
obtained for the unsmoothed time series and it corresponds to
the noise fluctuations. The global maximum at �∗

22 = 199.8
corresponds to the oscillations of the deterministic trend with
J ∗

22 = 5 monotonic segments. The two maxima are separated
by almost two orders of magnitude of MLTS indicating that
the analyzed time series is a superposition of two independent
components. The last maximum at �∗

25 = N − 1 = 999 is
related to the monotonic component of the trend.

As a conclusion, we may say that the maxima of the MS
are the main characteristics of the multiscale or multilevel
structure of a time series. The MLTSs corresponding to these
maxima are called dominant time scales. The time series
in Fig. 1(a) has a three-level structure with the greatest
maximum corresponding to the deterministic trend. This
characterization is in accordance with the intuitive perception
that the deterministic trend is clearly visible and the noise has
a smaller importance in the structure of this time series.

III. MULTISCALE STRUCTURE OF ARTIFICIAL
TIME SERIES

In this section we present multiscale analyses using the
MS for several types of time series: superposition of periodic
signals, Gaussian white noise, red noise, deterministic trend
with white noise, discrete fractional Brownian motion (fBm),
and multifractal time series. For noisy time series we also
make Monte Carlo simulations. We qualitatively compare our
results to those of the EMD method, wavelet multiresolution,
and Fourier analysis.

A. Deterministic time series

As an example of a deterministic time series we use the
trend contained in the noisy time series analyzed in the
previous section. Its MS has only two maxima very close to
those of the MS of the noisy time series located at large time
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FIG. 2. MSs of the trend of the time series in Fig. 1(a) for three
different samplings characterized by their time steps. The continuous
line with point markers is the MS in Fig. 1(b).

scales (Fig. 2). The main difference between the two MSs is the
lack in the MS of the trend of the small time scales associated
with the noise. The mean local amplitudes of the MS of the
trend are slightly larger because the number of the averagings
is smaller than when the noise has to be smoothed.

Figure 2 also shows that the MS is not affected by changing
the sampling rate of the deterministic trend with an order of
magnitude. The main difference in the computation of the MS
when the time series is resampled occurs due to the fact that
the averaging window Ki is expressed as the number of time
steps which change with the sampling. However, the effMMVs
of the three samplings are almost identical.

An important problem related to deterministic time series is
the ability of the numerical algorithm to separate two spectral
components with comparable frequencies. Let us consider the
continuous-time signal,

x(t) = cos 2πt + a cos(2πf t + φ), (2)

where t ∈ [0,10] and f < 1. We discretize x(t) with a time
step δt = 0.01, so that N = 1000. It was proved theoretically
that the EMD method can separate the two components only
if f a < 1 [14,15]. But numerically the separation is achieved
only if the additional condition f < 0.55 holds.

We consider time series given by Eq. (2) with a = 1,
f = 30/34, and different values of the phase φ. This signal
was given as an example for which the EMD method cannot
separate the components [4]. The MSs of all these time
series have a two-level structure indicating the presence of
the two components [Fig. 3(a)]. The frequencies of the two
components are estimated as 0.5/�∗

e because for a sinusoid
�∗

e is equal to its semiperiod. When f a < 1, the MS has two
maxima for f < 0.95, a threshold much larger than that of the
EMD method (f < 0.55).

For nonsinusoidal periodic components, similarly to the
periodic case, their separation depends on the number and
positions of the local extrema, but now the theoretical approach
cannot give sufficient information [14]. A numerical analysis
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FIG. 3. Frequencies estimated by the MS for the sinusoidal (a)
and nonsinusoidal (b) components, as a function of φ. The continuous
lines mark the principal frequencies and the dashed line one of the
secondary frequencies of the nonsinusoidal component.

was performed for the signals,

x1(t) = cos(2πt) + 0.15 cos(6πt),

x2(t) = cos(2πt) + 0.15 cos(4πt) − 0.15, (3)

which are periodic, but not sinusoidal. When the condition
f a < 1 is satisfied, the EMD method can decompose the
signal x1(t) + ax2(f t + φ) only if f < 0.32 [14]. The MS
indicates the existence of the two components for much
larger frequencies, for example, for f = 0.4 [Fig. 3(b)]. It
also shows that there exists a secondary component between
the two main ones, related to the frequency 2f contained
in the component ax2(f t + φ). The MS cannot identify the
frequency 3 contained in x1(t).

B. Gaussian white noise

We generated S = 100 Gaussian white noises with zero
mean and unit variance with N = 1000 values and for each
of them we computed the MS (�∗

e;s ,A
∗
e;s), e = 0,1,2, . . . ,Es ,

and s = 1,2, . . . ,S. All the effMMVs are plotted together in
Fig. 4(a), so that we obtain a global MS characterizing the
entire statistical ensemble. The global MS in Fig. 4(a) has a
monoscale structure with the dominant time scale equal to the
smallest MLTS. From the minimum MLTS to the maximum
one the average amplitude monotonically decreases. Hence
each new averaging only diminishes the existing monotonic
variations because there are no trend or correlations which
could be revealed by the successive averagings. The average
amplitude drops abruptly after the first averaging and then for
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FIG. 4. (a) Global MS of 100 Gaussian white noises. (b) Relative
frequencies of the number of the monotonic segments of a Gaussian
white noise with N = 20 000 with respect to their lengths for the first
four effective averagings.

e > 2 the global MS has a power law dependence which in the
loglog plot of Fig. 4(a) becomes linear.

In order to explain why the power law is not satisfied
for e � 2, we consider a single Gaussian white noise with
N = 20 000 values. In this way we obtain a significant
statistics of monotonic segments. In Fig. 4(b) we plot the
relative histograms of θj for the first four efficient averagings.
For an easier comparison of the shapes of the histograms,
they are rescaled by the sample frequency for θj = 1. For
the initial time series (e = 0) the distribution is dominated
by the monotonic segments with a single time step (θj = 1)
and it decreases monotonically with respect to θj . For the
first two averagings (e = 1,2) there are two maxima, one
at θj = 1 and the other at θj = 3. After that (e � 3) the
distributions have only one maximum for θj > 1 and their
shape is preserved. The existence of this maximum indicates
that by successive averagings we have introduced a correlation
between the values of the averaged time series.

In fact, any smoothing induces a spurious correlation in the
smoothed time series. Because the first smoothings are always
made with Ki = 1 constant, we consider the averaging (1) in
this simple case. We denote by w

(i)
k , −i � k � i, the weighting

coefficients corresponding to the ith moving average

x(i)(n) =
i∑

k=−i

w
(i)
k x(n + k)
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FIG. 5. Autocorrelation function induced on an i.i.d. time series
by the averaging (1) with Ki = 1 for several values of i.

for i < n < N − i. By a simple calculation [13, Appendix B],
the autocorrelation induced by this averaging on an i.i.d.
(independent and identically distributed) time series with unit
variance is given by

γ (i)(h) =
i−h∑

k=−i

w
(i)
k w

(i)
k+h

for h � 2i and zero for h > 2i. Figure 5 shows the autocor-
relation function for several values of i. One notices that as
the averagings accumulate, the correlation extends to larger
time lags and the correlation becomes weaker. Hence the
influence of the autocorrelation induced by averagings on
the MS is limited at the smallest time scales. In the case of
the Gaussian white noise this influence is noticeable for the first
three averagings [Fig. 4(a)]. When the time series is not i.i.d.
and contains an intrinsic autocorrelation (deterministic trend,
autoregressive law, etc.), the influence of the autocorrelation
induced by averagings becomes even weaker.

Because the points of the global MS are dispersed, in order
to determine the power law associated to it we introduce
the average MS (〈�∗〉k,〈A∗〉k) obtained by averaging the
effMMVs which have �∗

e;s in K bins (see Appendix A). The
resulting average MS is plotted with cross markers in Fig. 6(a).
The straight line determined by linear regression for 〈�∗〉k > 4
has a slope equal to b ≈ −0.45. We have chosen the values
of S and K such that each bin contains enough values to
make the relative standard deviation of 〈A∗〉k smaller than
0.03 [Fig. 6(b)]. Therefore, in this section and in the following
ones, we plot the average MSs without error bars for standard
deviations.

The shape of the average MS of the Gaussian white noise
is similar to that of the mean power spectrum of the EMD
[16]. In both cases, the amplitude (MS) and the energy (EMD)
decrease by a power law with respect to the time scale. Such
a behavior is related to the fact that a Gaussian white noise
is predominantly composed by fluctuations lasting only a few
time steps. On the other hand, a classical result states that the
power spectrum of a Gaussian white noise has a constant value

[17,18]. The conclusion we can draw from this result is that
the harmonic components and the wavelets are inappropriate
to describe the local structure of the Gaussian white noise
because they have a smooth, deterministic variation and they
approximate poorly the random local fluctuations.

C. Autoregressive red noise

In this section we analyze the average MS of a particular
case of red noise. We numerically generated realizations
{zn} of a stationary stochastic process {Zn} of type AR(1)
(autoregressive of order 1). It is defined by

Zn = φZn−1 + Gn, (4)

where |φ| < 1 and {Gn} is a Gaussian white noise with zero
mean and unit variance. The properties of the AR(1) process
are well known [17]. When the value of the parameter φ

increases, the successive values of the noise become more
correlated. In our numerical tests φ ∈ [0,0.99]. For φ = 1
Eq. (4) defines the usual Brownian motion.

Figure 6(a) shows the average MSs for five values of φ. The
average MS of the Gaussian white noise (φ = 0) follows the
power law presented in the previous section. For φ < 0.7 only
the difference between the first two amplitudes 〈A∗〉1 − 〈A∗〉2

becomes smaller so that the rest of the average MS remains
parallel to that for φ = 0 [these average MSs are not plotted in
Fig. 6(a)]. For φ � 0.7 the average MS acquires a maximum
which is located at larger MLTSs when φ is larger. If the
time series are longer (N > 1000), then the maximum remains
at the same position and the linear part of the average MS
lengthens keeping the same slope. In the case of the Brownian
motion (φ = 1) the average MS has a constant positive slope.

In conclusion, for φ < 0.7 the average MS of the AR(1)
noise preserves the monoscale structure of the Gaussian white
noise. For φ > 0.7 a second maximum appears at intermediate
time scales and the average MS acquires a two-level structure
similar to that of a deterministic trend with a noise superposed
(Sec. II). When φ > 0.9, the average MS has a monoscale
structure with a large dominant time scale. This behavior is
similar to the EMD power spectrum [19]. As for the Gaussian
white noise the local wavelet power spectrum and Fourier
power spectrum have a different energy distribution over time
scales [14,18].

D. Noise superposed on a deterministic trend

The shape of the MS of the Gaussian white noise is modified
by the existence of a deterministic trend. We exemplify this
situation by the artificial time series numerically generated by
the method described in [13,20]. We construct a nonmonotonic
trend from random monotonic semiperiods of sinusoid joined
together such that the trend is continuous. The trend is
characterized by three parameters: the length of the time
series N , the number of monotonic segments P , and the
minimum number of points in a monotonic segment �Nmin.
We superpose on this trend a white Gaussian noise with
the amplitude q times the amplitude of the trend variations.
Figure 1(a) shows such an artificial time series with N = 1000,
P = 5, �Nmin = 50, and q = 1.5. When q = 0 the time
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FIG. 6. (a) The average MSs of statistical ensembles with 1000 time series of AR(1) type with different values of φ < 1 and 1000 Brownian
motions (φ = 1). (b) The relative standard deviations of 〈A∗〉k .

series contains only noise and when q → ∞ we have only
a deterministic trend.

The results obtained for statistical ensembles of 1000 time
series with N = 1000, P = 10, �Nmin = 50 and different
values for q are plotted in Fig. 7. For all the values of q > 0 the
average MS has a two-level structure, not a three-level structure
as that of the time series in Fig. 1(a). Because the graphs in
Fig. 7 are averages over statistical ensembles of individual
MSs, their shapes at large MLTS are strongly smoothed and
they do not resemble anymore that in Fig. 1(b). The individual
extrema are averaged over the statistical ensembles and the
result is a monotonic increase. The length of this region
becomes larger when q increases, i.e., when the influence of
the trend is stronger.

At small MLTS the average MSs for q > 0 coincide with the
MS of Gaussian white noises (x markers in Fig. 7) proving that
at small MLTS it is dominated by noise. When the amplitude
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FIG. 7. The average MSs of statistical ensembles with 1000
time series obtained by superposing a Gaussian white noise on a
deterministic trend with different amplitudes.

of the noise is equal to that of the trend variations (q = 1)
this coincidence holds for 〈�∗〉k < 10. If the time series is
dominated by noise (q = 0.1), then the interval of coincidence
with the Gaussian white noise is longer, while if the time series
is dominated by trend (q = 10), the coincidence interval is
shorter. Hence, in average, at small time scales this type of
time series is dominated by noise, while at large time scales it
is dominated by the trend.

The MS method cannot extract the trend from a noisy
time series. It only indicates the existence of a deterministic
component and estimates its statistical significance. Then one
may use any of the many numerical methods to estimate the
deterministic trend from a noisy time series [3,21], including
those based on the EMD method [22].

In Fig. 8 we analyze the average MS of the deterministic
signal composed by the components given by Eq. (3) with
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FIG. 8. The average MSs of the signal in Fig. 3(b) for φ = 0
on which Gaussian white noises with different amplitudes are
superposed. The continuous lines mark the semiperiods of the largest
terms in Eq. (3), while the dashed lines mark those of the small terms.

033310-6



MULTISCALE STRUCTURE OF TIME SERIES REVEALED . . . PHYSICAL REVIEW E 95, 033310 (2017)

100 101 102 103

Θ*
k

100

101

102
A

*
k

H=0.3

H=0.5

H=0.7

FIG. 9. The average MSs of statistical ensembles with 1000
discrete fBms with different values H and of two Brownian motions
(H = 0.5) on which a linear trend (asterisk markers) and a sinusoid
(x markers) are superposed.

a Gaussian white noise superposed on it. When the noise
amplitude is very small (q = 10) the presence of the two
components is identified by the two maxima located at the
correct semiperiods. The two maxima are clearly visible if
the noise has the same amplitude as the deterministic signal
(q = 1), but a third maximum appears at the smallest time scale
related to the noise presence. When the noise is much larger
than the deterministic signal (q = 0.1), only the maximum
at the smallest time scales remains. However, between the
two principal semiperiods of the deterministic signal (the
continuous vertical lines in Fig. 8) the average MS contains
fluctuations as remnants of the influence of the two IMF
components. Our numerical simulations showed that the MS
can correctly identify the two components for q > 0.3.

E. Discrete fractional Brownian motion

The fBm is a continuous stochastic process [23] and we
generated its discrete paths by means of the algorithm based
on the wavelet decomposition [24]. We computed the average
MSs for statistical ensembles of 1000 discrete fBms with
N = 3000 and three different values of the Hurst exponent H

(Fig. 9). They have a monoscale structure with the maximum
located at the largest MLTS, each new averaging revealing
variations with larger amplitudes due to the nonstationary
nature of the fBm.

If we increase the length N of the time series, then
the average MS maintains its linear shape in a loglog
representation and the dominant time scale becomes equal
to the new value of N . Hence, in this case, the dominant scale
is not specific to the multiscale structure of the time series,
its value being a consequence of the self-similarity of the
time series. Except for the very large and very small 〈�∗〉k ,
the average MS has a power law variation with the exponent
very close to the Hurst exponent: for 〈�∗〉k ∈ [4,100] we
obtain b = 0.298, b = 0.496, and b = 0.686 when H = 0.3,
H = 0.5, and H = 0.7, respectively.

We extended this numerical experiment by superposing a
linear trend on a Brownian motion (H = 0.5). In this case, the
variation of 〈A∗〉k is almost identical to that of the Brownian
motion for 〈�∗〉k < 100 (Fig. 9). When 〈�∗〉k > 100 they
gradually depart from each other and the average MS for
the modified Brownian motion becomes close to the average
MS of the fBm with H = 0.7. Hence the linear trend with a
single LTS equal with N influences the average MS not only
at 〈�∗〉k = N , but also at intermediate scales.

We also superposed on the Brownian motion (H = 0.5)
a sinusoid with the period equal to 500 time steps. The
corresponding average MS of a statistical ensemble with
1000 members (Fig. 9) has a clear deviation from that of the
Brownian motion at time scales smaller than 200 time steps,
i.e., approximately half the period of the sinusoid.

These two examples show that the average MS can indicate
the existence of deterministic components superposed on
a Brownian motion and in general on a fBm. They can
be recognized in the MS because they disturb the power
law characteristic to a time series with long memory. This
particularity could be used as a complement for algorithms
such as the detrended fluctuation analysis (DFA) which
estimate Hurst exponent even in the presence of a trend [25,26].
The DFA fits a straight line to the fluctuation function in a
log-log representation, but it is important that the existence of
a scaling relation characteristic to long memory is previously
ascertained [27]. The MS could help to determine the correct
model of the time series, because it does not make any pre-
liminary assumption and it is not restricted by nonstationarity
or nonlinearity. However, we remark that there are essential
differences between MS and DFA. We have shown that even
for simple time series the MS has an opposite behavior to that
of the power spectrum (Secs. III B and III C) and theoretical
and numerical results show that DFA is equivalent to spectral
measures for long-memory time series [28].

F. Multifractal time series

As a multifractal structure we analyze the time series
describing the transverse component of a passive transport
process in a random velocity field. We consider a typical model
of the hydraulic conductivity for saturated aquifers consisting
of a two-dimensional statistically homogeneous space random
function, with exponential correlation of correlation length zc

and variance σ 2 [29,30]. Details of the numerical algorithm
used to generate the time series can be found in [11,31].

In Fig. 10 we plot the average monotonic spectra obtained
for statistical ensembles of 1000 time series for three values of
zc and σ 2. These average MSs do not present self-similarity as
the discrete fBm does (Fig. 9), however, those with zc = 1 m
have the loglog slopes only slightly varying, especially for the
minimum and maximum time scales. For instance, when σ 2 =
0.15 the global slope is 0.3650, while for its most linear part
(〈�∗〉k ∈ [10,1000]) the slope is 0.3491. When σ 2 = 12 the
global slope is 0.4728, while for its most linear part (〈�∗〉k ∈
[10,330]) the slope is 0.4881. For zc = 30 m the slope of the
MS has large variations and over the approximately linear part
(〈�∗〉k ∈ [10,200]) the slope is 0.8973.

The multiscale structure of the hydrological time series
determined using the MS is similar to that obtained with the

033310-7
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FIG. 10. Three average MSs of statistical ensembles of multifrac-
tal time series.

maximum monotonic variation [11]. The centers of mass of
the monotony graphs of the intrinsic components were aligned
on curves arranged in the same order as in Fig. 10. Their slopes
in loglog representation were slightly larger, for instance,
the slopes of their linear parts were 0.4946, 0.5701, and
0.9502.

Although the average MSs in Fig. 10 are not self-similar,
their dominant time scale is always equal to the length of
the time series. Hence each averaging reveals monotonic
variations at larger time scales with larger amplitudes than
those found previously. But the slopes of the average MSs are
not constant, behavior specific for multifractal time series [32].
The same type of variable slope occurs when a deterministic
trend is superposed on an fBm (Fig. 9). In the case of the
hydrological time series a deterministic trend cannot exist,
because they are generated by a random numerical algorithm
without any deterministic element. In general, in order to
determine the type of a time series, besides the results of
some numerical analysis method, we need theoretical or
experimental indications on the mathematical model behind
observation data.

In practice it is usually necessary to analyze a single time
series and then a statistical test has to be designed in order
to select the appropriate mathematical model. For example,
the existence of nonrandom components in a nonlinear
geophysical time series was proved by comparing the observed
IMFs with those of an ensemble of Gaussian white noises [16].
The MS could be used in a similar manner to test the existence
in a financial time series of large scale nonrandom variations
and of business cycles [33].

IV. CONCLUSIONS

The MS quantifies the evolution of the mean monotonic
variation of a time series during a succession of smoothings
designed to eliminate gradually the fluctuations, beginning
with those at the smallest time scales. The repartition of

the maxima and minima of the MS describes the multiscale
structure of the time series. We have proved the ability of
the MS to reveal the correct multiscale structure of different
types of artificial time series: superposition of periodic signals,
Gaussian white noise with and without trend, AR(1) noise,
fractional Brownian motion with and without trend, and
multifractal time series.

These results have been obtained without any assumption
regarding the stationarity or the linearity of the time series.
Hence the MS method has the same generality as the EMD
method, but it analyzes time series without decomposing them.
Therefore it can be applied to identify the main characteristics
of a time series such that the most appropriate algorithm can
be chosen to decompose it.

The MS gives a global analysis of a time series, because it is
an average representation of a much more detailed description.
When we construct the MS we know all the values of LTSs θ

(i)
j

and amplitudes a
(i)
j for all the averagings i = 1,2, . . . ,I and

all the monotony intervals I
(i)
j , j = 1,2, . . . ,Ji . In addition,

each interval I
(i)
j has a given position in the time series. This

information can be used to construct a monotony spectrogram
organized as a three-dimensional graph. At each time step n

on the abscissa we associate on the ordinate all the time scales
θ

(i)
j for which n ∈ I

(i)
j and the corresponding amplitudes a

(i)
j

on the vertical coordinate. In comparison with the Fourier
spectrogram or the Hilbert spectrogram the frequency is
replaced by the local time scale and the energy by the local
amplitude.

The shortcoming associated with the generality of the LTS
is its weak temporal resolution. One can increase the temporal
resolution, but then the generality is restricted. For example,
the instantaneous frequency can be computed by applying
several methods: Hilbert transform, zero crossing, Teager
energy operator, etc. But an extended comparative study of
the different definitions of the instantaneous frequency [34]
shows that the accuracy of the results of these numerical
methods depends essentially on the conditions imposed by
the Bedrosian [35] and Nuttall [36] theorems. In wavelet
analysis, the time scale is given by the scaling coefficient
which describes the dilation transformations [3,18,37]. But in
this way the shape of the wavelets is neglected even if they
present internal oscillations as, for example, Morlet wavelets.
It is also difficult to define a frequency analogous to that in
Fourier analysis [4,18,38,39].

APPENDIX A: AVERAGE MONOTONY SPECTRUM
OF A STATISTICAL ENSEMBLE

The global MS of a statistical ensemble of time series has
some characteristics that are not observable in the MS of a
single time series as that in Fig. 1(b). At small and large MLTSs
the effMMVs (�∗

e;s ,A
∗
e;s) arrange themselves on specific

formations [Fig. 4(a)]. This behavior occurs identically for
all statistical ensembles studied in this paper.

At large MLTS the couples (�∗
e;s ,A

∗
e;s) form vertical

segments because the number of the monotonic segments
Je;s is an integer, so that the effective MLTS takes only the
discrete values �∗

e;s = N/Je;s . The maximum value �∗
Es ;s = N
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is obtained for the last averaging when the averaged time series
is monotonic (JEs ;s = 1). The previous value �∗

Es−1;s = N/2
occurs when JEs−1;s = 2 and the distance on the abscissa in log
coordinates between the two vertical segments is log10(N/2).
When Je;s increases, these distances decrease. For the large
values of Je;s the values of log10 �∗

e;s are separated by so small
intervals that the corresponding vertical segments cannot be
perceived separately on the graph.

The other alignment of the effMMVs at small �∗
e;s is

due to the discrete variations of the averaging window
Ki in Eq. (1). For small values of Ki these jumps are
perceptible and the effMMVs separate from each other.
These discrete variations could be eliminated using a smooth
averaging kernel [40], but the results are not essentially
changed.

In order to determine the average MS we have to establish
how the couples (�∗

e;s ,A
∗
e;s) can be grouped such that the

structure of the global MS is followed. The difficulty consists
of the fact that at the two extremities the couples cluster
themselves after different laws, while at intermediate MLTS
they are homogenously distributed. Before proceeding to their
grouping, we rescale the mean amplitude of local variations to
unity (�∗

e;s ,A
∗
e;s/A

∗
0;s). In this way we compare only the shapes

of the MSs of individual time series, eliminating the possible
global amplitude variations.

At the minimum MLTS we group the couples (�∗
e;s ,A

∗
e;s)

which for fixed e satisfy the relation �∗
e;s ′ < �∗

e+1;s ′′ for all
s ′ and s ′′ and we obtain groups containing disjoint MLTSs
corresponding to two successive effective averagings. For
each grouping we compute the center of mass (〈�∗〉k′,〈A∗〉k′)
where k′ = 1,2, . . . ,Kinf satisfies the relation k′ = e + 1.
For the global monotony spectrum in Fig. 4(a) we have
Kinf = 3.

At the maximum MLTS we group the couples (�∗
e;s ,A

∗
e;s)

with the same value �∗
e,s and satisfying the condition that their

number is larger than half the number S of the time series
in the statistical ensemble. In this way the amplitudes A∗

e;s
form a representative sample to compute the averages 〈A∗〉k .
For e = Es the condition �∗

e;s = N to stop the successive
averagings holds for all s and then the number of effMMVs in
this grouping is equal to S. Hence this group always contains
more than S/2 effMMVs. For the next value �∗

e;s = N/2, there
are time series which do not contain two monotonic segments
during the successive averagings and then the number of time
series in this group is smaller than S. When �∗

e;s decreases,
the number of the time series in the groups decreases and
after several averagings it becomes smaller than S/2. For
each grouping we compute the center of mass (〈�∗〉k′′ ,〈A∗〉k′′)
where k′′ = 1,2, . . . ,Ksup. For the global MS in Fig. 4(a) we
have Ksup = 6.

The values of the effMMVs which are not included in the
groups at the extremities are grouped in equidistant bins with
the length equal to the average length of the bins already
existing. Finally the three sets of averages are joined and we
obtain the average MS (〈�∗〉k,〈A∗〉k) with k = 1,2, . . . ,K .
For the global MS in Fig. 4(a) we have K = 19 and its average
MS is plotted with cross markers in Fig. 6(a). We see that
even with the above precautions, between the large MLTSs

and the intermediate region of the graph there is a small
discontinuity.

APPENDIX B: HIERARCHY OF MS NOTATIONS

In the construction and analysis of the monotony structure
of time series there is a hierarchy of procedures, each of them
continuing the preceding one. We have introduced notations
reflecting this dependence so that confusions between different
indices are avoided.

The monotony structure of a single time series:
J : the number of the monotonic segments;
θj : local time scale (LTS) of the j th monotonic segment;
aj : amplitude of the variation of the j th monotonic
segment;
(θj ,aj ): monotonic variation of the j th monotonic seg-
ment;
(θj ,aj ), j = 1,2, . . . ,J : monotony graph of the time
series.

The mean monotony structure of a single time series:
� = (N − 1)/J : mean local time scale (MLTS);
A: mean amplitude of the local variation;
(�,A): mean monotonic variation (MMV) or the center
of mass of the monotony graph.

The evolution of the monotony structure of a time series
during I successive averagings:

Ji : J of the ith averaging;
�i = (N − 1)/Ji : MLTS of the ith averaging;
Ai : mean amplitude of the local variation of the ith
averaging;
(�i,Ai): MMV of the ith averaging.

The evolution of the monotony structure of a time series
during E successive effective averagings:

ie: the indices of the averagings which are effective;
J ∗

e = Jie : J of the eth effective averaging;
�∗

e = �ie : MLTS of the eth effective averaging
(effMLTS);
A∗

e = Aie : mean amplitude of the local variation of the
eth effective averaging;
(�∗

e ,A
∗
e ): MMV of the eth effective averaging (effMMV);

(�∗
e ,A

∗
e ), e = 1,2, . . . ,E: monotony spectrum (MS) of

the time series.
The monotony structure of a statistical ensemble with S

time series:
J ∗

e;s : J ∗
e of the sth member of the statistical ensemble;

�∗
e;s : effMLTS of the sth member of the statistical

ensemble;
A∗

e;s : mean amplitude of the local variation of the eth
effective averaging of the sth member of the statistical
ensemble;
(�∗

e;s ,A
∗
e;s), e = 1,2, . . . ,Es, s = 1,2, . . . ,S: global MS

of the statistical ensemble.
The average monotony structure of a statistical ensemble

obtained by averaging the global MS over K bins:
〈�∗〉k: average effMLTS of the kth bin;
〈A∗〉k: average mean amplitude of the local variation of
the eth effective averaging of the kth bin;
(〈�∗〉k,〈A∗〉k), k = 1,2, . . . ,K: average MS of the statis-
tical ensemble.
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